Package 'MSstatsShiny'

Title: MSstats GUI for Statistical Anaylsis of Proteomics Experiments
Description: MSstatsShiny is an R-Shiny graphical user interface (GUI) integrated with the R packages MSstats, MSstatsTMT, and MSstatsPTM. It provides a point and click end-to-end analysis pipeline applicable to a wide variety of experimental designs. These include data-dependedent acquisitions (DDA) which are label-free or tandem mass tag (TMT)-based, as well as DIA, SRM, and PRM acquisitions and those targeting post-translational modifications (PTMs). The application automatically saves users selections and builds an R script that recreates their analysis, supporting reproducible data analysis.
Authors: Devon Kohler [aut, cre], Deril Raju [aut], Maanasa Kaza [aut], Cristina Pasi [aut], Ting Huang [aut], Mateusz Staniak [aut], Dhaval Mohandas [aut], Eduard Sabido [aut], Meena Choi [aut], Olga Vitek [aut]
Maintainer: Devon Kohler <[email protected]>
License: Artistic-2.0
Version: 1.9.0
Built: 2024-12-21 05:57:40 UTC
Source: https://github.com/bioc/MSstatsShiny

Help Index


Example annotation file for Spectromine

Description

data.frame mapping Spectromine run names to the corresponding bioreplicates and conditions. Used as input to preprocessing function, converting data into MSstats format.

Format

data.frame

Examples

data(annotation.mine)
head(annotation.mine)

Example annotation file for MaxQuant

Description

data.frame mapping MaxQuant run names to the corresponding bioreplicates and conditions. Used as input to preprocessing function, converting data into MSstats format.

Format

data.frame

Examples

data(annotation.mq)
head(annotation.mq)

Example annotation file for PD

Description

data.frame mapping PD run names to the corresponding bioreplicates and conditions. Used as input to preprocessing function, converting data into MSstats format.

Format

data.frame

Examples

data(annotation.pd)
head(annotation.pd)

Main PTM adjustment function

Description

Main PTM function to model MSstatsShiny data.

Usage

apply_adj(ptm_model, protein_model)

Arguments

ptm_model

output of MSstats modeling function modeling PTMs

protein_model

output of MSstats modeling function modeling unmodified proteins

Value

list of PTM modeling results

Examples

model = MSstatsPTM::groupComparisonPTM(MSstatsPTM::summary.data, 
                                       data.type = "LabelFree")
apply_adj(model$PTM.Model, model$PROTEIN.Model)

Example of Sklyine DDA dataset modeled using MSstats groupComparison function.

Description

Data includes one list with two data.tables named ComparisonResult and ModelQC and another list of model details named FittedModel. ComparisonResult shows an overview of all proteins modeled in the system. ModelQC provides a report on the quality control checks of each protein in the dataset.

Format

list

Examples

data(dia_skyline_model)
head(dia_skyline_model)

Example of Sklyine DDA dataset processed using MSstats summarization function.

Description

Data includes one list with two data.tables named FeatureLevelData and ProteinLevelData and a string value SummaryMethod. FeatureLevelData shows the unsummarized feature level data. ProteinLevelData shows the data summarized up to the protein level and is used for modeling the data.

Format

list

Examples

data(dia_skyline_summarized)
head(dia_skyline_summarized)

Example evidence file for MaxQuant

Description

data.frame containing output of MaxQuant. Used in examples.

Format

data.frame

Examples

data(evidence)
head(evidence)

Example of input Sklyine DDA dataset.

Description

Used as input data to MSstats workflow. Data includes one data.table which is the output of Skyline.

Format

data.frame

Details

The raw data (input data for MSstats) is required to contain variable of ProteinName, PeptideSequence, PrecursorCharge, FragmentIon, ProductCharge, IsotopeLabelType, Condition, BioReplicate, Run, Intensity. The variable names should be fixed. If the information of one or more columns is not available for the original raw data, please retain the column variables and type in fixed value. For example, the original raw data does not contain the information of PrecursorCharge and ProductCharge, we retain the column PrecursorCharge and ProductCharge and then type in NA for all transitions in RawData. Variable Intensity is required to be original signal without any log transformation and can be specified as the peak of height or the peak of area under curve.

Examples

data(example_dia_skyline)
head(example_dia_skyline)

Example annotation file

Description

data.frame mapping Skyline run names to the corresponding bioreplicates and conditions. Used as input to preprocessing function, converting data into MSstats format.

Format

data.frame

Examples

data(example_skyline_annotation)
head(example_skyline_annotation)

Expdes Server module for future experiments

Description

This function sets up the Expdes server to process data based on user selected inputs

Usage

expdesServer(
  input,
  output,
  session,
  parent_session,
  loadpage_input,
  qc_input,
  statmodel_input,
  data_comparison
)

Arguments

input

input object to capture different ui element values

output

to render and create elements

session

session current module

parent_session

session of the main calling module

loadpage_input

input object from loadpage UI

qc_input

input object from QC UI

statmodel_input

input object from Statmodel UI

data_comparison

function for group comparisons

Value

list object with user selected options and matrix build

Examples

NA

Expdes UI module for future experiments UI.

Description

This function sets up the Expdes UI where it consists of several, options for users to select and generate plots.

Usage

expdesUI(id)

Arguments

id

namespace prefix for the module

Value

This function returns nothing, as it sets up the Expdes UI

Examples

NA

Plotting funcitonality for QC plots

Description

General plotting code to produce all QC plots in the application

Usage

groupComparisonPlots2(
  data = data,
  type = type,
  sig = 0.05,
  FCcutoff = FALSE,
  logBase.pvalue = 10,
  ylimUp = FALSE,
  ylimDown = FALSE,
  xlimUp = FALSE,
  x.axis.size = 10,
  y.axis.size = 10,
  dot.size = 3,
  text.size = 4,
  legend.size = 13,
  ProteinName = TRUE,
  colorkey = TRUE,
  numProtein = 100,
  clustering = "both",
  width = 10,
  height = 10,
  which.Comparison = "all",
  which.Protein = "all",
  address = "",
  savePDF = FALSE
)

Arguments

data

'ComparisonResult' in testing output from function groupComparison.

type

choice of visualization. "VolcanoPlot" represents volcano plot of log fold changes and adjusted p-values for each comparison separately. "Heatmap" represents heatmap of adjusted p-values for multiple comparisons. "ComparisonPlot" represents comparison plot of log fold changes for multiple comparisons per protein.

sig

FDR cutoff for the adjusted p-values in heatmap and volcano plot. level of significance for comparison plot. 100(1-sig)% confidence interval will be drawn. sig=0.05 is default.

FCcutoff

for volcano plot or heatmap, whether involve fold change cutoff or not. FALSE (default) means no fold change cutoff is applied for significance analysis. FCcutoff = specific value means specific fold change cutoff is applied.

logBase.pvalue

for volcano plot or heatmap, (-) logarithm transformation of adjusted p-value with base 2 or 10(default).

ylimUp

for all three plots, upper limit for y-axis. FALSE (default) for volcano plot/heatmap use maximum of -log2 (adjusted p-value) or -log10 (adjusted p-value). FALSE (default) for comparison plot uses maximum of log-fold change + CI.

ylimDown

for all three plots, lower limit for y-axis. FALSE (default) for volcano plot/heatmap use minimum of -log2 (adjusted p-value) or -log10 (adjusted p-value). FALSE (default) for comparison plot uses minimum of log-fold change - CI.

xlimUp

for Volcano plot, the limit for x-axis. FALSE (default) for use maximum for absolute value of log-fold change or 3 as default if maximum for absolute value of log-fold change is less than 3.

x.axis.size

size of axes labels, e.g. name of the comparisons in heatmap, and in comparison plot. Default is 10.

y.axis.size

size of axes labels, e.g. name of targeted proteins in heatmap. Default is 10.

dot.size

size of dots in volcano plot and comparison plot. Default is 3.

text.size

size of ProteinName label in the graph for Volcano Plot. Default is 4.

legend.size

size of legend for color at the bottom of volcano plot. Default is 7.

ProteinName

for volcano plot only, whether display protein names or not. TRUE (default) means protein names, which are significant, are displayed next to the points. FALSE means no protein names are displayed.

colorkey

TRUE(default) shows colorkey.

numProtein

The number of proteins which will be presented in each heatmap. Default is 100. Maximum possible number of protein for one heatmap is 180.

clustering

Determines how to order proteins and comparisons. Hierarchical cluster analysis with Ward method(minimum variance) is performed. 'protein' means that protein dendrogram is computed and reordered based on protein means (the order of row is changed). 'comparison' means comparison dendrogram is computed and reordered based on comparison means (the order of comparison is changed). 'both' means to reorder both protein and comparison. Default is 'protein'.

width

width of the saved file. Default is 10.

height

height of the saved file. Default is 10.

which.Comparison

list of comparisons to draw plots. List can be labels of comparisons or order numbers of comparisons from levels(data$Label), such as levels(testResultMultiComparisons$ComparisonResult$Label). Default is "all", which generates all plots for each protein.

which.Protein

Protein list to draw comparison plots. List can be names of Proteins or order numbers of Proteins from levels(testResultMultiComparisons$ComparisonResult$Protein). Default is "all", which generates all comparison plots for each protein.

address

the name of folder that will store the results. Default folder is the current working directory. The other assigned folder has to be existed under the current working directory. An output pdf file is automatically created with the default name of "VolcanoPlot.pdf" or "Heatmap.pdf" or "ComparisonPlot.pdf". The command address can help to specify where to store the file as well as how to modify the beginning of the file name. If address=FALSE, plot will be not saved as pdf file but showed in window.

savePDF

Boolean input passed from user on whether or not to save the plot to a PDF.

Value

PDF or console plot

Examples

data("dia_skyline_model")
groupComparisonPlots2(dia_skyline_model$ComparisonResult, type="VolcanoPlot",
                      address=FALSE)

Help UI module for help page.

Description

This module shows the help page for general documentation

Usage

helpUI(id)

Arguments

id

namespace prefix for the module

Value

This function returns nothing, as it sets up the Help UI

Examples

NA

Home UI module for home page.

Description

This function generates the home user interface for MSstatsShiny, a web tool for the statistical analysis of quantitative proteomic data built around the R packages MSstats, MSstatsTMT, and MSstatsPTM.

Usage

homeUI(id)

Arguments

id

namespace prefix for the module

Value

This function returns nothing, as it sets up the Home UI

Examples

NA

Run MSstatsShiny Application

Description

Main function to run MSstatsShiny. All other functions in this package are run automatically.

Usage

launch_MSstatsShiny(
  launch_app = TRUE,
  port = getOption("shiny.port"),
  host = getOption("shiny.host", "127.0.0.1"),
  testMode = FALSE
)

Arguments

launch_app

One of TRUE or FALSE indicating whether or not to run application. Default is TRUE.

port

(optional) Specify port the application should list to.

host

(optional) The IPv4 address that the application should listen on.

testMode

One of TRUE or FALSE indicating whether or not to run the application in test mode. Default is FALSE.

Value

Running Shiny Application

Examples

## Not run: 
## To run app set launch_app=TRUE
launch_MSstatsShiny(launch_app=FALSE,testMode=FALSE)

## End(Not run)

Main LF modeling function for MSstatsShiny application

Description

Main LF function to model MSstatsShiny data.

Usage

lf_model(data, contrast.matrix, busy_indicator = TRUE)

Arguments

data

summarized data from output of MSstats summarization function.

contrast.matrix

contrast matrix specifying which conditions should be compared

busy_indicator

Boolean indicator indicating whether or not to display shiny waiting indicator.

Value

list of LF modeling results

Examples

data("dia_skyline_summarized")
comparison <- matrix(c(1, -1, 0, 0, 0, 0, 0, 0, 0, 0),nrow=1)
row.names(comparison) = "1 vs 128"
colnames(comparison) = c("1", "128", "16", "2", "256", 
                         "32", "4", "512", "64", "8")
model_lf_test = lf_model(dia_skyline_summarized, comparison, 
                         busy_indicator = FALSE)

Main LF calculation summarization function for MSstatsShiny application

Description

Main LF function to calculate MSstatsShiny results.

Usage

lf_summarization_loop(data, qc_input, loadpage_input, busy_indicator = TRUE)

Arguments

data

Data converted into MSstats format.

qc_input

options for data processing input by the user from data processing page.

loadpage_input

options for data processing input by the user from data upload page.

busy_indicator

Boolean indicator indicating whether or not to display shiny waiting indicator.

Value

list of LF Summarization results

Examples

data("example_dia_skyline")
data("example_skyline_annotation")
testdata = MSstats::SkylinetoMSstatsFormat(example_dia_skyline,
                                            annotation = example_skyline_annotation,
                                            filter_with_Qvalue = TRUE, 
                                            qvalue_cutoff = 0.01, 
                                            fewMeasurements="remove", 
                                            removeProtein_with1Feature = TRUE,
                                            use_log_file = FALSE)

## Source app functionality
qc_input = list()
loadpage_input = list()
qc_input$norm = "equalizeMedians"
qc_input$log = 2
qc_input$names = NULL
qc_input$features_used	= "all"
code_n_feat=3
qc_input$censInt = "NA"
qc_input$MBi = TRUE
qc_input$remove50 = FALSE
qc_input$maxQC = 0.999
qc_input$null = FALSE
qc_input$null1 = FALSE
loadpage_input$DDA_DIA = "LF"
lf_summarization_loop(testdata, qc_input,loadpage_input, busy_indicator=FALSE)

Loadpage Server module for data selection and upload server.

Description

This function sets up the loadpage server where it consists of several, options for users to select and upload files.

Usage

loadpageServer(id, parent_session)

Arguments

id

namespace prefix for the module

parent_session

session of the main calling module

Value

input object with user selected options

Examples

NA

Loadpage UI module for data selection and upload UI.

Description

This function sets up the loadpage UI where it consists of several, options for users to select and upload files.

Usage

loadpageUI(id)

Arguments

id

namespace prefix for the module

Value

This function returns nothing, as it sets up the loadpage UI

Examples

NA

Help MSStats UI module for msstats help page.

Description

This module shows the msstats help page for general documentation

Usage

msstatsHelpUI(id)

Arguments

id

namespace prefix for the module

Value

This function returns nothing, as it sets up the MSStats Help UI

Examples

NA

MSstatsShiny: An R-shiny based package for detecting differencially abundant proteins, integrated with the MSstats family of packages.

Description

A set of tools for detecting differentially abundant proteins in shotgun mass spectrometry-based proteomic experiments. The package can handle a variety of acquisition types, including label free, DDA, DIA, and TMT. The package includes tools to convert raw data from different spectral processing tools, summarize feature intensities, and fit a linear mixed effects model. The GUI supports different biological queries including those targeting the global proteome and post translational modifications. Additionally the package includes functionality to plot a variety of data visualizations.

functions

Author(s)

Maintainer: Devon Kohler [email protected]

Authors:

See Also

Useful links:


Help MSStats UI module for msstatstmt help page.

Description

This module shows the msstats help page for general documentation

Usage

msstatsTmtHelpUI(id)

Arguments

id

namespace prefix for the module

Value

This function returns nothing, as it sets up the MSStatstmts Help UI

Examples

NA

Example ProteinGroups file for MaxQuant

Description

data.frame containing output of ProteinGroups MaxQuant file. Used in examples.

Format

data.frame

Examples

data(proteinGroups)
head(proteinGroups)

Quick QC value check

Description

Quick QC value check for LF vs TMT

Usage

QC_check(qc_input, loadpage_input)

Arguments

qc_input

options for data processing input by the user from data processing page.

loadpage_input

options for data processing input by the user from data upload page.

Value

string

Examples

qc_input = list(null=TRUE)
loadpage_input = list(null=TRUE)
QC_check(qc_input,loadpage_input)

QC Server module for data processing

Description

This function sets up the QC server to process data based on user selected inputs

Usage

qcServer(input, output, session, parent_session, loadpage_input, get_data)

Arguments

input

input object to capture different ui element values

output

to render and create elements

session

session current module

parent_session

session of the main calling module

loadpage_input

input object from loadpage UI

get_data

stored function that returns the data from loadpage

Value

input object with user selected options

Examples

NA

QC UI module for data processing UI.

Description

This function sets up the QC UI where it consists of several, options for users to process data based on previously selected fragments.

Usage

qcUI(id)

Arguments

id

namespace prefix for the module

Value

This function returns nothing, as it sets up the QC UI

Examples

NA

Custom function to create radio tool tips

Description

Used in UI files to create HTML vizualizations

Usage

radioTooltip(
  id,
  choice,
  title,
  placement = "bottom",
  trigger = "hover",
  options = NULL
)

Arguments

id

input id

choice

user selection

title

title of object

placement

where should tooltip be shown

trigger

how should prompt be shown

options

additional options to pass to function

Value

HTML object

Examples

radioTooltip("testid", "test_choice", "test_title")

Example output file Spectromine

Description

data.frame containing output of Spectromine. Used in examples.

Format

data.frame

Examples

data(raw.mine)
head(raw.mine)

Example output file Spectromine

Description

data.frame containing output of Spectromine. Used in examples.

Format

data.frame

Examples

data(raw.om)
head(raw.om)

Example output file PD

Description

data.frame containing output of PD. Used in examples.

Format

data.frame

Examples

data(raw.pd)
head(raw.pd)

Server function for the MSstatsShiny app

Description

This functions generates the Server object for MSstatsShiny app.

Usage

server(input, output, session)

Arguments

input

shiny server input

output

shiny server output

session

session object for shiny to connect to

Value

Server object for shinyUI

Examples

NA

Statmodel Server module for stat inference

Description

This function sets up the Statmodel server to process data based on user selected inputs

Usage

statmodelServer(
  input,
  output,
  session,
  parent_session,
  loadpage_input,
  qc_input,
  get_data,
  preprocess_data
)

Arguments

input

input object to capture different ui element values

output

to render and create elements

session

session current module

parent_session

session of the main calling module

loadpage_input

input object from loadpage UI

qc_input

input object from QC UI

get_data

stored function that returns the data from loadpage

preprocess_data

stored function that returns preprocessed data

Value

list object with user selected options and matrix build

Examples

NA

Statmodel UI module for statistical inference UI.

Description

This function sets up the Statmodel UI where it consists of several, options for users to select and upload files.

Usage

statmodelUI(id)

Arguments

id

namespace prefix for the module

Value

This function returns nothing, as it sets up the Statmodel UI

Examples

NA

Main TMT modeling function for MSstatsShiny application

Description

Main TMT function to model MSstatsShiny data.

Usage

tmt_model(data, input, contrast.matrix, busy_indicator = TRUE)

Arguments

data

summarized data from output of MSstats summarization function.

input

options for data processing input by the user

contrast.matrix

contrast matrix specifying which conditions should be compared

busy_indicator

Boolean indicator indicating whether or not to display shiny waiting indicator.

Value

list of TMT modeling results

Examples

data(raw.pd, package = "MSstatsTMT")
data(annotation.pd, package = "MSstatsTMT")

testdata <- MSstatsTMT::PDtoMSstatsTMTFormat(raw.pd, 
                                             annotation.pd,
                                             use_log_file = FALSE
                                             )#' 

qc_input = list()
loadpage_input = list()
qc_input$summarization = "msstats"
qc_input$norm = "equalizeMedians"
qc_input$log = 2
qc_input$names = NULL
qc_input$features_used	= "all"
code_n_feat=3
qc_input$censInt = "NA"
qc_input$MBi = TRUE
qc_input$remove50 = FALSE
qc_input$maxQC = 0.999
qc_input$null = FALSE
qc_input$null1 = FALSE
loadpage_input$DDA_DIA = "LF"
qc_input$global_norm = TRUE
qc_input$reference_norm = TRUE
qc_input$remove_norm_channel = TRUE
qc_input$maxQC1 = NULL
qc_input$moderated = FALSE

summarization_tmt_test = tmt_summarization_loop(testdata, qc_input, loadpage_input,
                                               busy_indicator = FALSE)
                                               
comparison=matrix(c(-1,0,0,1),nrow=1)
row.names(comparison) = "1-0.125"
colnames(comparison) = c("0.125", "0.5", "0.667", "1")

model_tmt_test = tmt_model(summarization_tmt_test, qc_input, comparison, 
                           busy_indicator = FALSE)

Example of TMT dataset modeled using MSstatsTMT groupComparisonTMT function.

Description

Data includes one list with two data.tables named ComparisonResult and ModelQC and another list of model details named FittedModel. ComparisonResult shows an overview of all proteins modeled in the system. ModelQC provides a report on the quality control checks of each protein in the dataset.

Format

list

Examples

data(tmt_pd_model)
head(tmt_pd_model)

Example of TMT dataset processed using MSstatsTMT summarization function.

Description

Data includes one list with two data.tables named FeatureLevelData and ProteinLevelData. FeatureLevelData shows the unsummarized feature level data. ProteinLevelData shows the data summarized up to the protein level and is used for modeling the data.

Format

list

Examples

data(tmt_pd_summarized)
head(tmt_pd_summarized)

Main TMT summarization calculation function for MSstatsShiny application

Description

Main TMT function to calculate MSstatsShiny results.

Usage

tmt_summarization_loop(data, qc_input, loadpage_input, busy_indicator = TRUE)

Arguments

data

Data converted into MSstats format.

qc_input

options for data processing input by the user from data processing page.

loadpage_input

options for data processing input by the user from data upload page.

busy_indicator

Boolean indicator indicating whether or not to display shiny waiting indicator.

Value

list of TMT summarization results

Examples

data(raw.pd, package = "MSstatsTMT")
data(annotation.pd, package = "MSstatsTMT")

testdata <- MSstatsTMT::PDtoMSstatsTMTFormat(raw.pd, 
                                             annotation.pd,
                                             use_log_file = FALSE
                                             )

qc_input = list()
loadpage_input = list()
qc_input$summarization = "msstats"
qc_input$norm = "equalizeMedians"
qc_input$log = 2
qc_input$names = NULL
qc_input$features_used	= "all"
code_n_feat=3
qc_input$censInt = "NA"
qc_input$MBi = TRUE
qc_input$remove50 = FALSE
qc_input$maxQC = 0.999
qc_input$null = FALSE
qc_input$null1 = FALSE
loadpage_input$DDA_DIA = "LF"
qc_input$global_norm = TRUE
qc_input$reference_norm = TRUE
qc_input$remove_norm_channel = TRUE
qc_input$maxQC1 = NULL
summarization_tmt_test = tmt_summarization_loop(testdata, qc_input,loadpage_input, 
                                               busy_indicator = FALSE)

UI function for the MSstatsShiny app

Description

This functions generates the UI object for MSstatsShiny app. Responsible for generating 5 nav pages homepage, data upload page, data processing page, statistical inference and future experiments.

Usage

uiObject()

Value

UI object for shinyUI

Examples

NA

Simple function to return coordinates

Description

Used in experimental design to create vizualization

Usage

xy_str(e)

Arguments

e

input function provided by user

Value

Character with x and y coordinates

Examples

xy_str(list(x=5.0,y=2.0))