Title: | Import Data from Various Mass Spectrometry Signal Processing Tools to MSstats Format |
---|---|
Description: | MSstatsConvert provides tools for importing reports of Mass Spectrometry data processing tools into R format suitable for statistical analysis using the MSstats and MSstatsTMT packages. |
Authors: | Mateusz Staniak [aut, cre], Devon Kohler [aut], Anthony Wu [aut], Meena Choi [aut], Ting Huang [aut], Olga Vitek [aut] |
Maintainer: | Mateusz Staniak <[email protected]> |
License: | Artistic-2.0 |
Version: | 1.17.0 |
Built: | 2024-10-30 08:20:35 UTC |
Source: | https://github.com/bioc/MSstatsConvert |
Clean raw Proteome Discoverer data
.cleanRawPD( msstats_object, quantification_column, protein_id_column, sequence_column, remove_shared, remove_protein_groups = TRUE, intensity_columns_regexp = "Abundance" )
.cleanRawPD( msstats_object, quantification_column, protein_id_column, sequence_column, remove_shared, remove_protein_groups = TRUE, intensity_columns_regexp = "Abundance" )
msstats_object |
an object of class |
quantification_column |
chr, name of a column used for quantification. |
protein_id_column |
chr, name of a column with protein IDs. |
sequence_column |
chr, name of a column with peptide sequences. |
remove_shared |
lgl, if TRUE, shared peptides will be removed. |
remove_protein_groups |
if TRUE, proteins with numProteins > 1 will be removed. |
intensity_columns_regexp |
regular expressions that defines intensity columns. Defaults to "Abundance", which means that columns that contain the word "Abundance" will be treated as corresponding to intensities for different channels. |
data.table
Helper method to validate input has necessary columns
.validatePDTMTInputColumns( pd_input, protein_id_column, num_proteins_column, channels )
.validatePDTMTInputColumns( pd_input, protein_id_column, num_proteins_column, channels )
pd_input |
data.frame input |
protein_id_column |
column name for protein passed from user |
num_proteins_column |
column name for number of protein groups passed from user |
channels |
list of column names for channels |
Convert output of converters to data.frame
## S3 method for class 'MSstatsValidated' as.data.frame(x, ...)
## S3 method for class 'MSstatsValidated' as.data.frame(x, ...)
x |
object of class MSstatsValidated |
... |
Additional arguments to be passed to or from other methods. |
data.frame
Convert output of converters to data.table
## S3 method for class 'MSstatsValidated' as.data.table(x, ...)
## S3 method for class 'MSstatsValidated' as.data.table(x, ...)
x |
object of class MSstatsValidated |
... |
Additional arguments to be passed to or from other methods. |
data.tables
Import Diann files
DIANNtoMSstatsFormat( input, annotation = NULL, global_qvalue_cutoff = 0.01, qvalue_cutoff = 0.01, pg_qvalue_cutoff = 0.01, useUniquePeptide = TRUE, removeFewMeasurements = TRUE, removeOxidationMpeptides = TRUE, removeProtein_with1Feature = TRUE, use_log_file = TRUE, append = FALSE, verbose = TRUE, log_file_path = NULL, MBR = TRUE, quantificationColumn = "FragmentQuantCorrected", ... )
DIANNtoMSstatsFormat( input, annotation = NULL, global_qvalue_cutoff = 0.01, qvalue_cutoff = 0.01, pg_qvalue_cutoff = 0.01, useUniquePeptide = TRUE, removeFewMeasurements = TRUE, removeOxidationMpeptides = TRUE, removeProtein_with1Feature = TRUE, use_log_file = TRUE, append = FALSE, verbose = TRUE, log_file_path = NULL, MBR = TRUE, quantificationColumn = "FragmentQuantCorrected", ... )
input |
name of MSstats input report from Diann, which includes feature-level data. |
annotation |
name of 'annotation.txt' data which includes Condition, BioReplicate, Run. |
global_qvalue_cutoff |
The global qvalue cutoff |
qvalue_cutoff |
local qvalue cutoff for library |
pg_qvalue_cutoff |
local qvalue cutoff for protein groups Run should be the same as filename. |
useUniquePeptide |
should unique pepties be removed |
removeFewMeasurements |
should proteins with few measurements be removed |
removeOxidationMpeptides |
should peptides with oxidation be removed |
removeProtein_with1Feature |
should proteins with a single feature be removed |
use_log_file |
logical. If TRUE, information about data processing will be saved to a file. |
append |
logical. If TRUE, information about data processing will be added to an existing log file. |
verbose |
logical. If TRUE, information about data processing wil be printed to the console. |
log_file_path |
character. Path to a file to which information about
data processing will be saved.
If not provided, such a file will be created automatically.
If |
MBR |
True if analysis was done with match between runs |
quantificationColumn |
Use 'FragmentQuantCorrected'(default) column for quantified intensities. 'FragmentQuantRaw' can be used instead. |
... |
additional parameters to |
data.frame in the MSstats required format.
Elijah Willie
input_file_path = system.file("tinytest/raw_data/DIANN/diann_input.tsv", package="MSstatsConvert") annotation_file_path = system.file("tinytest/raw_data/DIANN/annotation.csv", package = "MSstatsConvert") input = data.table::fread(input_file_path) annot = data.table::fread(annotation_file_path) output = DIANNtoMSstatsFormat(input, annotation = annot, MBR = FALSE, use_log_file = FALSE) head(output)
input_file_path = system.file("tinytest/raw_data/DIANN/diann_input.tsv", package="MSstatsConvert") annotation_file_path = system.file("tinytest/raw_data/DIANN/annotation.csv", package = "MSstatsConvert") input = data.table::fread(input_file_path) annot = data.table::fread(annotation_file_path) output = DIANNtoMSstatsFormat(input, annotation = annot, MBR = FALSE, use_log_file = FALSE) head(output)
Import DIA-Umpire files
DIAUmpiretoMSstatsFormat( raw.frag, raw.pep, raw.pro, annotation, useSelectedFrag = TRUE, useSelectedPep = TRUE, removeFewMeasurements = TRUE, removeProtein_with1Feature = FALSE, summaryforMultipleRows = max, use_log_file = TRUE, append = FALSE, verbose = TRUE, log_file_path = NULL, ... )
DIAUmpiretoMSstatsFormat( raw.frag, raw.pep, raw.pro, annotation, useSelectedFrag = TRUE, useSelectedPep = TRUE, removeFewMeasurements = TRUE, removeProtein_with1Feature = FALSE, summaryforMultipleRows = max, use_log_file = TRUE, append = FALSE, verbose = TRUE, log_file_path = NULL, ... )
raw.frag |
name of FragSummary_date.xls data, which includes feature-level data. |
raw.pep |
name of PeptideSummary_date.xls data, which includes selected fragments information. |
raw.pro |
name of ProteinSummary_date.xls data, which includes selected peptides information. |
annotation |
name of annotation data which includes Condition, BioReplicate, Run information. |
useSelectedFrag |
TRUE will use the selected fragment for each peptide. 'Selected_fragments' column is required. |
useSelectedPep |
TRUE will use the selected peptide for each protein. 'Selected_peptides' column is required. |
removeFewMeasurements |
TRUE (default) will remove the features that have 1 or 2 measurements across runs. |
removeProtein_with1Feature |
TRUE will remove the proteins which have only 1 feature, which is the combination of peptide, precursor charge, fragment and charge. FALSE is default. |
summaryforMultipleRows |
max(default) or sum - when there are multiple measurements for certain feature and certain run, use highest or sum of multiple intensities. |
use_log_file |
logical. If TRUE, information about data processing will be saved to a file. |
append |
logical. If TRUE, information about data processing will be added to an existing log file. |
verbose |
logical. If TRUE, information about data processing wil be printed to the console. |
log_file_path |
character. Path to a file to which information about
data processing will be saved.
If not provided, such a file will be created automatically.
If |
... |
additional parameters to |
data.frame in the MSstats required format.
Meena Choi, Olga Vitek
diau_frag = system.file("tinytest/raw_data/DIAUmpire/dia_frag.csv", package = "MSstatsConvert") diau_pept = system.file("tinytest/raw_data/DIAUmpire/dia_pept.csv", package = "MSstatsConvert") diau_prot = system.file("tinytest/raw_data/DIAUmpire/dia_prot.csv", package = "MSstatsConvert") annot = system.file("tinytest/raw_data/DIAUmpire/annot_diau.csv", package = "MSstatsConvert") diau_frag = data.table::fread(diau_frag) diau_pept = data.table::fread(diau_pept) diau_prot = data.table::fread(diau_prot) annot = data.table::fread(annot) diau_frag = diau_frag[, lapply(.SD, function(x) if (is.integer(x)) as.numeric(x) else x)] # In case numeric columns are not interpreted correctly diau_imported = DIAUmpiretoMSstatsFormat(diau_frag, diau_pept, diau_prot, annot, use_log_file = FALSE) head(diau_imported)
diau_frag = system.file("tinytest/raw_data/DIAUmpire/dia_frag.csv", package = "MSstatsConvert") diau_pept = system.file("tinytest/raw_data/DIAUmpire/dia_pept.csv", package = "MSstatsConvert") diau_prot = system.file("tinytest/raw_data/DIAUmpire/dia_prot.csv", package = "MSstatsConvert") annot = system.file("tinytest/raw_data/DIAUmpire/annot_diau.csv", package = "MSstatsConvert") diau_frag = data.table::fread(diau_frag) diau_pept = data.table::fread(diau_pept) diau_prot = data.table::fread(diau_prot) annot = data.table::fread(annot) diau_frag = diau_frag[, lapply(.SD, function(x) if (is.integer(x)) as.numeric(x) else x)] # In case numeric columns are not interpreted correctly diau_imported = DIAUmpiretoMSstatsFormat(diau_frag, diau_pept, diau_prot, annot, use_log_file = FALSE) head(diau_imported)
Import FragPipe files
FragPipetoMSstatsFormat( input, useUniquePeptide = TRUE, removeFewMeasurements = TRUE, removeProtein_with1Feature = FALSE, summaryforMultipleRows = max, use_log_file = TRUE, append = FALSE, verbose = TRUE, log_file_path = NULL, ... )
FragPipetoMSstatsFormat( input, useUniquePeptide = TRUE, removeFewMeasurements = TRUE, removeProtein_with1Feature = FALSE, summaryforMultipleRows = max, use_log_file = TRUE, append = FALSE, verbose = TRUE, log_file_path = NULL, ... )
input |
name of FragPipe msstats.csv export. ProteinName, PeptideSequence, PrecursorCharge, FragmentIon, ProductCharge, IsotopeLabelType, Condition, BioReplicate, Run, Intensity are required. |
useUniquePeptide |
TRUE (default) removes peptides that are assigned for more than one proteins. We assume to use unique peptide for each protein. |
removeFewMeasurements |
TRUE (default) will remove the features that have 1 or 2 measurements across runs. |
removeProtein_with1Feature |
TRUE will remove the proteins which have only 1 feature, which is the combination of peptide, precursor charge, fragment and charge. FALSE is default. |
summaryforMultipleRows |
max(default) or sum - when there are multiple measurements for certain feature and certain run, use highest or sum of multiple intensities. |
use_log_file |
logical. If TRUE, information about data processing will be saved to a file. |
append |
logical. If TRUE, information about data processing will be added to an existing log file. |
verbose |
logical. If TRUE, information about data processing wil be printed to the console. |
log_file_path |
character. Path to a file to which information about
data processing will be saved.
If not provided, such a file will be created automatically.
If |
... |
additional parameters to |
data.frame in the MSstats required format.
Devon Kohler
fragpipe_raw = system.file("tinytest/raw_data/FragPipe/fragpipe_input.csv", package = "MSstatsConvert") fragpipe_raw = data.table::fread(fragpipe_raw) fragpipe_imported = FragPipetoMSstatsFormat(fragpipe_raw, use_log_file = FALSE) head(fragpipe_imported)
fragpipe_raw = system.file("tinytest/raw_data/FragPipe/fragpipe_input.csv", package = "MSstatsConvert") fragpipe_raw = data.table::fread(fragpipe_raw) fragpipe_imported = FragPipetoMSstatsFormat(fragpipe_raw, use_log_file = FALSE) head(fragpipe_imported)
MSstatsInputFiles
class.Get one of files contained in an instance of MSstatsInputFiles
class.
getInputFile(msstats_object, file_type) ## S4 method for signature 'MSstatsInputFiles' getInputFile(msstats_object, file_type = "input") ## S4 method for signature 'MSstatsPhilosopherFiles' getInputFile(msstats_object, file_type = "input")
getInputFile(msstats_object, file_type) ## S4 method for signature 'MSstatsInputFiles' getInputFile(msstats_object, file_type = "input") ## S4 method for signature 'MSstatsPhilosopherFiles' getInputFile(msstats_object, file_type = "input")
msstats_object |
object that inherits from |
file_type |
character name of a type file. Usually equal to "input". |
data.table
data.table
data.table
evidence_path = system.file("tinytest/raw_data/MaxQuant/mq_ev.csv", package = "MSstatsConvert") pg_path = system.file("tinytest/raw_data/MaxQuant/mq_pg.csv", package = "MSstatsConvert") evidence = read.csv(evidence_path) pg = read.csv(pg_path) imported = MSstatsImport(list(evidence = evidence, protein_groups = pg), "MSstats", "MaxQuant") class(imported) head(getInputFile(imported, "evidence"))
evidence_path = system.file("tinytest/raw_data/MaxQuant/mq_ev.csv", package = "MSstatsConvert") pg_path = system.file("tinytest/raw_data/MaxQuant/mq_pg.csv", package = "MSstatsConvert") evidence = read.csv(evidence_path) pg = read.csv(pg_path) imported = MSstatsImport(list(evidence = evidence, protein_groups = pg), "MSstats", "MaxQuant") class(imported) head(getInputFile(imported, "evidence"))
Import MaxQuant files
MaxQtoMSstatsFormat( evidence, annotation, proteinGroups, proteinID = "Proteins", useUniquePeptide = TRUE, summaryforMultipleRows = max, removeFewMeasurements = TRUE, removeMpeptides = FALSE, removeOxidationMpeptides = FALSE, removeProtein_with1Peptide = FALSE, use_log_file = TRUE, append = FALSE, verbose = TRUE, log_file_path = NULL, ... )
MaxQtoMSstatsFormat( evidence, annotation, proteinGroups, proteinID = "Proteins", useUniquePeptide = TRUE, summaryforMultipleRows = max, removeFewMeasurements = TRUE, removeMpeptides = FALSE, removeOxidationMpeptides = FALSE, removeProtein_with1Peptide = FALSE, use_log_file = TRUE, append = FALSE, verbose = TRUE, log_file_path = NULL, ... )
evidence |
name of 'evidence.txt' data, which includes feature-level data. |
annotation |
name of 'annotation.txt' data which includes Raw.file, Condition, BioReplicate, Run, IsotopeLabelType information. |
proteinGroups |
name of 'proteinGroups.txt' data. It needs to matching protein group ID. If proteinGroups=NULL, use 'Proteins' column in 'evidence.txt'. |
proteinID |
'Proteins'(default) or 'Leading.razor.protein' for Protein ID. |
useUniquePeptide |
TRUE (default) removes peptides that are assigned for more than one proteins. We assume to use unique peptide for each protein. |
summaryforMultipleRows |
max(default) or sum - when there are multiple measurements for certain feature and certain run, use highest or sum of multiple intensities. |
removeFewMeasurements |
TRUE (default) will remove the features that have 1 or 2 measurements across runs. |
removeMpeptides |
TRUE will remove the peptides including 'M' sequence. FALSE is default. |
removeOxidationMpeptides |
TRUE will remove the peptides including 'oxidation (M)' in modification. FALSE is default. |
removeProtein_with1Peptide |
TRUE will remove the proteins which have only 1 peptide and charge. FALSE is default. |
use_log_file |
logical. If TRUE, information about data processing will be saved to a file. |
append |
logical. If TRUE, information about data processing will be added to an existing log file. |
verbose |
logical. If TRUE, information about data processing wil be printed to the console. |
log_file_path |
character. Path to a file to which information about
data processing will be saved.
If not provided, such a file will be created automatically.
If |
... |
additional parameters to |
data.frame in the MSstats required format.
Warning: MSstats does not support for metabolic labeling or iTRAQ experiments.
Meena Choi, Olga Vitek.
mq_ev = data.table::fread(system.file("tinytest/raw_data/MaxQuant/mq_ev.csv", package = "MSstatsConvert")) mq_pg = data.table::fread(system.file("tinytest/raw_data/MaxQuant/mq_pg.csv", package = "MSstatsConvert")) annot = data.table::fread(system.file("tinytest/raw_data/MaxQuant/annotation.csv", package = "MSstatsConvert")) maxq_imported = MaxQtoMSstatsFormat(mq_ev, annot, mq_pg, use_log_file = FALSE) head(maxq_imported)
mq_ev = data.table::fread(system.file("tinytest/raw_data/MaxQuant/mq_ev.csv", package = "MSstatsConvert")) mq_pg = data.table::fread(system.file("tinytest/raw_data/MaxQuant/mq_pg.csv", package = "MSstatsConvert")) annot = data.table::fread(system.file("tinytest/raw_data/MaxQuant/annotation.csv", package = "MSstatsConvert")) maxq_imported = MaxQtoMSstatsFormat(mq_ev, annot, mq_pg, use_log_file = FALSE) head(maxq_imported)
Import Metamorpheus files
MetamorpheusToMSstatsFormat( input, annotation = NULL, useUniquePeptide = TRUE, removeFewMeasurements = TRUE, removeProtein_with1Feature = FALSE, summaryforMultipleRows = max, use_log_file = TRUE, append = FALSE, verbose = TRUE, log_file_path = NULL, ... )
MetamorpheusToMSstatsFormat( input, annotation = NULL, useUniquePeptide = TRUE, removeFewMeasurements = TRUE, removeProtein_with1Feature = FALSE, summaryforMultipleRows = max, use_log_file = TRUE, append = FALSE, verbose = TRUE, log_file_path = NULL, ... )
input |
name of Metamorpheus output file, which is tabular format. Use the AllQuantifiedPeaks.tsv file from the Metamorpheus output. |
annotation |
name of 'annotation.txt' data which includes Condition, BioReplicate. |
useUniquePeptide |
TRUE (default) removes peptides that are assigned for more than one proteins. We assume to use unique peptide for each protein. |
removeFewMeasurements |
TRUE (default) will remove the features that have 1 or 2 measurements across runs. |
removeProtein_with1Feature |
TRUE will remove the proteins which have only 1 feature, which is the combination of peptide, precursor charge, fragment and charge. FALSE is default. |
summaryforMultipleRows |
max(default) or sum - when there are multiple measurements for certain feature and certain run, use highest or sum of multiple intensities. |
use_log_file |
logical. If TRUE, information about data processing will be saved to a file. |
append |
logical. If TRUE, information about data processing will be added to an existing log file. |
verbose |
logical. If TRUE, information about data processing wil be printed to the console. |
log_file_path |
character. Path to a file to which information about
data processing will be saved.
If not provided, such a file will be created automatically.
If |
... |
additional parameters to |
data.frame in the MSstats required format.
Anthony Wu
input = system.file("tinytest/raw_data/Metamorpheus/AllQuantifiedPeaks.tsv", package = "MSstatsConvert") input = data.table::fread(input) annot = system.file("tinytest/raw_data/Metamorpheus/Annotation.tsv", package = "MSstatsConvert") annot = data.table::fread(annot) metamorpheus_imported = MSstatsConvert:::MetamorpheusToMSstatsFormat(input, annotation = annot) head(metamorpheus_imported)
input = system.file("tinytest/raw_data/Metamorpheus/AllQuantifiedPeaks.tsv", package = "MSstatsConvert") input = data.table::fread(input) annot = system.file("tinytest/raw_data/Metamorpheus/Annotation.tsv", package = "MSstatsConvert") annot = data.table::fread(annot) metamorpheus_imported = MSstatsConvert:::MetamorpheusToMSstatsFormat(input, annotation = annot) head(metamorpheus_imported)
Creates balanced design by removing overlapping fractions and filling incomplete rows
MSstatsBalancedDesign( input, feature_columns, fill_incomplete = TRUE, handle_fractions = TRUE, fix_missing = NULL, remove_few = TRUE )
MSstatsBalancedDesign( input, feature_columns, fill_incomplete = TRUE, handle_fractions = TRUE, fix_missing = NULL, remove_few = TRUE )
input |
|
feature_columns |
str, names of columns that define spectral features |
fill_incomplete |
if TRUE (default), Intensity values for missing runs will be added as NA |
handle_fractions |
if TRUE (default), overlapping fractions will be resolved |
fix_missing |
str, optional. Defaults to NULL, which means no action. If not NULL, must be one of the options: "zero_to_na" or "na_to_zero". If "zero_to_na", Intensity values equal exactly to 0 will be converted to NA. If "na_to_zero", missing values will be replaced by zeros. |
remove_few |
lgl, if TRUE, features with one or two measurements across runs will be removed. |
data.frame of class MSstatsValidated
unbalanced_data = system.file("tinytest/raw_data/unbalanced_data.csv", package = "MSstatsConvert") unbalanced_data = data.table::as.data.table(read.csv(unbalanced_data)) balanced = MSstatsBalancedDesign(unbalanced_data, c("PeptideSequence", "PrecursorCharge", "FragmentIon", "ProductCharge")) dim(balanced) # Now balanced has additional rows (with Intensity = NA) # for runs that were not included in the unbalanced_data table
unbalanced_data = system.file("tinytest/raw_data/unbalanced_data.csv", package = "MSstatsConvert") unbalanced_data = data.table::as.data.table(read.csv(unbalanced_data)) balanced = MSstatsBalancedDesign(unbalanced_data, c("PeptideSequence", "PrecursorCharge", "FragmentIon", "ProductCharge")) dim(balanced) # Now balanced has additional rows (with Intensity = NA) # for runs that were not included in the unbalanced_data table
Clean files generated by a signal processing tools.
Clean DIAUmpire files
Clean MaxQuant files
Clean OpenMS files
Clean OpenSWATH files
Clean Progenesis files
Clean ProteomeDiscoverer files
Clean Skyline files
Clean SpectroMine files
Clean Spectronaut files
Clean Philosopher files
Clean DIA-NN files
Clean Metamorpheus files
Clean Protein Prospector files
MSstatsClean(msstats_object, ...) ## S4 method for signature 'MSstatsDIAUmpireFiles' MSstatsClean(msstats_object, use_frag, use_pept) ## S4 method for signature 'MSstatsMaxQuantFiles' MSstatsClean( msstats_object, protein_id_col, remove_by_site = FALSE, channel_columns = "Reporterintensitycorrected" ) ## S4 method for signature 'MSstatsOpenMSFiles' MSstatsClean(msstats_object) ## S4 method for signature 'MSstatsOpenSWATHFiles' MSstatsClean(msstats_object) ## S4 method for signature 'MSstatsProgenesisFiles' MSstatsClean(msstats_object, runs, fix_colnames = TRUE) ## S4 method for signature 'MSstatsProteomeDiscovererFiles' MSstatsClean( msstats_object, quantification_column, protein_id_column, sequence_column, remove_shared, remove_protein_groups = TRUE, intensity_columns_regexp = "Abundance" ) ## S4 method for signature 'MSstatsSkylineFiles' MSstatsClean(msstats_object) ## S4 method for signature 'MSstatsSpectroMineFiles' MSstatsClean(msstats_object) ## S4 method for signature 'MSstatsSpectronautFiles' MSstatsClean(msstats_object, intensity) ## S4 method for signature 'MSstatsPhilosopherFiles' MSstatsClean( msstats_object, protein_id_col, peptide_id_col, channels, remove_shared_peptides ) ## S4 method for signature 'MSstatsDIANNFiles' MSstatsClean( msstats_object, MBR = TRUE, quantificationColumn = "FragmentQuantCorrected" ) ## S4 method for signature 'MSstatsMetamorpheusFiles' MSstatsClean(msstats_object) ## S4 method for signature 'MSstatsProteinProspectorFiles' MSstatsClean(msstats_object)
MSstatsClean(msstats_object, ...) ## S4 method for signature 'MSstatsDIAUmpireFiles' MSstatsClean(msstats_object, use_frag, use_pept) ## S4 method for signature 'MSstatsMaxQuantFiles' MSstatsClean( msstats_object, protein_id_col, remove_by_site = FALSE, channel_columns = "Reporterintensitycorrected" ) ## S4 method for signature 'MSstatsOpenMSFiles' MSstatsClean(msstats_object) ## S4 method for signature 'MSstatsOpenSWATHFiles' MSstatsClean(msstats_object) ## S4 method for signature 'MSstatsProgenesisFiles' MSstatsClean(msstats_object, runs, fix_colnames = TRUE) ## S4 method for signature 'MSstatsProteomeDiscovererFiles' MSstatsClean( msstats_object, quantification_column, protein_id_column, sequence_column, remove_shared, remove_protein_groups = TRUE, intensity_columns_regexp = "Abundance" ) ## S4 method for signature 'MSstatsSkylineFiles' MSstatsClean(msstats_object) ## S4 method for signature 'MSstatsSpectroMineFiles' MSstatsClean(msstats_object) ## S4 method for signature 'MSstatsSpectronautFiles' MSstatsClean(msstats_object, intensity) ## S4 method for signature 'MSstatsPhilosopherFiles' MSstatsClean( msstats_object, protein_id_col, peptide_id_col, channels, remove_shared_peptides ) ## S4 method for signature 'MSstatsDIANNFiles' MSstatsClean( msstats_object, MBR = TRUE, quantificationColumn = "FragmentQuantCorrected" ) ## S4 method for signature 'MSstatsMetamorpheusFiles' MSstatsClean(msstats_object) ## S4 method for signature 'MSstatsProteinProspectorFiles' MSstatsClean(msstats_object)
msstats_object |
object that inherits from |
... |
additional parameter to specific cleaning functions. |
use_frag |
TRUE will use the selected fragment for each peptide. 'Selected_fragments' column is required. |
use_pept |
TRUE will use the selected fragment for each protein 'Selected_peptides' column is required. |
protein_id_col |
character, name of a column with names of proteins. |
remove_by_site |
logical, if TRUE, proteins only identified by site will be removed. |
channel_columns |
character, regular expression that identifies channel columns in TMT data. |
runs |
chr, vector of Run labels. |
fix_colnames |
lgl, if TRUE, one of the rows will be used as colnames. |
quantification_column |
chr, name of a column used for quantification. |
protein_id_column |
chr, name of a column with protein IDs. |
sequence_column |
chr, name of a column with peptide sequences. |
remove_shared |
lgl, if TRUE, shared peptides will be removed. |
remove_protein_groups |
if TRUE, proteins with numProteins > 1 will be removed. |
intensity_columns_regexp |
regular expressions that defines intensity columns. Defaults to "Abundance", which means that columns that contain the word "Abundance" will be treated as corresponding to intensities for different channels. |
intensity |
chr, specifies which column will be used for Intensity. |
peptide_id_col |
character name of a column that identifies peptides |
channels |
character vector of channel labels |
remove_shared_peptides |
logical, if TRUE, shared peptides will be removed based on the IsUnique column from Philosopher output |
MBR |
True if analysis was done with match between runs |
quantificationColumn |
Use 'FragmentQuantCorrected'(default) column for quantified intensities. 'FragmentQuantRaw' can be used instead. |
data.table
data.table
data.table
data.table
data.table
data.table
data.table
data.table
data.table
data.table
data.table
data.table
data.table
evidence_path = system.file("tinytest/raw_data/MaxQuant/mq_ev.csv", package = "MSstatsConvert") pg_path = system.file("tinytest/raw_data/MaxQuant/mq_pg.csv", package = "MSstatsConvert") evidence = read.csv(evidence_path) pg = read.csv(pg_path) imported = MSstatsImport(list(evidence = evidence, protein_groups = pg), "MSstats", "MaxQuant") cleaned_data = MSstatsClean(imported, protein_id_col = "Proteins") head(cleaned_data)
evidence_path = system.file("tinytest/raw_data/MaxQuant/mq_ev.csv", package = "MSstatsConvert") pg_path = system.file("tinytest/raw_data/MaxQuant/mq_pg.csv", package = "MSstatsConvert") evidence = read.csv(evidence_path) pg = read.csv(pg_path) imported = MSstatsImport(list(evidence = evidence, protein_groups = pg), "MSstats", "MaxQuant") cleaned_data = MSstatsClean(imported, protein_id_col = "Proteins") head(cleaned_data)
MSstatsConvert helps convert data from different types of mass spectrometry experiments and signal processing tools to a format suitable for statistical analysis with the MSstats and MSstatsTMT packages.
MSstatsLogsSettings
for logs management,
MSstatsImport
for importing files created by signal processing tools,
MSstatsClean
for re-formatting imported files into a consistent format,
MSstatsPreprocess
for preprocessing cleaned files,
MSstatsBalancedDesign
for handling fractions and creating balanced data.
Maintainer: Mateusz Staniak [email protected]
Authors:
Devon Kohler [email protected]
Anthony Wu [email protected]
Meena Choi [email protected]
Ting Huang [email protected]
Olga Vitek [email protected]
Import files from signal processing tools.
MSstatsImport(input_files, type, tool, tool_version = NULL, ...)
MSstatsImport(input_files, type, tool, tool_version = NULL, ...)
input_files |
list of paths to input files or |
type |
chr, "MSstats" or "MSstatsTMT". |
tool |
chr, name of a signal processing tool that generated input files. |
tool_version |
not implemented yet. In the future, this parameter will allow handling different versions of each signal processing tools. |
... |
optional additional parameters to |
an object of class MSstatsInputFiles
.
evidence_path = system.file("tinytest/raw_data/MaxQuant/mq_ev.csv", package = "MSstatsConvert") pg_path = system.file("tinytest/raw_data/MaxQuant/mq_pg.csv", package = "MSstatsConvert") evidence = read.csv(evidence_path) pg = read.csv(pg_path) imported = MSstatsImport(list(evidence = evidence, protein_groups = pg), "MSstats", "MaxQuant") class(imported) head(getInputFile(imported, "evidence"))
evidence_path = system.file("tinytest/raw_data/MaxQuant/mq_ev.csv", package = "MSstatsConvert") pg_path = system.file("tinytest/raw_data/MaxQuant/mq_pg.csv", package = "MSstatsConvert") evidence = read.csv(evidence_path) pg = read.csv(pg_path) imported = MSstatsImport(list(evidence = evidence, protein_groups = pg), "MSstats", "MaxQuant") class(imported) head(getInputFile(imported, "evidence"))
Set how MSstats will log information from data processing
MSstatsLogsSettings( use_log_file = TRUE, append = FALSE, verbose = TRUE, log_file_path = NULL, base = "MSstats_log_", pkg_name = "MSstats" )
MSstatsLogsSettings( use_log_file = TRUE, append = FALSE, verbose = TRUE, log_file_path = NULL, base = "MSstats_log_", pkg_name = "MSstats" )
use_log_file |
logical. If TRUE, information about data processing will be saved to a file. |
append |
logical. If TRUE, information about data processing will be added to an existing log file. |
verbose |
logical. If TRUE, information about data processing wil be printed to the console. |
log_file_path |
character. Path to a file to which information about
data processing will be saved.
If not provided, such a file will be created automatically.
If |
base |
start of the file name. |
pkg_name |
currently "MSstats", "MSstatsPTM" or "MSstatsTMT". Each package can use its own separate log settings. |
TRUE invisibly in case of successful logging setup.
# No logging and no messages MSstatsLogsSettings(FALSE, FALSE, FALSE) # Log, but do not display messages MSstatsLogsSettings(TRUE, FALSE, FALSE) # Log to an existing file file.create("new_log.log") MSstatsLogsSettings(TRUE, TRUE, log_file_path = "new_log.log") # Do not log, but display messages MSstatsLogsSettings(FALSE)
# No logging and no messages MSstatsLogsSettings(FALSE, FALSE, FALSE) # Log, but do not display messages MSstatsLogsSettings(TRUE, FALSE, FALSE) # Log to an existing file file.create("new_log.log") MSstatsLogsSettings(TRUE, TRUE, log_file_path = "new_log.log") # Do not log, but display messages MSstatsLogsSettings(FALSE)
Create annotation
MSstatsMakeAnnotation(input, annotation, ...)
MSstatsMakeAnnotation(input, annotation, ...)
input |
data.table preprocessed by the MSstatsClean function |
annotation |
data.table |
... |
key-value pairs, where keys are names of columns of |
data.table
evidence_path = system.file("tinytest/raw_data/MaxQuant/mq_ev.csv", package = "MSstatsConvert") pg_path = system.file("tinytest/raw_data/MaxQuant/mq_pg.csv", package = "MSstatsConvert") evidence = read.csv(evidence_path) pg = read.csv(pg_path) imported = MSstatsImport(list(evidence = evidence, protein_groups = pg), "MSstats", "MaxQuant") cleaned_data = MSstatsClean(imported, protein_id_col = "Proteins") annot_path = system.file("tinytest/raw_data/MaxQuant/annotation.csv", package = "MSstatsConvert") mq_annot = MSstatsMakeAnnotation(cleaned_data, read.csv(annot_path), Run = "Rawfile") head(mq_annot)
evidence_path = system.file("tinytest/raw_data/MaxQuant/mq_ev.csv", package = "MSstatsConvert") pg_path = system.file("tinytest/raw_data/MaxQuant/mq_pg.csv", package = "MSstatsConvert") evidence = read.csv(evidence_path) pg = read.csv(pg_path) imported = MSstatsImport(list(evidence = evidence, protein_groups = pg), "MSstats", "MaxQuant") cleaned_data = MSstatsClean(imported, protein_id_col = "Proteins") annot_path = system.file("tinytest/raw_data/MaxQuant/annotation.csv", package = "MSstatsConvert") mq_annot = MSstatsMakeAnnotation(cleaned_data, read.csv(annot_path), Run = "Rawfile") head(mq_annot)
Preprocess outputs from MS signal processing tools for analysis with MSstats
MSstatsPreprocess( input, annotation, feature_columns, remove_shared_peptides = TRUE, remove_single_feature_proteins = TRUE, feature_cleaning = list(remove_features_with_few_measurements = TRUE, summarize_multiple_psms = max), score_filtering = list(), exact_filtering = list(), pattern_filtering = list(), columns_to_fill = list(), aggregate_isotopic = FALSE, ... )
MSstatsPreprocess( input, annotation, feature_columns, remove_shared_peptides = TRUE, remove_single_feature_proteins = TRUE, feature_cleaning = list(remove_features_with_few_measurements = TRUE, summarize_multiple_psms = max), score_filtering = list(), exact_filtering = list(), pattern_filtering = list(), columns_to_fill = list(), aggregate_isotopic = FALSE, ... )
input |
data.table processed by the MSstatsClean function. |
annotation |
annotation file generated by a signal processing tool. |
feature_columns |
character vector of names of columns that define spectral features. |
remove_shared_peptides |
logical, if TRUE shared peptides will be removed. |
remove_single_feature_proteins |
logical, if TRUE, proteins that only have one feature will be removed. |
feature_cleaning |
named list with maximum two (for |
score_filtering |
a list of named lists that specify filtering options. Details are provided in the vignette. |
exact_filtering |
a list of named lists that specify filtering options. Details are provided in the vignette. |
pattern_filtering |
a list of named lists that specify filtering options. Details are provided in the vignette. |
columns_to_fill |
a named list of scalars. If provided, columns with
names defined by the names of this list and values corresponding to its elements
will be added to the output |
aggregate_isotopic |
logical. If |
... |
additional parameters to |
data.table
evidence_path = system.file("tinytest/raw_data/MaxQuant/mq_ev.csv", package = "MSstatsConvert") pg_path = system.file("tinytest/raw_data/MaxQuant/mq_pg.csv", package = "MSstatsConvert") evidence = read.csv(evidence_path) pg = read.csv(pg_path) imported = MSstatsImport(list(evidence = evidence, protein_groups = pg), "MSstats", "MaxQuant") cleaned_data = MSstatsClean(imported, protein_id_col = "Proteins") annot_path = system.file("tinytest/raw_data/MaxQuant/annotation.csv", package = "MSstatsConvert") mq_annot = MSstatsMakeAnnotation(cleaned_data, read.csv(annot_path), Run = "Rawfile") # To filter M-peptides and oxidatin peptides m_filter = list(col_name = "PeptideSequence", pattern = "M", filter = TRUE, drop_column = FALSE) oxidation_filter = list(col_name = "Modifications", pattern = "Oxidation", filter = TRUE, drop_column = TRUE) msstats_format = MSstatsPreprocess( cleaned_data, mq_annot, feature_columns = c("PeptideSequence", "PrecursorCharge"), columns_to_fill = list(FragmentIon = NA, ProductCharge = NA), pattern_filtering = list(oxidation = oxidation_filter, m = m_filter) ) # Output in the standard MSstats format head(msstats_format)
evidence_path = system.file("tinytest/raw_data/MaxQuant/mq_ev.csv", package = "MSstatsConvert") pg_path = system.file("tinytest/raw_data/MaxQuant/mq_pg.csv", package = "MSstatsConvert") evidence = read.csv(evidence_path) pg = read.csv(pg_path) imported = MSstatsImport(list(evidence = evidence, protein_groups = pg), "MSstats", "MaxQuant") cleaned_data = MSstatsClean(imported, protein_id_col = "Proteins") annot_path = system.file("tinytest/raw_data/MaxQuant/annotation.csv", package = "MSstatsConvert") mq_annot = MSstatsMakeAnnotation(cleaned_data, read.csv(annot_path), Run = "Rawfile") # To filter M-peptides and oxidatin peptides m_filter = list(col_name = "PeptideSequence", pattern = "M", filter = TRUE, drop_column = FALSE) oxidation_filter = list(col_name = "Modifications", pattern = "Oxidation", filter = TRUE, drop_column = TRUE) msstats_format = MSstatsPreprocess( cleaned_data, mq_annot, feature_columns = c("PeptideSequence", "PrecursorCharge"), columns_to_fill = list(FragmentIon = NA, ProductCharge = NA), pattern_filtering = list(oxidation = oxidation_filter, m = m_filter) ) # Output in the standard MSstats format head(msstats_format)
Save session information
MSstatsSaveSessionInfo( path = NULL, append = TRUE, base = "MSstats_session_info_" )
MSstatsSaveSessionInfo( path = NULL, append = TRUE, base = "MSstats_session_info_" )
path |
optional path to output file. If not provided, "MSstats_session_info" and current timestamp will be used as a file name |
append |
if TRUE and file given by the |
base |
beginning of a file name |
TRUE invisibly after session info was saved
MSstatsSaveSessionInfo("session_info.txt") MSstatsSaveSessionInfo("session_info.txt", base = "MSstatsTMT_session_info_")
MSstatsSaveSessionInfo("session_info.txt") MSstatsSaveSessionInfo("session_info.txt", base = "MSstatsTMT_session_info_")
Import OpenMS files
OpenMStoMSstatsFormat( input, annotation = NULL, useUniquePeptide = TRUE, removeFewMeasurements = TRUE, removeProtein_with1Feature = FALSE, summaryforMultipleRows = max, use_log_file = TRUE, append = FALSE, verbose = TRUE, log_file_path = NULL, ... )
OpenMStoMSstatsFormat( input, annotation = NULL, useUniquePeptide = TRUE, removeFewMeasurements = TRUE, removeProtein_with1Feature = FALSE, summaryforMultipleRows = max, use_log_file = TRUE, append = FALSE, verbose = TRUE, log_file_path = NULL, ... )
input |
name of MSstats input report from OpenMS, which includes feature(peptide ion)-level data. |
annotation |
name of 'annotation.txt' data which includes Condition, BioReplicate, Run. Run should be the same as filename. |
useUniquePeptide |
TRUE (default) removes peptides that are assigned for more than one proteins. We assume to use unique peptide for each protein. |
removeFewMeasurements |
TRUE (default) will remove the features that have 1 or 2 measurements across runs. |
removeProtein_with1Feature |
TRUE will remove the proteins which have only 1 feature, which is the combination of peptide, precursor charge, fragment and charge. FALSE is default. |
summaryforMultipleRows |
max(default) or sum - when there are multiple measurements for certain feature and certain run, use highest or sum of multiple intensities. |
use_log_file |
logical. If TRUE, information about data processing will be saved to a file. |
append |
logical. If TRUE, information about data processing will be added to an existing log file. |
verbose |
logical. If TRUE, information about data processing wil be printed to the console. |
log_file_path |
character. Path to a file to which information about
data processing will be saved.
If not provided, such a file will be created automatically.
If |
... |
additional parameters to |
data.frame in the MSstats required format.
Meena Choi, Olga Vitek.
openms_raw = data.table::fread(system.file("tinytest/raw_data/OpenMS/openms_input.csv", package = "MSstatsConvert")) openms_imported = OpenMStoMSstatsFormat(openms_raw, use_log_file = FALSE) head(openms_imported)
openms_raw = data.table::fread(system.file("tinytest/raw_data/OpenMS/openms_input.csv", package = "MSstatsConvert")) openms_imported = OpenMStoMSstatsFormat(openms_raw, use_log_file = FALSE) head(openms_imported)
Import OpenSWATH files
OpenSWATHtoMSstatsFormat( input, annotation, filter_with_mscore = TRUE, mscore_cutoff = 0.01, useUniquePeptide = TRUE, removeFewMeasurements = TRUE, removeProtein_with1Feature = FALSE, summaryforMultipleRows = max, use_log_file = TRUE, append = FALSE, verbose = TRUE, log_file_path = NULL, ... )
OpenSWATHtoMSstatsFormat( input, annotation, filter_with_mscore = TRUE, mscore_cutoff = 0.01, useUniquePeptide = TRUE, removeFewMeasurements = TRUE, removeProtein_with1Feature = FALSE, summaryforMultipleRows = max, use_log_file = TRUE, append = FALSE, verbose = TRUE, log_file_path = NULL, ... )
input |
name of MSstats input report from OpenSWATH, which includes feature-level data. |
annotation |
name of 'annotation.txt' data which includes Condition, BioReplicate, Run. Run should be the same as filename. |
filter_with_mscore |
TRUE(default) will filter out the features that have greater than mscore_cutoff in m_score column. Those features will be removed. |
mscore_cutoff |
Cutoff for m_score. Default is 0.01. |
useUniquePeptide |
TRUE (default) removes peptides that are assigned for more than one proteins. We assume to use unique peptide for each protein. |
removeFewMeasurements |
TRUE (default) will remove the features that have 1 or 2 measurements across runs. |
removeProtein_with1Feature |
TRUE will remove the proteins which have only 1 feature, which is the combination of peptide, precursor charge, fragment and charge. FALSE is default. |
summaryforMultipleRows |
max(default) or sum - when there are multiple measurements for certain feature and certain run, use highest or sum of multiple intensities. |
use_log_file |
logical. If TRUE, information about data processing will be saved to a file. |
append |
logical. If TRUE, information about data processing will be added to an existing log file. |
verbose |
logical. If TRUE, information about data processing wil be printed to the console. |
log_file_path |
character. Path to a file to which information about
data processing will be saved.
If not provided, such a file will be created automatically.
If |
... |
additional parameters to |
data.frame in the MSstats required format.
Meena Choi, Olga Vitek.
os_raw = system.file("tinytest/raw_data/OpenSWATH/openswath_input.csv", package = "MSstatsConvert") annot = system.file("tinytest/raw_data/OpenSWATH/annot_os.csv", package = "MSstatsConvert") os_raw = data.table::fread(os_raw) annot = data.table::fread(annot) os_imported = OpenSWATHtoMSstatsFormat(os_raw, annot, use_log_file = FALSE) head(os_imported)
os_raw = system.file("tinytest/raw_data/OpenSWATH/openswath_input.csv", package = "MSstatsConvert") annot = system.file("tinytest/raw_data/OpenSWATH/annot_os.csv", package = "MSstatsConvert") os_raw = data.table::fread(os_raw) annot = data.table::fread(annot) os_imported = OpenSWATHtoMSstatsFormat(os_raw, annot, use_log_file = FALSE) head(os_imported)
Import Proteome Discoverer files
PDtoMSstatsFormat( input, annotation, useNumProteinsColumn = FALSE, useUniquePeptide = TRUE, summaryforMultipleRows = max, removeFewMeasurements = TRUE, removeOxidationMpeptides = FALSE, removeProtein_with1Peptide = FALSE, which.quantification = "Precursor.Area", which.proteinid = "Protein.Group.Accessions", which.sequence = "Sequence", use_log_file = TRUE, append = FALSE, verbose = TRUE, log_file_path = NULL, ... )
PDtoMSstatsFormat( input, annotation, useNumProteinsColumn = FALSE, useUniquePeptide = TRUE, summaryforMultipleRows = max, removeFewMeasurements = TRUE, removeOxidationMpeptides = FALSE, removeProtein_with1Peptide = FALSE, which.quantification = "Precursor.Area", which.proteinid = "Protein.Group.Accessions", which.sequence = "Sequence", use_log_file = TRUE, append = FALSE, verbose = TRUE, log_file_path = NULL, ... )
input |
PD report or a path to it. |
annotation |
name of 'annotation.txt' or 'annotation.csv' data which includes Condition, BioReplicate, Run information. 'Run' will be matched with 'Spectrum.File'. |
useNumProteinsColumn |
TRUE removes peptides which have more than 1 in # Proteins column of PD output. |
useUniquePeptide |
TRUE (default) removes peptides that are assigned for more than one proteins. We assume to use unique peptide for each protein. |
summaryforMultipleRows |
max(default) or sum - when there are multiple measurements for certain feature and certain run, use highest or sum of multiple intensities. |
removeFewMeasurements |
TRUE (default) will remove the features that have 1 or 2 measurements across runs. |
removeOxidationMpeptides |
TRUE will remove the peptides including 'oxidation (M)' in modification. FALSE is default. |
removeProtein_with1Peptide |
TRUE will remove the proteins which have only 1 peptide and charge. FALSE is default. |
which.quantification |
Use 'Precursor.Area'(default) column for quantified intensities. 'Intensity' or 'Area' can be used instead. |
which.proteinid |
Use 'Protein.Accessions'(default) column for protein name. 'Master.Protein.Accessions' can be used instead. |
which.sequence |
Use 'Sequence'(default) column for peptide sequence. 'Annotated.Sequence' can be used instead. |
use_log_file |
logical. If TRUE, information about data processing will be saved to a file. |
append |
logical. If TRUE, information about data processing will be added to an existing log file. |
verbose |
logical. If TRUE, information about data processing wil be printed to the console. |
log_file_path |
character. Path to a file to which information about
data processing will be saved.
If not provided, such a file will be created automatically.
If |
... |
additional parameters to |
data.frame in the MSstats required format.
Meena Choi, Olga Vitek
pd_raw = system.file("tinytest/raw_data/PD/pd_input.csv", package = "MSstatsConvert") annot = system.file("tinytest/raw_data/PD/annot_pd.csv", package = "MSstatsConvert") pd_raw = data.table::fread(pd_raw) annot = data.table::fread(annot) pd_imported = PDtoMSstatsFormat(pd_raw, annot, use_log_file = FALSE) head(pd_imported)
pd_raw = system.file("tinytest/raw_data/PD/pd_input.csv", package = "MSstatsConvert") annot = system.file("tinytest/raw_data/PD/annot_pd.csv", package = "MSstatsConvert") pd_raw = data.table::fread(pd_raw) annot = data.table::fread(annot) pd_imported = PDtoMSstatsFormat(pd_raw, annot, use_log_file = FALSE) head(pd_imported)
Import Progenesis files
ProgenesistoMSstatsFormat( input, annotation, useUniquePeptide = TRUE, summaryforMultipleRows = max, removeFewMeasurements = TRUE, removeOxidationMpeptides = FALSE, removeProtein_with1Peptide = FALSE, use_log_file = TRUE, append = FALSE, verbose = TRUE, log_file_path = NULL, ... )
ProgenesistoMSstatsFormat( input, annotation, useUniquePeptide = TRUE, summaryforMultipleRows = max, removeFewMeasurements = TRUE, removeOxidationMpeptides = FALSE, removeProtein_with1Peptide = FALSE, use_log_file = TRUE, append = FALSE, verbose = TRUE, log_file_path = NULL, ... )
input |
name of Progenesis output, which is wide-format. 'Accession', 'Sequence', 'Modification', 'Charge' and one column for each run are required. |
annotation |
name of 'annotation.txt' or 'annotation.csv' data which includes Condition, BioReplicate, Run information. It will be matched with the column name of input for MS runs. |
useUniquePeptide |
TRUE (default) removes peptides that are assigned for more than one proteins. We assume to use unique peptide for each protein. |
summaryforMultipleRows |
max(default) or sum - when there are multiple measurements for certain feature and certain run, use highest or sum of multiple intensities. |
removeFewMeasurements |
TRUE (default) will remove the features that have 1 or 2 measurements across runs. |
removeOxidationMpeptides |
TRUE will remove the peptides including 'oxidation (M)' in modification. FALSE is default. |
removeProtein_with1Peptide |
TRUE will remove the proteins which have only 1 peptide and charge. FALSE is default. |
use_log_file |
logical. If TRUE, information about data processing will be saved to a file. |
append |
logical. If TRUE, information about data processing will be added to an existing log file. |
verbose |
logical. If TRUE, information about data processing wil be printed to the console. |
log_file_path |
character. Path to a file to which information about
data processing will be saved.
If not provided, such a file will be created automatically.
If |
... |
additional parameters to |
data.frame in the MSstats required format.
Meena Choi, Olga Vitek, Ulrich Omasits
progenesis_raw = system.file("tinytest/raw_data/Progenesis/progenesis_input.csv", package = "MSstatsConvert") annot = system.file("tinytest/raw_data/Progenesis/progenesis_annot.csv", package = "MSstatsConvert") progenesis_raw = data.table::fread(progenesis_raw) annot = data.table::fread(annot) progenesis_imported = ProgenesistoMSstatsFormat(progenesis_raw, annot, use_log_file = FALSE) head(progenesis_imported)
progenesis_raw = system.file("tinytest/raw_data/Progenesis/progenesis_input.csv", package = "MSstatsConvert") annot = system.file("tinytest/raw_data/Progenesis/progenesis_annot.csv", package = "MSstatsConvert") progenesis_raw = data.table::fread(progenesis_raw) annot = data.table::fread(annot) progenesis_imported = ProgenesistoMSstatsFormat(progenesis_raw, annot, use_log_file = FALSE) head(progenesis_imported)
Generate MSstatsTMT required input format from Protein Prospector output
ProteinProspectortoMSstatsTMTFormat( input, annotation, useUniquePeptide = TRUE, removeFewMeasurements = TRUE, removeProtein_with1Feature = FALSE, summaryforMultipleRows = sum, use_log_file = TRUE, append = FALSE, verbose = TRUE, log_file_path = NULL )
ProteinProspectortoMSstatsTMTFormat( input, annotation, useUniquePeptide = TRUE, removeFewMeasurements = TRUE, removeProtein_with1Feature = FALSE, summaryforMultipleRows = sum, use_log_file = TRUE, append = FALSE, verbose = TRUE, log_file_path = NULL )
input |
txt report file from Protein Prospector with
|
annotation |
data frame which contains column Run, Fraction, TechRepMixture, Mixture, Channel, BioReplicate, Condition. |
useUniquePeptide |
TRUE (default) removes peptides that are assigned for more than one proteins. We assume to use unique peptide for each protein. |
removeFewMeasurements |
TRUE (default) will remove the features that have 1 or 2 measurements across runs. |
removeProtein_with1Feature |
TRUE will remove the proteins which have only 1 feature, which is the combination of peptide, precursor charge, fragment and charge. FALSE is default. |
summaryforMultipleRows |
max(default) or sum - when there are multiple measurements for certain feature and certain run, use highest or sum of multiple intensities. |
use_log_file |
logical. If TRUE, information about data processing will be saved to a file. |
append |
logical. If TRUE, information about data processing will be added to an existing log file. |
verbose |
logical. If TRUE, information about data processing wil be printed to the console. |
log_file_path |
character. Path to a file to which information about
data processing will be saved.
If not provided, such a file will be created automatically.
If |
data.frame of class "MSstatsTMT"
input = system.file("tinytest/raw_data/ProteinProspector/Prospector_TotalTMT.txt", package = "MSstatsConvert") input = data.table::fread(input) annot = system.file("tinytest/raw_data/ProteinProspector/Annotation.csv", package = "MSstatsConvert") annot = data.table::fread(annot) output <- ProteinProspectortoMSstatsTMTFormat(input, annot) head(output)
input = system.file("tinytest/raw_data/ProteinProspector/Prospector_TotalTMT.txt", package = "MSstatsConvert") input = data.table::fread(input) annot = system.file("tinytest/raw_data/ProteinProspector/Annotation.csv", package = "MSstatsConvert") annot = data.table::fread(annot) output <- ProteinProspectortoMSstatsTMTFormat(input, annot) head(output)
Import Skyline files
SkylinetoMSstatsFormat( input, annotation = NULL, removeiRT = TRUE, filter_with_Qvalue = TRUE, qvalue_cutoff = 0.01, useUniquePeptide = TRUE, removeFewMeasurements = TRUE, removeOxidationMpeptides = FALSE, removeProtein_with1Feature = FALSE, use_log_file = TRUE, append = FALSE, verbose = TRUE, log_file_path = NULL, ... )
SkylinetoMSstatsFormat( input, annotation = NULL, removeiRT = TRUE, filter_with_Qvalue = TRUE, qvalue_cutoff = 0.01, useUniquePeptide = TRUE, removeFewMeasurements = TRUE, removeOxidationMpeptides = FALSE, removeProtein_with1Feature = FALSE, use_log_file = TRUE, append = FALSE, verbose = TRUE, log_file_path = NULL, ... )
input |
name of MSstats input report from Skyline, which includes feature-level data. |
annotation |
name of 'annotation.txt' data which includes Condition, BioReplicate, Run. If annotation is already complete in Skyline, use annotation=NULL (default). It will use the annotation information from input. |
removeiRT |
TRUE (default) will remove the proteins or peptides which are labeled 'iRT' in 'StandardType' column. FALSE will keep them. |
filter_with_Qvalue |
TRUE(default) will filter out the intensities that have greater than qvalue_cutoff in DetectionQValue column. Those intensities will be replaced with zero and will be considered as censored missing values for imputation purpose. |
qvalue_cutoff |
Cutoff for DetectionQValue. default is 0.01. |
useUniquePeptide |
TRUE (default) removes peptides that are assigned for more than one proteins. We assume to use unique peptide for each protein. |
removeFewMeasurements |
TRUE (default) will remove the features that have 1 or 2 measurements across runs. |
removeOxidationMpeptides |
TRUE will remove the peptides including 'oxidation (M)' in modification. FALSE is default. |
removeProtein_with1Feature |
TRUE will remove the proteins which have only 1 feature, which is the combination of peptide, precursor charge, fragment and charge. FALSE is default. |
use_log_file |
logical. If TRUE, information about data processing will be saved to a file. |
append |
logical. If TRUE, information about data processing will be added to an existing log file. |
verbose |
logical. If TRUE, information about data processing wil be printed to the console. |
log_file_path |
character. Path to a file to which information about
data processing will be saved.
If not provided, such a file will be created automatically.
If |
... |
additional parameters to |
data.frame in the MSstats required format.
Meena Choi, Olga Vitek
skyline_raw = system.file("tinytest/raw_data/Skyline/skyline_input.csv", package = "MSstatsConvert") skyline_raw = data.table::fread(skyline_raw) skyline_imported = SkylinetoMSstatsFormat(skyline_raw) head(skyline_imported)
skyline_raw = system.file("tinytest/raw_data/Skyline/skyline_input.csv", package = "MSstatsConvert") skyline_raw = data.table::fread(skyline_raw) skyline_imported = SkylinetoMSstatsFormat(skyline_raw) head(skyline_imported)
Import Spectronaut files
SpectronauttoMSstatsFormat( input, annotation = NULL, intensity = "PeakArea", filter_with_Qvalue = FALSE, qvalue_cutoff = 0.01, useUniquePeptide = TRUE, removeFewMeasurements = TRUE, removeProtein_with1Feature = FALSE, summaryforMultipleRows = max, use_log_file = TRUE, append = FALSE, verbose = TRUE, log_file_path = NULL, ... )
SpectronauttoMSstatsFormat( input, annotation = NULL, intensity = "PeakArea", filter_with_Qvalue = FALSE, qvalue_cutoff = 0.01, useUniquePeptide = TRUE, removeFewMeasurements = TRUE, removeProtein_with1Feature = FALSE, summaryforMultipleRows = max, use_log_file = TRUE, append = FALSE, verbose = TRUE, log_file_path = NULL, ... )
input |
name of Spectronaut output, which is long-format. ProteinName, PeptideSequence, PrecursorCharge, FragmentIon, ProductCharge, IsotopeLabelType, Condition, BioReplicate, Run, Intensity, F.ExcludedFromQuantification are required. Rows with F.ExcludedFromQuantification=True will be removed. |
annotation |
name of 'annotation.txt' data which includes Condition, BioReplicate, Run. If annotation is already complete in Spectronaut, use annotation=NULL (default). It will use the annotation information from input. |
intensity |
'PeakArea'(default) uses not normalized peak area. 'NormalizedPeakArea' uses peak area normalized by Spectronaut. |
filter_with_Qvalue |
FALSE(default) will not perform any filtering. TRUE will filter out the intensities that have greater than qvalue_cutoff in EG.Qvalue column. Those intensities will be replaced with zero and will be considered as censored missing values for imputation purpose. |
qvalue_cutoff |
Cutoff for EG.Qvalue. default is 0.01. |
useUniquePeptide |
TRUE (default) removes peptides that are assigned for more than one proteins. We assume to use unique peptide for each protein. |
removeFewMeasurements |
TRUE (default) will remove the features that have 1 or 2 measurements across runs. |
removeProtein_with1Feature |
TRUE will remove the proteins which have only 1 feature, which is the combination of peptide, precursor charge, fragment and charge. FALSE is default. |
summaryforMultipleRows |
max(default) or sum - when there are multiple measurements for certain feature and certain run, use highest or sum of multiple intensities. |
use_log_file |
logical. If TRUE, information about data processing will be saved to a file. |
append |
logical. If TRUE, information about data processing will be added to an existing log file. |
verbose |
logical. If TRUE, information about data processing wil be printed to the console. |
log_file_path |
character. Path to a file to which information about
data processing will be saved.
If not provided, such a file will be created automatically.
If |
... |
additional parameters to |
data.frame in the MSstats required format.
Meena Choi, Olga Vitek
spectronaut_raw = system.file("tinytest/raw_data/Spectronaut/spectronaut_input.csv", package = "MSstatsConvert") spectronaut_raw = data.table::fread(spectronaut_raw) spectronaut_imported = SpectronauttoMSstatsFormat(spectronaut_raw, use_log_file = FALSE) head(spectronaut_imported)
spectronaut_raw = system.file("tinytest/raw_data/Spectronaut/spectronaut_input.csv", package = "MSstatsConvert") spectronaut_raw = data.table::fread(spectronaut_raw) spectronaut_imported = SpectronauttoMSstatsFormat(spectronaut_raw, use_log_file = FALSE) head(spectronaut_imported)