MSstats: End to End Workflow

MSstats: Protein/Peptide significance analysis

Package: MSstats

Author: Anshuman Raina & Devon Kohler

Date: 5th Semptember 2024

Introduction

MSstats, an R package in Bioconductor, supports protein differential analysis for statistical relative quantification of proteins and peptides in global, targeted and data-independent proteomics. It handles shotgun, label-free and label-based (universal synthetic peptide-based) SRM (selected reaction monitoring), and DIA (data independent acquisition) experiments. It can be used for experiments with complex designs (e.g. comparing more than two experimental conditions, or a repeated measure design, such as a time course).

This vignette summarizes the introduction and various options of all functionalities in MSstats. More details are available in User Manual.

For more information about the MSstats workflow, including a detailed description of the available processing options and their impact on the resulting differential analysis, please see the following publication:

Kohler et al, Nature Protocols 19, 2915–2938 (2024).

Installation

To install this package, start R (version “4.0”) and enter:

if (!requireNamespace("BiocManager", quietly = TRUE))
    install.packages("BiocManager")

BiocManager::install("MSstats")
library(MSstats)
library(ggplot2)

1. Workflow

1.1 Raw Data

To begin with, we will load sample datasets, including both annotated and plain data. The dataset you need can be found here.

We will also load the Annotation Dataset using MSstatsConvert. You can access this dataset here.

library(MSstats)

# Load data
pd_raw = system.file("tinytest/raw_data/PD/pd_input.csv", 
                    package = "MSstatsConvert")

annotation_raw = system.file("tinytest/raw_data/PD/annot_pd.csv", 
                   package = "MSstatsConvert")

pd = data.table::fread(pd_raw)
annotation = data.table::fread(annotation_raw)

head(pd, 5)
##    Confidence.Level Search.ID Processing.Node.No      Sequence Unique.Sequence.ID PSM.Ambiguity
##              <char>    <char>              <int>        <char>              <int>        <char>
## 1:             High         A                  4     SLIASTLYR               1327   Unambiguous
## 2:             High         A                  4   AYLATQGVEIR               2889   Unambiguous
## 3:             High         A                  4 NHEIIGDIVPLAK               4700   Unambiguous
## 4:             High         A                  4 NHEIIGDIVPLAK               4700   Unambiguous
## 5:             High         A                  4  YHVNQYTGDESR               5209   Unambiguous
##                                                                                                    Protein.Descriptions
##                                                                                                                  <char>
## 1:                                       Uridine kinase OS=Escherichia coli (strain K12) GN=udk PE=3 SV=1 - [URK_ECOLI]
## 2: Imidazole glycerol phosphate synthase subunit HisF OS=Escherichia coli (strain K12) GN=hisF PE=1 SV=1 - [HIS6_ECOLI]
## 3: Imidazole glycerol phosphate synthase subunit HisF OS=Escherichia coli (strain K12) GN=hisF PE=1 SV=1 - [HIS6_ECOLI]
## 4: Imidazole glycerol phosphate synthase subunit HisF OS=Escherichia coli (strain K12) GN=hisF PE=1 SV=1 - [HIS6_ECOLI]
## 5: Imidazole glycerol phosphate synthase subunit HisF OS=Escherichia coli (strain K12) GN=hisF PE=1 SV=1 - [HIS6_ECOLI]
##    X..Proteins X..Protein.Groups Protein.Group.Accessions Modifications Activation.Type DeltaScore DeltaCn
##          <int>             <int>                   <char>        <char>          <char>      <int>   <int>
## 1:           1                 1                   P0A8F4                           CID          1       0
## 2:           1                 1                   P60664                           CID          1       0
## 3:           1                 1                   P60664                           CID          1       0
## 4:           1                 1                   P60664                           CID          1       0
## 5:           1                 1                   P60664                           CID          1       0
##     Rank Search.Engine.Rank Precursor.Area QuanResultID Decoy.Peptides.Matched Exp.Value Homology.Threshold
##    <int>              <int>          <num>       <lgcl>                  <int>     <num>              <int>
## 1:     1                  1       3.26e+07           NA                     NA   2.7e-01                 13
## 2:     1                  1       2.71e+08           NA                     NA   8.4e-05                 13
## 3:     1                  1       1.40e+08           NA                     NA   6.6e-03                 13
## 4:     1                  1       2.13e+08           NA                     NA   4.5e-04                 13
## 5:     1                  1       5.43e+06           NA                     NA   3.8e-02                 13
##    Identity.High Identity.Middle IonScore Peptides.Matched X..Missed.Cleavages Isolation.Interference....
##            <int>           <int>    <int>            <int>               <int>                      <int>
## 1:            13              13       19                6                   0                         53
## 2:            13              13       54                9                   0                         25
## 3:            13              13       35               10                   0                         64
## 4:            13              13       46               10                   0                         50
## 5:            13              13       27                3                   0                         29
##    Ion.Inject.Time..ms. Intensity Charge m.z..Da. MH...Da. Delta.Mass..Da. Delta.Mass..PPM. RT..min.
##                   <int>     <num>  <int>    <num>    <num>           <int>            <num>    <num>
## 1:                    3   1590000      2 512.2952 1023.583               0            -0.17    48.61
## 2:                    0  17200000      2 610.8357 1220.664               0             0.67    45.31
## 3:                    1   3100000      3 473.6051 1418.801               0             0.35    58.58
## 4:                    3   2020000      2 709.9044 1418.802               0             0.92    58.53
## 5:                   12    579000      2 734.8257 1468.644               0            -0.74    23.52
##    First.Scan Last.Scan MS.Order Ions.Matched Matched.Ions Total.Ions
##         <int>     <int>   <char>       <char>        <int>      <int>
## 1:      14971     14971      MS2       Jun-74            6         74
## 2:      13599     13599      MS2       Sep-98            9         98
## 3:      19004     19004      MS2        8/128            8        128
## 4:      18981     18981      MS2       14/128           14        128
## 5:       4707      4707      MS2        8/112            8        112
##                                      Spectrum.File Annotation
##                                             <char>     <lgcl>
## 1: 121219_S_CCES_01_01_LysC_Try_1to10_Mixt_1_1.raw         NA
## 2: 121219_S_CCES_01_01_LysC_Try_1to10_Mixt_1_1.raw         NA
## 3: 121219_S_CCES_01_01_LysC_Try_1to10_Mixt_1_1.raw         NA
## 4: 121219_S_CCES_01_01_LysC_Try_1to10_Mixt_1_1.raw         NA
## 5: 121219_S_CCES_01_01_LysC_Try_1to10_Mixt_1_1.raw         NA
head(annotation, 5)
##                                                Run  Condition BioReplicate
##                                             <char>     <char>        <int>
## 1: 121219_S_CCES_01_01_LysC_Try_1to10_Mixt_1_1.raw Condition1            1
## 2: 121219_S_CCES_01_02_LysC_Try_1to10_Mixt_1_2.raw Condition1            1
## 3: 121219_S_CCES_01_03_LysC_Try_1to10_Mixt_1_3.raw Condition1            1
## 4: 121219_S_CCES_01_04_LysC_Try_1to10_Mixt_2_1.raw Condition2            2
## 5: 121219_S_CCES_01_05_LysC_Try_1to10_Mixt_2_2.raw Condition2            2

1.2 Loading PD Data to MSstats

The imported data from Step 1.1. now must be converted through MSstatsConvert package’s PDtoMSstatsFormat converter.

This function converts the Proteome Discoverer output into the required input format for MSstats.

Actual data modification can be seen below:

library(MSstatsConvert)

pd_imported = MSstatsConvert::PDtoMSstatsFormat(pd, annotation, 
                                                use_log_file = FALSE)
## INFO  [2024-10-30 08:22:23] ** Raw data from ProteomeDiscoverer imported successfully.
## INFO  [2024-10-30 08:22:23] ** Raw data from ProteomeDiscoverer cleaned successfully.
## INFO  [2024-10-30 08:22:23] ** Using provided annotation.
## INFO  [2024-10-30 08:22:23] ** Run labels were standardized to remove symbols such as '.' or '%'.
## INFO  [2024-10-30 08:22:23] ** The following options are used:
##   - Features will be defined by the columns: PeptideSequence, PrecursorCharge
##   - Shared peptides will be removed.
##   - Proteins with single feature will not be removed.
##   - Features with less than 3 measurements across runs will be removed.
## INFO  [2024-10-30 08:22:23] ** Features with all missing measurements across runs are removed.
## INFO  [2024-10-30 08:22:23] ** Shared peptides are removed.
## INFO  [2024-10-30 08:22:23] ** Multiple measurements in a feature and a run are summarized by summaryforMultipleRows: max
## INFO  [2024-10-30 08:22:23] ** Features with one or two measurements across runs are removed.
## INFO  [2024-10-30 08:22:23] ** Run annotation merged with quantification data.
## INFO  [2024-10-30 08:22:23] ** Features with one or two measurements across runs are removed.
## INFO  [2024-10-30 08:22:23] ** Fractionation handled.
## INFO  [2024-10-30 08:22:23] ** Updated quantification data to make balanced design. Missing values are marked by NA
## INFO  [2024-10-30 08:22:23] ** Finished preprocessing. The dataset is ready to be processed by the dataProcess function.
head(pd_imported)
##   ProteinName PeptideModifiedSequence PrecursorCharge FragmentIon ProductCharge IsotopeLabelType  Condition
## 1      P0ABU9         ANSHAPEAVVEGASR               2          NA            NA                L Condition1
## 2      P0ABU9         ANSHAPEAVVEGASR               2          NA            NA                L Condition1
## 3      P0ABU9         ANSHAPEAVVEGASR               2          NA            NA                L Condition1
## 4      P0ABU9         ANSHAPEAVVEGASR               2          NA            NA                L Condition2
## 5      P0ABU9         ANSHAPEAVVEGASR               2          NA            NA                L Condition2
## 6      P0ABU9         ANSHAPEAVVEGASR               2          NA            NA                L Condition2
##   BioReplicate                                            Run Fraction Intensity
## 1            1 121219_S_CCES_01_01_LysC_Try_1to10_Mixt_1_1raw        1  21400000
## 2            1 121219_S_CCES_01_02_LysC_Try_1to10_Mixt_1_2raw        1  17500000
## 3            1 121219_S_CCES_01_03_LysC_Try_1to10_Mixt_1_3raw        1        NA
## 4            2 121219_S_CCES_01_04_LysC_Try_1to10_Mixt_2_1raw        1  11600000
## 5            2 121219_S_CCES_01_05_LysC_Try_1to10_Mixt_2_2raw        1  12000000
## 6            2 121219_S_CCES_01_06_LysC_Try_1to10_Mixt_2_3raw        1  16200000

1.3 Converters

We have the following converters, which allow you to convert various types of output reports which include the feature level data to the required input format of MSstats. Further information about the converters can be found in the MSstatsConvert package.

  1. DIANNtoMSstatsFormat
  2. DIAUmpiretoMSstatsFormat
  3. FragPipetoMSstatsFormat
  4. MaxQtoMSstatsFormat
  5. OpenMStoMSstatsFormat
  6. OpenSWATHtoMSstatsFormat
  7. PDtoMSstatsFormat
  8. ProgenesistoMSstatsFormat
  9. SkylinetoMSstatsFormat
  10. SpectronauttoMSstatsFormat
  11. MetamorpheusToMSstatsFormat

We show an example of how to use the above said Converters. For more information about using the individual converters please see the coresponding documentation.

skyline_raw = system.file("tinytest/raw_data/Skyline/skyline_input.csv", 
                    package = "MSstatsConvert")

skyline = data.table::fread(skyline_raw)
head(skyline, 5)
##        X Protein.Name Peptide.Modified.Sequence Precursor.Charge Fragment.Ion Product.Charge
##    <int>       <char>                    <char>            <int>       <char>          <int>
## 1: 28081       P23827            LPIVVYTPDNVDVK                2    precursor              2
## 2: 28082       P23827            LPIVVYTPDNVDVK                2    precursor              2
## 3: 28083       P23827            LPIVVYTPDNVDVK                2    precursor              2
## 4: 28084       P23827            LPIVVYTPDNVDVK                2    precursor              2
## 5: 28085       P23827            LPIVVYTPDNVDVK                2    precursor              2
##    Isotope.Label.Type Condition BioReplicate                                       File.Name      Area
##                <char>    <char>        <int>                                          <char>     <num>
## 1:              light      Mix1            1 121219_S_CCES_01_01_LysC_Try_1to10_Mixt_1_1.raw 173812688
## 2:              light      Mix1            2 121219_S_CCES_01_02_LysC_Try_1to10_Mixt_1_2.raw 193830304
## 3:              light      Mix1            3 121219_S_CCES_01_03_LysC_Try_1to10_Mixt_1_3.raw 185620528
## 4:              light      Mix2            4 121219_S_CCES_01_04_LysC_Try_1to10_Mixt_2_1.raw 154545824
## 5:              light      Mix2            5 121219_S_CCES_01_05_LysC_Try_1to10_Mixt_2_2.raw 169726768
##    Standard.Type Truncated
##           <lgcl>    <lgcl>
## 1:            NA     FALSE
## 2:            NA     FALSE
## 3:            NA     FALSE
## 4:            NA     FALSE
## 5:            NA     FALSE
msstats_format = MSstatsConvert::SkylinetoMSstatsFormat(skyline_raw,
                                      qvalue_cutoff = 0.01,
                                      useUniquePeptide = TRUE,
                                      removeFewMeasurements = TRUE,
                                      removeOxidationMpeptides = TRUE,
                                      removeProtein_with1Feature = TRUE)
head(msstats_format)
##   ProteinName      PeptideSequence PrecursorCharge FragmentIon ProductCharge IsotopeLabelType Condition
## 1      P00370 AANAGGVATSGLEMAQNAAR               3          NA            NA            light      Mix1
## 2      P00370 AANAGGVATSGLEMAQNAAR               3          NA            NA            light      Mix1
## 3      P00370 AANAGGVATSGLEMAQNAAR               3          NA            NA            light      Mix1
## 4      P00370 AANAGGVATSGLEMAQNAAR               3          NA            NA            light      Mix2
## 5      P00370 AANAGGVATSGLEMAQNAAR               3          NA            NA            light      Mix2
## 6      P00370 AANAGGVATSGLEMAQNAAR               3          NA            NA            light      Mix2
##   BioReplicate                                            Run Fraction  Intensity
## 1            1 121219_S_CCES_01_01_LysC_Try_1to10_Mixt_1_1raw        1 5311459776
## 2            2 121219_S_CCES_01_02_LysC_Try_1to10_Mixt_1_2raw        1 4900185344
## 3            3 121219_S_CCES_01_03_LysC_Try_1to10_Mixt_1_3raw        1 5323685504
## 4            4 121219_S_CCES_01_04_LysC_Try_1to10_Mixt_2_1raw        1 5327922240
## 5            5 121219_S_CCES_01_05_LysC_Try_1to10_Mixt_2_2raw        1 5824830336
## 6            6 121219_S_CCES_01_06_LysC_Try_1to10_Mixt_2_3raw        1 5674675584

1.4 Data Process

Once we import the dataset correctly with Converter, we need to pre-process the data which is done by the dataProcess function. This step involves data processing and quality control of the measured feature intensities.

This function includes 5 main processing steps (with other additional small steps):

  • Log transformation - Transform the feature intensities from their original scale to the log scale. This step helps make the data closer to being normally distributed, requiring less replicates for the central limit theorem to kick in.

  • Normalization - There are three different normalization options supported. ‘equalizeMedians’ (default) represents constant normalization (equalizing the medians) based on reference signals is performed. ‘quantile’ represents quantile normalization based on reference signals is performed. ‘globalStandards’ represents normalization with global standards proteins. FALSE represents no normalization is performed.

  • Feature selection - This also has three options i.e. Select All features, Top-N features (by mean intensity) or “Best” features.

  • Missing value imputation - We impute plausible values in case of missing data points. The RunLevelData can be queried to show Number of imputed intensities (censored intensities) in a RUN and Protein.

  • Summarization - After data processing the individual features are summarized up to the protein-level using Tukey’s Median Polish. Linear summarization is also available as an option.

summarized = dataProcess(
    pd_imported,
    logTrans = 2,
    normalization = "equalizeMedians",
    featureSubset = "all",
    n_top_feature = 3,
    summaryMethod = "TMP",
    equalFeatureVar = TRUE,
    censoredInt = "NA",
    MBimpute = TRUE
    )
## INFO  [2024-10-30 08:22:23] ** Log2 intensities under cutoff = 23.053  were considered as censored missing values.
## INFO  [2024-10-30 08:22:23] ** Log2 intensities = NA were considered as censored missing values.
## INFO  [2024-10-30 08:22:23] ** Use all features that the dataset originally has.
## INFO  [2024-10-30 08:22:23] 
##  # proteins: 5
##  # peptides per protein: 1-16
##  # features per peptide: 1-1
## INFO  [2024-10-30 08:22:23] Some proteins have only one feature: 
##  P00363,
##  P0A8J2 ...
## INFO  [2024-10-30 08:22:23] 
##                     Condition1 Condition2 Condition3 Condition4 Condition5
##              # runs          3          3          3          3          3
##     # bioreplicates          1          1          1          1          1
##  # tech. replicates          3          3          3          3          3
## INFO  [2024-10-30 08:22:23] Some features are completely missing in at least one condition:  
##  LDEGcTERC5(Carbamidomethyl)_2_NA_NA,
##  ELREQVGDEHIGVIPEDcYYKC18(Carbamidomethyl)_3_NA_NA,
##  TNYDHPSAMDHSLLLEHLQALK_3_NA_NA,
##  LARPGSDVALDDQLYQEPQAAPVAVPMGK_3_NA_NA,
##  AYLATQGVEIR_2_NA_NA ...
## INFO  [2024-10-30 08:22:23]  == Start the summarization per subplot...
##   |                                                                                                            |                                                                                                    |   0%  |                                                                                                            |====================                                                                                |  20%  |                                                                                                            |========================================                                                            |  40%  |                                                                                                            |============================================================                                        |  60%  |                                                                                                            |================================================================================                    |  80%  |                                                                                                            |====================================================================================================| 100%
## INFO  [2024-10-30 08:22:23]  == Summarization is done.
head(summarized$FeatureLevelData)
##   PROTEIN           PEPTIDE TRANSITION                 FEATURE LABEL      GROUP RUN SUBJECT FRACTION
## 1  P0ABU9 ANSHAPEAVVEGASR_2      NA_NA ANSHAPEAVVEGASR_2_NA_NA     L Condition1   1       1        1
## 2  P0ABU9 ANSHAPEAVVEGASR_2      NA_NA ANSHAPEAVVEGASR_2_NA_NA     L Condition1   2       1        1
## 3  P0ABU9 ANSHAPEAVVEGASR_2      NA_NA ANSHAPEAVVEGASR_2_NA_NA     L Condition1   3       1        1
## 4  P0ABU9 ANSHAPEAVVEGASR_2      NA_NA ANSHAPEAVVEGASR_2_NA_NA     L Condition2   4       2        1
## 5  P0ABU9 ANSHAPEAVVEGASR_2      NA_NA ANSHAPEAVVEGASR_2_NA_NA     L Condition2   5       2        1
## 6  P0ABU9 ANSHAPEAVVEGASR_2      NA_NA ANSHAPEAVVEGASR_2_NA_NA     L Condition2   6       2        1
##                                      originalRUN censored INTENSITY ABUNDANCE newABUNDANCE predicted
## 1 121219_S_CCES_01_01_LysC_Try_1to10_Mixt_1_1raw    FALSE  21400000  23.71945     23.71945        NA
## 2 121219_S_CCES_01_02_LysC_Try_1to10_Mixt_1_2raw    FALSE  17500000  24.06085     24.06085        NA
## 3 121219_S_CCES_01_03_LysC_Try_1to10_Mixt_1_3raw     TRUE        NA        NA     22.77604  22.77604
## 4 121219_S_CCES_01_04_LysC_Try_1to10_Mixt_2_1raw    FALSE  11600000  23.77304     23.77304        NA
## 5 121219_S_CCES_01_05_LysC_Try_1to10_Mixt_2_2raw     TRUE  12000000  23.00805     22.95207  22.95207
## 6 121219_S_CCES_01_06_LysC_Try_1to10_Mixt_2_3raw    FALSE  16200000  23.74312     23.74312        NA
head(summarized$ProteinLevelData)
##   RUN Protein LogIntensities                                    originalRUN      GROUP SUBJECT
## 1   1  P0A8F4       22.96185 121219_S_CCES_01_01_LysC_Try_1to10_Mixt_1_1raw Condition1       1
## 2   2  P0A8F4       23.27048 121219_S_CCES_01_02_LysC_Try_1to10_Mixt_1_2raw Condition1       1
## 3   3  P0A8F4       23.44357 121219_S_CCES_01_03_LysC_Try_1to10_Mixt_1_3raw Condition1       1
## 4   4  P0A8F4       23.31217 121219_S_CCES_01_04_LysC_Try_1to10_Mixt_2_1raw Condition2       2
## 5   6  P0A8F4       23.87516 121219_S_CCES_01_06_LysC_Try_1to10_Mixt_2_3raw Condition2       2
## 6   8  P0A8F4       24.31958 121219_S_CCES_01_08_LysC_Try_1to10_Mixt_3_2raw Condition3       3
##   TotalGroupMeasurements NumMeasuredFeature MissingPercentage more50missing NumImputedFeature
## 1                      9                  1         0.6666667          TRUE                 2
## 2                      9                  1         0.6666667          TRUE                 2
## 3                      9                  1         0.6666667          TRUE                 2
## 4                      9                  1         0.6666667          TRUE                 2
## 5                      9                  1         0.6666667          TRUE                 2
## 6                      9                  2         0.3333333         FALSE                 1
head(summarized$SummaryMethod)
## [1] "TMP"

1.4.1 Data Process Plots

After processing the input data, MSstats provides multiple plots to analyze the results. Here we show the various types of plots we can use. By default, a pdf file will be downloaded with corresponding feature level data and the Plot generated. Alternatively, the address parameter can be set to FALSE which will output the plots directly.

# Profile plot
dataProcessPlots(data=summarized, type="ProfilePlot", 
                 address = FALSE, which.Protein = "P0ABU9")

# Quality control plot
dataProcessPlots(data=summarized, type="QCPlot", 
                 address = FALSE, which.Protein = "P0ABU9")

# Quantification plot for conditions
dataProcessPlots(data=summarized, type="ConditionPlot", 
                 address = FALSE, which.Protein = "P0ABU9")

1.5 Modeling

In this step we test for differential changes in protein abundance across conditions using a linear mixed-effects model. The model will be automatically adjusted based on your experimental design.

A contrast matrix must be provided to the model. Alternatively, all pairwise comparisons can be made by passing pairwise to the function. For more information on creating contrast matrices, please see the citation linked at the beginning of this document.

model = groupComparison("pairwise", summarized)
## INFO  [2024-10-30 08:22:25]  == Start to test and get inference in whole plot ...
##   |                                                                                                            |                                                                                                    |   0%  |                                                                                                            |=========================                                                                           |  25%  |                                                                                                            |==================================================                                                  |  50%  |                                                                                                            |===========================================================================                         |  75%  |                                                                                                            |====================================================================================================| 100%
## INFO  [2024-10-30 08:22:25]  == Comparisons for all proteins are done.

Model Details

head(model$ModelQC)
##   RUN Protein ABUNDANCE                                    originalRUN      GROUP SUBJECT
## 1   1  P0A8F4  22.96185 121219_S_CCES_01_01_LysC_Try_1to10_Mixt_1_1raw Condition1       1
## 2   2  P0A8F4  23.27048 121219_S_CCES_01_02_LysC_Try_1to10_Mixt_1_2raw Condition1       1
## 3   3  P0A8F4  23.44357 121219_S_CCES_01_03_LysC_Try_1to10_Mixt_1_3raw Condition1       1
## 4   4  P0A8F4  23.31217 121219_S_CCES_01_04_LysC_Try_1to10_Mixt_2_1raw Condition2       2
## 5   6  P0A8F4  23.87516 121219_S_CCES_01_06_LysC_Try_1to10_Mixt_2_3raw Condition2       2
## 6   8  P0A8F4  24.31958 121219_S_CCES_01_08_LysC_Try_1to10_Mixt_3_2raw Condition3       3
##   TotalGroupMeasurements NumMeasuredFeature MissingPercentage more50missing NumImputedFeature   residuals
## 1                      9                  1         0.6666667          TRUE                 2 -0.26344817
## 2                      9                  1         0.6666667          TRUE                 2  0.04517815
## 3                      9                  1         0.6666667          TRUE                 2  0.21827003
## 4                      9                  1         0.6666667          TRUE                 2 -0.28149357
## 5                      9                  1         0.6666667          TRUE                 2  0.28149357
## 6                      9                  2         0.3333333         FALSE                 1  0.66038185
##     fitted
## 1 23.22530
## 2 23.22530
## 3 23.22530
## 4 23.59366
## 5 23.59366
## 6 23.65919
head(model$ComparisonResult)
##   Protein                    Label      log2FC        SE      Tvalue DF     pvalue adj.pvalue issue
## 1  P0A8F4 Condition1 vs Condition2 -0.36836494 0.6911553 -0.53296987  8 0.60853706 0.77204073  <NA>
## 2  P0A8F4 Condition1 vs Condition3 -0.43389600 0.6911553 -0.62778367  8 0.54764284 0.97435691  <NA>
## 3  P0A8F4 Condition1 vs Condition4 -1.12564427 0.6181881 -1.82087672  8 0.10610956 0.10610956  <NA>
## 4  P0A8F4 Condition1 vs Condition5 -1.15790197 0.6181881 -1.87305776  8 0.09794554 0.09794554  <NA>
## 5  P0A8F4 Condition2 vs Condition3 -0.06553106 0.7571227 -0.08655276  8 0.93315414 0.96560198  <NA>
## 6  P0A8F4 Condition2 vs Condition4 -0.75727933 0.6911553 -1.09567178  8 0.30510791 0.30510791  <NA>
##   MissingPercentage ImputationPercentage
## 1         0.7222222            0.5555556
## 2         0.6666667            0.5000000
## 3         0.6111111            0.6111111
## 4         0.6111111            0.6111111
## 5         0.7222222            0.3888889
## 6         0.6666667            0.5000000

1.5.1 groupComparisonPlot

Visualization for model-based analysis and summarizing differentially abundant proteins. To summarize the results of log-fold changes and adjusted p-values for differentially abundant proteins, groupComparisonPlots takes testing results from function groupComparison as input and automatically generate three types of figures in pdf files as output :

  • Volcano plot : For each comparison separately. It illustrates actual log-fold changes and adjusted p-values for each comparison separately with all proteins. The x-axis is the log fold change. The base of logarithm transformation is the same as specified in “logTrans” from dataProcess. The y-axis is the negative log2 or log10 adjusted p-values. The horizontal dashed line represents the FDR cutoff. The points below the FDR cutoff line are non-significantly abundant proteins (colored in black). The points above the FDR cutoff line are significantly abundant proteins (colored in red/blue for up-/down-regulated). If fold change cutoff is specified (FCcutoff = specific value), the points above the FDR cutoff line but within the FC cutoff line are non-significantly abundant proteins (colored in black).

  • Heatmap : For multiple comparisons. It illustrates up-/down-regulated proteins for multiple comparisons with all proteins. Each column represents each comparison of interest. Each row represents each protein. Color red/blue represents proteins in that specific comparison are significantly up-regulated/down-regulated proteins with FDR cutoff and/or FC cutoff. The color scheme shows the evidences of significance. The darker color it is, the stronger evidence of significance it has. Color gold represents proteins are not significantly different in abundance.

  • Comparison plot : For multiple comparisons per protein. It illustrates log-fold change and its variation of multiple comparisons for single protein. X-axis is comparison of interest. Y-axis is the log fold change. The red points are the estimated log fold change from the model. The error bars are the confidence interval with 0.95 significant level for log fold change. This interval is only based on the standard error, which is estimated from the model.

groupComparisonPlots(
  model$ComparisonResult,
  type="Heatmap",
  sig = 0.05,
  FCcutoff = FALSE,
  logBase.pvalue = 10,
  ylimUp = FALSE,
  ylimDown = FALSE,
  xlimUp = FALSE,
  x.axis.size = 10,
  y.axis.size = 10,
  dot.size = 3,
  text.size = 4,
  text.angle = 0,
  legend.size = 13,
  ProteinName = TRUE,
  colorkey = TRUE,
  numProtein = 100,
  clustering = "both",
  width = 800,
  height = 600,
  which.Comparison = "all",
  which.Protein = "all",
  address = FALSE,
  isPlotly = FALSE
)

groupComparisonPlots(
  model$ComparisonResult,
  type="VolcanoPlot",
  sig = 0.05,
  FCcutoff = FALSE,
  logBase.pvalue = 10,
  ylimUp = FALSE,
  ylimDown = FALSE,
  xlimUp = FALSE,
  x.axis.size = 10,
  y.axis.size = 10,
  dot.size = 3,
  text.size = 4,
  text.angle = 0,
  legend.size = 13,
  ProteinName = TRUE,
  colorkey = TRUE,
  numProtein = 100,
  clustering = "both",
  width = 800,
  height = 600,
  which.Comparison = "Condition2 vs Condition4",
  which.Protein = "all",
  address = FALSE,
  isPlotly = FALSE
)
## [1] "labels"
## [1] "Condition2 vs Condition4"

1.6 GroupComparisonQCPlots

To check and verify that the resultant data of groupComparison offers a linear model for whole plot inference, groupComparisonQC plots take the fitted data and provide two ways of plotting:

  1. Normal Q-Q plot : Quantile-Quantile plots represents normal quantile-quantile plot for each protein after fitting models
  2. Residual plot : represents a plot of residuals versus fitted values for each protein in the dataset.

Results based on statistical models for whole plot level inference are accurate as long as the assumptions of the model are met. The model assumes that the measurement errors are normally distributed with mean 0 and constant variance. The assumption of a constant variance can be checked by examining the residuals from the model.

source("..//R//groupComparisonQCPlots.R")

groupComparisonQCPlots(data=model, type="QQPlots", address=FALSE, 
                       which.Protein = "P0ABU9")

groupComparisonQCPlots(data=model, type="ResidualPlots", address=FALSE, 
                       which.Protein = "P0ABU9")

1.7 Sample Size Calculation

Calculate sample size for future experiments of a Selected Reaction Monitoring (SRM), Data-Dependent Acquisition (DDA or shotgun), and Data-Independent Acquisition (DIA or SWATH-MS) experiment based on intensity-based linear model. The function fits the model and uses variance components to calculate sample size. The underlying model fitting with intensity-based linear model with technical MS run replication. Estimated sample size is rounded to 0 decimal. Two options of the calculation:

  • number of biological replicates per condition
  • power
sample_size_calc = designSampleSize(model$FittedModel,
                                    desiredFC=c(1.75,2.5),
                                    power = TRUE,
                                    numSample=5)

1.7.1 Sample Size Calculation Plot

To illustrate the relationship of desired fold change and the calculated minimal number sample size which are

The input is the result from function designSampleSize.

designSampleSizePlots(sample_size_calc, isPlotly=FALSE)

1.8 Quantification from groupComparison Data

Model-based quantification for each condition or for each biological samples per protein in a targeted Selected Reaction Monitoring (SRM), Data-Dependent Acquisition (DDA or shotgun), and Data-Independent Acquisition (DIA or SWATH-MS) experiment. Quantification takes the processed data set by dataProcess as input and automatically generate the quantification results (data.frame) with long or matrix format. The quantification for endogenous samples is based on run summarization from subplot model, with TMP robust estimation.

  • Sample quantification : individual biological sample quantification for each protein. The label of each biological sample is a combination of the corresponding group and the sample ID. If there are no technical replicates or experimental replicates per sample, sample quantification is the same as run summarization from dataProcess (RunlevelData from dataProcess). If there are technical replicates or experimental replicates, sample quantification is median among run quantification corresponding MS runs.

  • Group quantification : quantification for individual group or individual condition per protein. It is median among sample quantification.

sample_quant_long = quantification(summarized,
                             type = "Sample",
                             format = "long")
sample_quant_long
##     Protein Group_Subject LogIntensity
##      <fctr>        <fctr>        <num>
##  1:  P0A8F4  Condition1_1     23.27048
##  2:  P0A8J2  Condition1_1     25.41377
##  3:  P0ABU9  Condition1_1     23.94076
##  4:  P60664  Condition1_1     26.95914
##  5:  P0A8F4  Condition2_2     23.59366
##  6:  P0A8J2  Condition2_2     25.37768
##  7:  P0ABU9  Condition2_2     24.35179
##  8:  P60664  Condition2_2     27.36184
##  9:  P0A8F4  Condition3_3     23.65919
## 10:  P0A8J2  Condition3_3     24.84218
## 11:  P0ABU9  Condition3_3     23.97927
## 12:  P60664  Condition3_3     26.89201
## 13:  P0A8F4  Condition4_4     24.04638
## 14:  P0A8J2  Condition4_4           NA
## 15:  P0ABU9  Condition4_4     24.96019
## 16:  P60664  Condition4_4     27.69317
## 17:  P0A8F4  Condition5_5     24.50374
## 18:  P0A8J2  Condition5_5           NA
## 19:  P0ABU9  Condition5_5     25.42248
## 20:  P60664  Condition5_5     27.98325
##     Protein Group_Subject LogIntensity
sample_quant_wide = quantification(summarized,
                              type = "Sample",
                              format = "matrix")
sample_quant_wide
## Key: <Protein>
##    Protein Condition1_1 Condition2_2 Condition3_3 Condition4_4 Condition5_5
##     <fctr>        <num>        <num>        <num>        <num>        <num>
## 1:  P0A8F4     23.27048     23.59366     23.65919     24.04638     24.50374
## 2:  P0A8J2     25.41377     25.37768     24.84218           NA           NA
## 3:  P0ABU9     23.94076     24.35179     23.97927     24.96019     25.42248
## 4:  P60664     26.95914     27.36184     26.89201     27.69317     27.98325
group_quant_long = quantification(summarized,
                                  type = "Group",
                                  format = "long")
group_quant_long
##     Protein      Group LogIntensity
##      <fctr>     <fctr>        <num>
##  1:  P0A8F4 Condition1     23.27048
##  2:  P0A8J2 Condition1     25.41377
##  3:  P0ABU9 Condition1     23.94076
##  4:  P60664 Condition1     26.95914
##  5:  P0A8F4 Condition2     23.59366
##  6:  P0A8J2 Condition2     25.37768
##  7:  P0ABU9 Condition2     24.35179
##  8:  P60664 Condition2     27.36184
##  9:  P0A8F4 Condition3     23.65919
## 10:  P0A8J2 Condition3     24.84218
## 11:  P0ABU9 Condition3     23.97927
## 12:  P60664 Condition3     26.89201
## 13:  P0A8F4 Condition4     24.04638
## 14:  P0A8J2 Condition4           NA
## 15:  P0ABU9 Condition4     24.96019
## 16:  P60664 Condition4     27.69317
## 17:  P0A8F4 Condition5     24.50374
## 18:  P0A8J2 Condition5           NA
## 19:  P0ABU9 Condition5     25.42248
## 20:  P60664 Condition5     27.98325
##     Protein      Group LogIntensity
group_quant_wide = quantification(summarized,
                                  type = "Group",
                                  format = "matrix")
group_quant_wide
## Key: <Protein>
##    Protein Condition1 Condition2 Condition3 Condition4 Condition5
##     <fctr>      <num>      <num>      <num>      <num>      <num>
## 1:  P0A8F4   23.27048   23.59366   23.65919   24.04638   24.50374
## 2:  P0A8J2   25.41377   25.37768   24.84218         NA         NA
## 3:  P0ABU9   23.94076   24.35179   23.97927   24.96019   25.42248
## 4:  P60664   26.95914   27.36184   26.89201   27.69317   27.98325