Title: | MOGAMUN: A Multi-Objective Genetic Algorithm to Find Active Modules in Multiplex Biological Networks |
---|---|
Description: | MOGAMUN is a multi-objective genetic algorithm that identifies active modules in a multiplex biological network. This allows analyzing different biological networks at the same time. MOGAMUN is based on NSGA-II (Non-Dominated Sorting Genetic Algorithm, version II), which we adapted to work on networks. |
Authors: | Elva-María Novoa-del-Toro [aut, cre] |
Maintainer: | Elva-María Novoa-del-Toro <[email protected]> |
License: | GPL-3 + file LICENSE |
Version: | 1.17.0 |
Built: | 2024-11-29 06:25:40 UTC |
Source: | https://github.com/bioc/MOGAMUN |
initialize evolution parameters
mogamun_init( Generations = 500, PopSize = 100, MinSize = 15, MaxSize = 50, CrossoverRate = 0.8, MutationRate = 0.1, JaccardSimilarityThreshold = 30, TournamentSize = 2, Measure = "FDR", ThresholdDEG = 0.05, MaxNumberOfAttempts = 3 )
mogamun_init( Generations = 500, PopSize = 100, MinSize = 15, MaxSize = 50, CrossoverRate = 0.8, MutationRate = 0.1, JaccardSimilarityThreshold = 30, TournamentSize = 2, Measure = "FDR", ThresholdDEG = 0.05, MaxNumberOfAttempts = 3 )
Generations |
number of generations to run (default = 500) |
PopSize |
number of subnetworks in the population (default = 100) |
MinSize |
minimum size (no. of nodes) of the subnetworks (default = 15) |
MaxSize |
maximum size (no. of nodes) of the subnetworks (default = 50) |
CrossoverRate |
rate for the crossover (default = 0.8) |
MutationRate |
rate for the mutation (default = 0.1) |
JaccardSimilarityThreshold |
subnetworks over this Jaccard similarity threshold are considered as duplicated (default = 30) |
TournamentSize |
size of the tournament (default = 2) |
Measure |
measure to calculate the nodes scores and to determine which genes are differentially expressed (possible values PValue and FDR, default = FDR) |
ThresholdDEG |
threshold to consider a gene as significantly differerentially expressed. Note: if there is a logFC available, it is also considered |logFC|>1 (default = 0.05) |
MaxNumberOfAttempts |
maximum number of attempts to find compatible parents (default = 3) |
EvolutionParameters
EvolutionParameters <- mogamun_init( Generations = 1, PopSize = 10, MinSize = 15, MaxSize = 50, CrossoverRate = 0.8, MutationRate = 0.1, JaccardSimilarityThreshold = 30, TournamentSize = 2, Measure = "FDR", ThresholdDEG = 0.05, MaxNumberOfAttempts = 3 )
EvolutionParameters <- mogamun_init( Generations = 1, PopSize = 10, MinSize = 15, MaxSize = 50, CrossoverRate = 0.8, MutationRate = 0.1, JaccardSimilarityThreshold = 30, TournamentSize = 2, Measure = "FDR", ThresholdDEG = 0.05, MaxNumberOfAttempts = 3 )
Load the data to process
mogamun_load_data( EvolutionParameters, DifferentialExpressionPath, NodesScoresPath, NetworkLayersDir, Layers )
mogamun_load_data( EvolutionParameters, DifferentialExpressionPath, NodesScoresPath, NetworkLayersDir, Layers )
EvolutionParameters |
evolution paramenters returned by mogamun_init() |
DifferentialExpressionPath |
full path to the differential expression results file (in CSV format). This file must contain at least the columns "gene" with the gene names, and ("PValue" or "FDR"). It can also contain "logFC" |
NodesScoresPath |
full path to an existing CSV file containing the nodes scores (columns "gene" and "nodescore"). NOTE. If the file does not exist, MOGAMUN will generate it in the provided path with the specified name |
NetworkLayersDir |
path of the folder that contains the networks that will be the layers of the multiplex. NOTE. Each file must start with a different digit |
Layers |
string of numbers, where the numbers correspond to the first character of the name of the network files (e.g. "123" builds a multiplex with layers 1, 2, and 3) |
List with the data to process
DEGPath <- system.file("extdata/DE/Sample_DE.csv", package = "MOGAMUN") NodesScoresPath <- system.file("extdata/DE/Sample_NodesScore.csv", package = "MOGAMUN") LayersPath <- paste0(system.file("extdata/LayersMultiplex", package = "MOGAMUN"), "/") EvolutionParameters <- mogamun_init(Generations = 1, PopSize = 10) LoadedData <- mogamun_load_data( EvolutionParameters = EvolutionParameters, DifferentialExpressionPath = DEGPath, NodesScoresPath = NodesScoresPath, NetworkLayersDir = LayersPath, Layers = "23" )
DEGPath <- system.file("extdata/DE/Sample_DE.csv", package = "MOGAMUN") NodesScoresPath <- system.file("extdata/DE/Sample_NodesScore.csv", package = "MOGAMUN") LayersPath <- paste0(system.file("extdata/LayersMultiplex", package = "MOGAMUN"), "/") EvolutionParameters <- mogamun_init(Generations = 1, PopSize = 10) LoadedData <- mogamun_load_data( EvolutionParameters = EvolutionParameters, DifferentialExpressionPath = DEGPath, NodesScoresPath = NodesScoresPath, NetworkLayersDir = LayersPath, Layers = "23" )
Postprocess the results: i) calculates the accumulated Pareto front, i.e. the individuals on the first Pareto front after re-ranking the results from multiple runs (NOTE. If there is a single run, the result is the set of individuals in the first Pareto front), ii) filters the networks to leave only the interactions between the genes that are included in the results, iii) generates some plots of interest, such as scatter plots and boxplots, and iv) (optional) creates a Cytoscape file to visualize the results, merging the subnetworks with a Jaccard similarity coefficient superior to JaccardSimilarityThreshold (NOTE. Make sure to open Cytoscape if VisualizeInCytoscape is TRUE)
mogamun_postprocess( ExperimentDir = ".", LoadedData = LoadedData, JaccardSimilarityThreshold = 70, VisualizeInCytoscape = TRUE )
mogamun_postprocess( ExperimentDir = ".", LoadedData = LoadedData, JaccardSimilarityThreshold = 70, VisualizeInCytoscape = TRUE )
ExperimentDir |
folder containing the results to be processed. It is the same folder specified as ResultsDir in mogamun_run |
LoadedData |
list returned by mogamun_load_data() |
JaccardSimilarityThreshold |
subnetworks over this Jaccard similarity threshold are merged in a single subnetwork |
VisualizeInCytoscape |
TRUE if you wish to visualize the accumulated Pareto front in Cytoscape, FALSE otherwise |
None
DEGPath <- system.file("extdata/DE/Sample_DE.csv", package = "MOGAMUN") NodesScoresPath <- system.file("extdata/DE/Sample_NodesScore.csv", package = "MOGAMUN") LayersPath <- paste0(system.file("extdata/LayersMultiplex", package = "MOGAMUN"), "/") EvolutionParameters <- mogamun_init(Generations = 1, PopSize = 10) LoadedData <- mogamun_load_data( EvolutionParameters = EvolutionParameters, DifferentialExpressionPath = DEGPath, NodesScoresPath = NodesScoresPath, NetworkLayersDir = LayersPath, Layers = "23" ) ResultsDir <- system.file("SampleResults", package="MOGAMUN") mogamun_run( LoadedData = LoadedData, Cores = 1, NumberOfRunsToExecute = 1, ResultsDir = ResultsDir ) mogamun_postprocess( ExperimentDir = ResultsDir, LoadedData = LoadedData, JaccardSimilarityThreshold = 70, VisualizeInCytoscape = FALSE )
DEGPath <- system.file("extdata/DE/Sample_DE.csv", package = "MOGAMUN") NodesScoresPath <- system.file("extdata/DE/Sample_NodesScore.csv", package = "MOGAMUN") LayersPath <- paste0(system.file("extdata/LayersMultiplex", package = "MOGAMUN"), "/") EvolutionParameters <- mogamun_init(Generations = 1, PopSize = 10) LoadedData <- mogamun_load_data( EvolutionParameters = EvolutionParameters, DifferentialExpressionPath = DEGPath, NodesScoresPath = NodesScoresPath, NetworkLayersDir = LayersPath, Layers = "23" ) ResultsDir <- system.file("SampleResults", package="MOGAMUN") mogamun_run( LoadedData = LoadedData, Cores = 1, NumberOfRunsToExecute = 1, ResultsDir = ResultsDir ) mogamun_postprocess( ExperimentDir = ResultsDir, LoadedData = LoadedData, JaccardSimilarityThreshold = 70, VisualizeInCytoscape = FALSE )
Run the algorithm with the specified values for the evolution parameters
mogamun_run(LoadedData, Cores = 1, NumberOfRunsToExecute = 1, ResultsDir = ".")
mogamun_run(LoadedData, Cores = 1, NumberOfRunsToExecute = 1, ResultsDir = ".")
LoadedData |
list returned by mogamun_load_data() |
Cores |
to run MOGAMUN in parallel on the given number of cores (in line with the number of physical processor cores) (default = 1) |
NumberOfRunsToExecute |
number of runs (default = 1) |
ResultsDir |
outputs the results in the specified folder |
None
DEGPath <- system.file("extdata/DE/Sample_DE.csv", package = "MOGAMUN") NodesScoresPath <- system.file("extdata/DE/Sample_NodesScore.csv", package = "MOGAMUN") LayersPath <- paste0(system.file("extdata/LayersMultiplex", package = "MOGAMUN"), "/") EvolutionParameters <- mogamun_init(Generations = 1, PopSize = 10) LoadedData <- mogamun_load_data( EvolutionParameters = EvolutionParameters, DifferentialExpressionPath = DEGPath, NodesScoresPath = NodesScoresPath, NetworkLayersDir = LayersPath, Layers = "23" ) ResultsDir <- system.file("SampleResults", package="MOGAMUN") mogamun_run( LoadedData = LoadedData, Cores = 1, NumberOfRunsToExecute = 1, ResultsDir = ResultsDir )
DEGPath <- system.file("extdata/DE/Sample_DE.csv", package = "MOGAMUN") NodesScoresPath <- system.file("extdata/DE/Sample_NodesScore.csv", package = "MOGAMUN") LayersPath <- paste0(system.file("extdata/LayersMultiplex", package = "MOGAMUN"), "/") EvolutionParameters <- mogamun_init(Generations = 1, PopSize = 10) LoadedData <- mogamun_load_data( EvolutionParameters = EvolutionParameters, DifferentialExpressionPath = DEGPath, NodesScoresPath = NodesScoresPath, NetworkLayersDir = LayersPath, Layers = "23" ) ResultsDir <- system.file("SampleResults", package="MOGAMUN") mogamun_run( LoadedData = LoadedData, Cores = 1, NumberOfRunsToExecute = 1, ResultsDir = ResultsDir )