Title: | Statistical Testing for ChIP-Seq data sets |
---|---|
Description: | This package detects statistically significant differences between read enrichment profiles in different ChIP-Seq samples. To take advantage of shape differences it uses Kernel methods (Maximum Mean Discrepancy, MMD). |
Authors: | Gabriele Schweikert [cre, aut], David Kuo [aut] |
Maintainer: | Gabriele Schweikert <[email protected]> |
License: | Artistic-2.0 |
Version: | 1.35.0 |
Built: | 2024-12-19 03:25:51 UTC |
Source: | https://github.com/bioc/MMDiff2 |
Subset of MACS called Peaks for Cfp-1 data set. Consensus Peaks were created using diffBind (see below).
data('Cfp1-Peaks')
data('Cfp1-Peaks')
contains Peaks, a GRanges object with 500 ranges and 3 metadata columns
data taken from Clouaire et al., Genes and Development, 2012.
# data was created as follows: ## Not run: library('MMDiffBamSubset') dataDir <- system.file("extdata", package="MMDiffBamSubset") library('DiffBind') olddir <- setwd(dataDir) DBA <- dba(sampleSheet="Cfp1.csv", minOverlap=3) Peaks <- dba.peakset(DBA, bRetrieve = TRUE) DBA <- dba.count(DBA, minOverlap=3) setwd(olddir) peaks <- dba.peakset(DBA, bRetrieve=TRUE) C <- Counts(MMD) idx <- which(C[,1]>150 & C[,3]>150&width(Peaks)>1000&width(Peaks)<5000) Peaks <- Peaks[idx[1:500]] ## End(Not run)
# data was created as follows: ## Not run: library('MMDiffBamSubset') dataDir <- system.file("extdata", package="MMDiffBamSubset") library('DiffBind') olddir <- setwd(dataDir) DBA <- dba(sampleSheet="Cfp1.csv", minOverlap=3) Peaks <- dba.peakset(DBA, bRetrieve = TRUE) DBA <- dba.count(DBA, minOverlap=3) setwd(olddir) peaks <- dba.peakset(DBA, bRetrieve=TRUE) C <- Counts(MMD) idx <- which(C[,1]>150 & C[,3]>150&width(Peaks)>1000&width(Peaks)<5000) Peaks <- Peaks[idx[1:500]] ## End(Not run)
This function computes pairwise distances between histograms according to the dist.method (MMD, KS). For large data sets it is a bit time consuming.
compDists(MD, dist.method = "MMD", sigma = NULL, run.parallel = TRUE)
compDists(MD, dist.method = "MMD", sigma = NULL, run.parallel = TRUE)
MD |
DBAmmd Object. This Object can be created using |
dist.method |
specify method used for distances between samples. Currently only Maximum Mean Discrepancy (MMD) and Kolmogorov-Smirnov (KS) implemented. (DEFAULT: 'MMD') |
sigma |
sigma parameter of the RBF kernel, determining the distance (along the genome) at which fragment counts decorrelate. If set to NULL, 100 random Peaks are used to determine sigma heuristically according to the method described in the MMDiff paper [1]. (DEFUALT: NULL) |
run.parallel |
whether to run in parallel (currently no parallelization implemented) (DEFAULT: FALSE) |
DBAmmd object with updated slot Dists
Gabriele Schweikert [email protected]
[1] Schweikert et al. BMC Genomics 2013 ...
DBAmmd
, plotDists
,
plotDISTS4Peak
, compPvals
## Example using a small data set provided with this package: data("MMD") MMD.1 <- compDists(MMD) # To inspect the computed distances: D <- Dists(MMD.1,dist.method='MMD') head(D) # To analyse the result: plotDists(MMD.1)
## Example using a small data set provided with this package: data("MMD") MMD.1 <- compDists(MMD) # To inspect the computed distances: D <- Dists(MMD.1,dist.method='MMD') head(D) # To analyse the result: plotDists(MMD.1)
This function computes histograms at pre-defined regions (peaks)
from mapped fragments, i.e. fragment counts at genomic position. Note,
in contrast to genomic coverage or density maps, this function uses a single
position per fragment (usually its center) rather than the whole extend of
the fragment. This results in a significant increase in resolution.
The parameter whichPos
determines whether
fragment centers, start or end positions should be considered
('Center','Left','Right').
Results are stored as a list in the Hists
slot of the DBAmmd Object,
with one entry per peak. For each peak i, a (n x L_i) matrix is generated,
where n is the number of samples and L_i is the number of bins used to cover
the extend of the peak. Note, L_i varies between peaks of different lengths.
compHists(MD, bin.length = 20, whichPos = "Center")
compHists(MD, bin.length = 20, whichPos = "Center")
MD |
DBAmmd Object. This Object can be created using |
bin.length |
size of binning window (in bp) (DEFAULT: 20) |
whichPos |
specifies which relative positions of mapped fragments should to be considered. Can be one of: 'Left.p', 'Right.p', 'Right.p' and 'Left.n': Start and end positions of fragments mapping to positive or negative strand, respectively ('Right.p' and 'Left.n' are not available for single-end reads). Additionally inferred positions: 'Center.n','Center.p','Center','Left','Right'. (DEFAULT: 'Center') |
DBAmmd object with updated slot Hists
DBAmmd
, getPeakReads
,
estimateFragmentCenters
, plotPeak
,
## Example using a small data set provided with this package: data("MMD") bin.length <- 20 MMD.1 <- compHists(MMD,bin.length) # use \code{plotPeak()} to plot indivdual peaks: Peak.id <- '6' plotPeak(MMD.1, Peak.id=Peak.id) # or explicitly using the histograms: H <- Hists(MMD.1, whichPos='Center') Sample <- 'WT.AB2' Peak.idx <- match(Peak.id, names(Regions(MMD.1))) plot(H[[Peak.idx]][Sample,],t='l') # add peak cooridnates: Peak <- Regions(MMD.1)[Peak.idx] meta <- metaData(MMD.1) PeakBoundary <- meta$AnaData$PeakBoundary x.coords <- as.integer(colnames(H[[Peak.idx]])) + start(Peak) - PeakBoundary plot(x.coords,H[[Peak.idx]]['WT.AB2',],t='l', xlab=names(H)[Peak.idx], ylab='counts', main=Sample)
## Example using a small data set provided with this package: data("MMD") bin.length <- 20 MMD.1 <- compHists(MMD,bin.length) # use \code{plotPeak()} to plot indivdual peaks: Peak.id <- '6' plotPeak(MMD.1, Peak.id=Peak.id) # or explicitly using the histograms: H <- Hists(MMD.1, whichPos='Center') Sample <- 'WT.AB2' Peak.idx <- match(Peak.id, names(Regions(MMD.1))) plot(H[[Peak.idx]][Sample,],t='l') # add peak cooridnates: Peak <- Regions(MMD.1)[Peak.idx] meta <- metaData(MMD.1) PeakBoundary <- meta$AnaData$PeakBoundary x.coords <- as.integer(colnames(H[[Peak.idx]])) + start(Peak) - PeakBoundary plot(x.coords,H[[Peak.idx]]['WT.AB2',],t='l', xlab=names(H)[Peak.idx], ylab='counts', main=Sample)
This function determines peak-specific p-values based on distances between sample histograms.
compPvals(MD, dist.method = "MMD", diff.method = "MMD.locfit")
compPvals(MD, dist.method = "MMD", diff.method = "MMD.locfit")
MD |
DBAmmd Object. This Object can be created using |
dist.method |
specify method used for distances between samples. Currently only Maximum Mean Discrepancy (MMD) and Kolmogorov-Smirnov (KS) implemented. (DEFAULT: 'MMD') |
diff.method |
method used to determine p-values and false discovery rates. Currently only 'MMD.locfit' implemented. (DEFAULT: 'MMD.locfit') |
DBAmmd object with updated Contrasts
slot.
DBAmmd
,reportResults
,
plotDists
,compDists
## Example using a small data set provided with this package: data("MMD") MMD.1 <- setContrast(MMD,contrast='byCondition') MMD.1 <- compPvals(MMD.1) reportResults(MMD.1)
## Example using a small data set provided with this package: data("MMD") MMD.1 <- setContrast(MMD,contrast='byCondition') MMD.1 <- compPvals(MMD.1) reportResults(MMD.1)
This help file describes different ways to access the slots and values
contained in a DBAmmd-class
objects.
## S4 method for signature 'DBAmmd' Genome(x) ## S4 method for signature 'DBAmmd' Samples(x) ## S4 method for signature 'DBAmmd' numPeaks(x) ## S4 method for signature 'DBAmmd' numSamples(x) ## S4 method for signature 'DBAmmd' metaData(x) ## S4 method for signature 'DBAmmd' Regions(x) ## S4 method for signature 'DBAmmd' Reads(x, whichPos = "Center") ## S4 method for signature 'DBAmmd' Counts(x, whichCounts = "T") ## S4 method for signature 'DBAmmd' Hists(x, whichPos = "Center") ## S4 method for signature 'DBAmmd' Dists(x, dist.method = NULL) ## S4 method for signature 'DBAmmd' Contrast(x, whichContrast = 1) ## S4 method for signature 'DBAmmd' setRegions(x, Regions) ## S4 method for signature 'DBAmmd' setContrast(x, contrast)
## S4 method for signature 'DBAmmd' Genome(x) ## S4 method for signature 'DBAmmd' Samples(x) ## S4 method for signature 'DBAmmd' numPeaks(x) ## S4 method for signature 'DBAmmd' numSamples(x) ## S4 method for signature 'DBAmmd' metaData(x) ## S4 method for signature 'DBAmmd' Regions(x) ## S4 method for signature 'DBAmmd' Reads(x, whichPos = "Center") ## S4 method for signature 'DBAmmd' Counts(x, whichCounts = "T") ## S4 method for signature 'DBAmmd' Hists(x, whichPos = "Center") ## S4 method for signature 'DBAmmd' Dists(x, dist.method = NULL) ## S4 method for signature 'DBAmmd' Contrast(x, whichContrast = 1) ## S4 method for signature 'DBAmmd' setRegions(x, Regions) ## S4 method for signature 'DBAmmd' setContrast(x, contrast)
x |
a DBAmmd Object. An empty instance can be created using |
whichPos |
specifies which relative positions of mapped fragments should to be considered. Can be one of: 'Left.p', 'Right.p', 'Right.p' and 'Left.n': Start and end positions of fragments mapping to positive or negative strand, respectively ('Right.p' and 'Left.n' are not available for single-end reads). Additionally inferred positions: 'Center.n','Center.p','Center','Left','Right'. (DEFAULT: 'Center') |
whichCounts |
can be 'T': total counts, or 'p','n': counts of reads mapping to positive, negative strand, respectively. |
dist.method |
specify method used for distances between samples. Currently only Maximum Mean Discrepancy (MMD) and Kolmogorov-Smirnov (KS) implemented. (DEFAULT: 'MMD') |
whichContrast |
index determining which of the set contrast should be used. (DEFAULT: 1) |
Regions |
GRanges Object specifying the Regions of Interesst / Peaks. |
contrast |
determines how to set a new contrast for differential analysis. A contrast can be automatically created either 'byCondition', or 'byTissue'. The Contrast can also be manually set (see vignette for details). |
Genome(x)
returns the name of the used genome version, if set
in the metaData.
Samples(x)
returns the information which was provided in the
SampleSheet.csv to describe the data.
numPeaks(x)
returns the number of Peaks / Regions of Interest
that are associated with the DBAmmd object.
numSamples(x)
returns the number of samples associated with the
DBAmmd object.
metaData(x)
returns the metaData associated with the
DBAmmd object.
Regions(x)
returns the Peaks / Regions of Interest that are
associated with the DBAmmd object.
Reads(x,whichPos)
returns the Reads mapping to the Regions of Interest.
Counts(x,whichCounts)
returns a m x n matrix containing the
Counts of Reads mapping to the Peaks / Regions of Interest.
Depending on the value of 'whichCounts', total counts ('T'),
or counts of reads mapping to positive ('p'), or negative strand ('n')
are returnt. See getPeakReads
for more details.
Hists(x,whichPos)
returns a list of matrices of length m
(number of Peaks). Each matrix is a n x L_i matrix, where n is the number of
samples and L_i is the number of bins used to cover
the extend of the peak. Note, L_i varies between peaks of different lengths.
See compHists
for more details.
Dists(x,dist.method)
returns a matrix containing distances
between pairs of samples for each peak. See compDists
for
more details.
Contrast(x,whichContrast)
returns the specified contrast.
setRegions(x,Regions)
returns a DBAmmd Object with set
Peaks / Regions of Interests.
setContrast(x,contrast)
returns a DBAmmd Object
with a set contrast.
data("MMD") Samples(MMD) Genome(MMD) numPeaks(MMD) numSamples(MMD) metaData(MMD) R <- Regions(MMD) Pos <- Reads(MMD) C <- Counts(MMD) H <- Hists(MMD) D <- Dists(MMD) C1 <- Contrast(MMD)
data("MMD") Samples(MMD) Genome(MMD) numPeaks(MMD) numSamples(MMD) metaData(MMD) R <- Regions(MMD) Pos <- Reads(MMD) C <- Counts(MMD) H <- Hists(MMD) D <- Dists(MMD) C1 <- Contrast(MMD)
The DBAmmd
Class defines a container for differential binding analysis
using MMDiff2. For this class a number of methods is foreseen, among which
accessors for every slot.
As MetaData, it needs to contain the path to the data directory and the
name of a sampleSheet csv file.
DBAmmd Object
DBAmmd()
returns an empty DBAmmd Object. DBAmmd(MetaData)
initializes a DBAmmd Object for a new
Experiment.
(See below and the package vignette for more details.)
MetaData
:List containing an ExpData
and an
AnaData
compartment. "ExpData" needs a dataDir
and a
SampleSheet
entry. A genome
entry, which should be a valid
BSGenome
name, is useful to find sequence motifs. (Note the genome
version needs to correspond to the one used for the read alignment.
Use available.genomes()
to find the right name.) The AnaData
entry is used to store and access parameters for the MMDiff2 Analysis, like the sigma
of the RBF Kernel.
rowRanges
:GRanges object containing Regions of Interests (Peaks)
Reads
:List containing positions of mapped reads, i.e. exact
start and end positions of mapped fragments. In the case of
single-end reads, the left most postions of fragments mapping to the positive
strands and the right most positions of fragments
mapping to the negative strands are stored in "Left.p" and "Right.n".
Use getPeakReads
to fill this slot and estimateFragmentCenters
to add the (estimated) positions of fragment centers.
RawTotalCounts
:m x n matrix containing total counts of reads mapping to m peaks in n samples (including input samples)
RawCounts.p
:m x n matrix containing counts of reads mapping to positive (forward) strand
RawCounts.n
:m x n matrix containing counts of reads mapping to negative (reverse) strand
Hists
: List of lists, each of length m (number of Peaks).
Compartments could be 'Left.p','Right.n','Left.n','Right.p','Center.n',
'Center.p','Center','Left','Right', defining whether left or right ends or
centers of fragments should be considered for positive ('p') or negative ('n')
strand, or both strands combined. For a given compartment there is one entry per
peak, which is a n x L_i matrix, where n is the number of samples and L_i is
the number of bins used to cover the extend of the peak. Note, L_i varies
between peaks of different lengths. See compHists()
for more details.
DISTs
:List with compartments for different methods to compute
distances (e.g. MMD). Each compartment contains a m x N matrix with computed
distances for each Peak between N pairs of samples.
See compDists()
for more details.
mCounts
:(for internal use only)
Contrasts
:List of lists. Each entry contains a contrast i.e. the definition of two groups that should be compared to each other in a differential analysis. A Contrast needs entries "name1", "name2" for group names, as well as group memberships given in "group1" and "group2". Results of a differential test for this contrast are stored in an entry given by the method name, e.g. "MMD.locfit"
Gabriele Schweikert
## Example using a small data set provided in the MMDiffBamSubset package # setting the Experiment meta data: ExpData <- list(dataDir=system.file("extdata", package="MMDiffBamSubset"), sampleSheet="Cfp1.csv") MetaData <- list('ExpData' = ExpData) # Creating a DBAmmd data set: MMD <- DBAmmd(MetaData)
## Example using a small data set provided in the MMDiffBamSubset package # setting the Experiment meta data: ExpData <- list(dataDir=system.file("extdata", package="MMDiffBamSubset"), sampleSheet="Cfp1.csv") MetaData <- list('ExpData' = ExpData) # Creating a DBAmmd data set: MMD <- DBAmmd(MetaData)
This function computes average shifts between forward and reverse strand and applies it to estimate fragment centers.
estimateFragmentCenters(MD, shift = NULL, draw.on = FALSE)
estimateFragmentCenters(MD, shift = NULL, draw.on = FALSE)
MD |
DBAmmd Object. This Object can be created using |
shift |
can be set if the offset between forward and reverse strand is known (e.g. 1/2 median fragment size). In this case shift will not be estimated (DEFAULT: NULL) |
draw.on |
plot scatterplots for counts on forward vs reverse strand and histograms of determined shifts (DEFAULT: FALSE) |
DBAmmd object with updated slots Reads
and MetaData
.
DBAmmd
, getPeakReads
,
compHists
## Example using a small data set provided with this package data("MMD") MMD.1 <- estimateFragmentCenters(MMD) # To access centers of fragments: Reads.C <- Reads(MMD.1,'Center') # To access the determined shifts for each sample: meta <- metaData(MMD.1) meta$AnaData$Shifts
## Example using a small data set provided with this package data("MMD") MMD.1 <- estimateFragmentCenters(MMD) # To access centers of fragments: Reads.C <- Reads(MMD.1,'Center') # To access the determined shifts for each sample: meta <- metaData(MMD.1) meta$AnaData$Shifts
This function collects all short reads from bam files that map
to pre-defined regions of interest. Note, that it fetches the exact start and
end positions of mapped fragments, not the coverage. In the case of
single-end reads, the left most postions of fragments mapping to the positive
strands and the right most positions of fragments
mapping to the negative strands are stored. To find centers of fragments use
estimateFragmentCenters()
. Positions are given relative to the start
of the peak. Also computed are TotalCounts, i.e. number of fragments mapping to a peak
region, as well as number of fragments mapping to forward and reverse strand.
getPeakReads(MD, PeakBoundary = 200, pairedEnd = FALSE, run.parallel = FALSE)
getPeakReads(MD, PeakBoundary = 200, pairedEnd = FALSE, run.parallel = FALSE)
MD |
DBAmmd Object. This Object can be created using |
PeakBoundary |
Defines flanking regions of peaks. The estimated fragment length is a good guess (DEFAULT: 200). |
pairedEnd |
whether the reads are paired-end (paired-end is currently not fully tested) (DEFAULT: FALSE) |
run.parallel |
whether to run in parallel (currently no parallelization implemented) (DEFAULT: FALSE) |
DBAmmd object with updated slots
DBAmmd
, estimateFragmentCenters
## Example using a small data set provided in the MMDiffBamSubset package # setting the Experiment meta data: ExpData <- list(dataDir=system.file("extdata", package="MMDiffBamSubset"), sampleSheet="Cfp1.csv") MetaData <- list('ExpData' = ExpData) # Creating a DBAmmd data set: MMD <- DBAmmd(MetaData) # defining a small Region for which to get reads: Regions <- GRanges(seqnames=c('chr1'), IRanges(start = c(4560912,4677889), end = c(4562680,4679681))) MMD <- setRegions(MMD,Regions) MMD <- getPeakReads(MMD) # To access Left ends of fragments mapping to positive strand: Reads.L <- Reads(MMD,'Left.p') # To access Right ends of fragments mapping to negative strand: Reads.R <- Reads(MMD,'Right.n') # To access Matrix of TotalCounts: C.t <- Counts(MMD,whichCounts='T') # Counts on positive strand: C.p <- Counts(MMD,whichCounts='p') # Counts on negative strand: C.n <- Counts(MMD,whichCounts='n')
## Example using a small data set provided in the MMDiffBamSubset package # setting the Experiment meta data: ExpData <- list(dataDir=system.file("extdata", package="MMDiffBamSubset"), sampleSheet="Cfp1.csv") MetaData <- list('ExpData' = ExpData) # Creating a DBAmmd data set: MMD <- DBAmmd(MetaData) # defining a small Region for which to get reads: Regions <- GRanges(seqnames=c('chr1'), IRanges(start = c(4560912,4677889), end = c(4562680,4679681))) MMD <- setRegions(MMD,Regions) MMD <- getPeakReads(MMD) # To access Left ends of fragments mapping to positive strand: Reads.L <- Reads(MMD,'Left.p') # To access Right ends of fragments mapping to negative strand: Reads.R <- Reads(MMD,'Right.n') # To access Matrix of TotalCounts: C.t <- Counts(MMD,whichCounts='T') # Counts on positive strand: C.p <- Counts(MMD,whichCounts='p') # Counts on negative strand: C.n <- Counts(MMD,whichCounts='n')
Generics for DBAmmd-Class
metaData(x, ...) Regions(x, ...) Reads(x, ...) Counts(x, ...) Hists(x, ...) Dists(x, ...) Contrast(x, ...) numPeaks(x, ...) numSamples(x, ...) Samples(x, ...) Genome(x, ...) setRegions(x, ...) setContrast(x, ...)
metaData(x, ...) Regions(x, ...) Reads(x, ...) Counts(x, ...) Hists(x, ...) Dists(x, ...) Contrast(x, ...) numPeaks(x, ...) numSamples(x, ...) Samples(x, ...) Genome(x, ...) setRegions(x, ...) setContrast(x, ...)
x |
a DBAmmd Object. An empty instance can be created using |
... |
additional parameters |
Subset of Genes from the mm9 annotation that overlap with example Peaks in the Cfp1-Peaks file.
data('mm9-Genes')
data('mm9-Genes')
contains, GR a GRanges object with 800 ranges
# data was created as follows: ## Not run: data('Cfp1-Peaks') library(TxDb.Mmusculus.UCSC.mm9.knownGene) txdb <- TxDb.Mmusculus.UCSC.mm9.knownGene #shorthand (for convenience) txdb GR <- transcripts(txdb) ov <- findOverlaps(GR,Peaks) GR <- GR[queryHits(ov)] save(file = 'data/mm9-Genes.rData',GR) ## End(Not run)
# data was created as follows: ## Not run: data('Cfp1-Peaks') library(TxDb.Mmusculus.UCSC.mm9.knownGene) txdb <- TxDb.Mmusculus.UCSC.mm9.knownGene #shorthand (for convenience) txdb GR <- transcripts(txdb) ov <- findOverlaps(GR,Peaks) GR <- GR[queryHits(ov)] save(file = 'data/mm9-Genes.rData',GR) ## End(Not run)
DBAmmd Object for Cfp1 example
data('MMD')
data('MMD')
# data was created as follows: ## Not run: library('MMDiff2') library('MMDiffBamSubset') # create metaData: ExperimentData <- list(genome='BSgenome.Mmusculus.UCSC.mm9', dataDir=system.file("extdata", package="MMDiffBamSubset"), sampleSheet="Cfp1.csv") MetaData <- list('ExpData' = ExperimentData) MMD <- DBAmmd(MetaData) data("Cfp1-Peaks") MMD <- setRegions(MMD,Peaks) MMD <- getPeakReads(MMD,pairedEnd=FALSE, run.parallel=FALSE) MMD <- DBAmmd(MetaData) MMD <- setRegions(MMD,Peaks) MMD <- getPeakReads(MMD,pairedEnd=FALSE, run.parallel=FALSE) MMD <- estimateFragmentCenters(MMD, shift=NULL, draw.on=FALSE) MMD <- compHists(MMD, bin.length=20) MMD <- compDists(MMD, dist.method = "MMD", run.parallel = FALSE) group1 <- Samples(MMD)$Condition==1 names(group1) <- Samples(MMD)$SampleID group2 <- Samples(MMD)$Condition==2 names(group2) <- Samples(MMD)$SampleID con <- list(group1=group1, group2=group2, name1='WT-Resc', name2='KO') MMD <- compPvals(MMD, contrasts=list(con)) ## End(Not run)
# data was created as follows: ## Not run: library('MMDiff2') library('MMDiffBamSubset') # create metaData: ExperimentData <- list(genome='BSgenome.Mmusculus.UCSC.mm9', dataDir=system.file("extdata", package="MMDiffBamSubset"), sampleSheet="Cfp1.csv") MetaData <- list('ExpData' = ExperimentData) MMD <- DBAmmd(MetaData) data("Cfp1-Peaks") MMD <- setRegions(MMD,Peaks) MMD <- getPeakReads(MMD,pairedEnd=FALSE, run.parallel=FALSE) MMD <- DBAmmd(MetaData) MMD <- setRegions(MMD,Peaks) MMD <- getPeakReads(MMD,pairedEnd=FALSE, run.parallel=FALSE) MMD <- estimateFragmentCenters(MMD, shift=NULL, draw.on=FALSE) MMD <- compHists(MMD, bin.length=20) MMD <- compDists(MMD, dist.method = "MMD", run.parallel = FALSE) group1 <- Samples(MMD)$Condition==1 names(group1) <- Samples(MMD)$SampleID group2 <- Samples(MMD)$Condition==2 names(group2) <- Samples(MMD)$SampleID con <- list(group1=group1, group2=group2, name1='WT-Resc', name2='KO') MMD <- compPvals(MMD, contrasts=list(con)) ## End(Not run)
scatterplot showing distances between peaks
plotDists(MD, dist.method = "MMD", whichContrast = 1, which.group1 = NULL, which.group2 = NULL, diff.method = "MMD.locfit", bUsePval = FALSE, th = 0.1, title = NULL, what = 3, xlim = NULL, ylim = NULL, xlog10 = TRUE, Peak.IDs = NULL, withLegend = TRUE, shiny_df_opt = FALSE)
plotDists(MD, dist.method = "MMD", whichContrast = 1, which.group1 = NULL, which.group2 = NULL, diff.method = "MMD.locfit", bUsePval = FALSE, th = 0.1, title = NULL, what = 3, xlim = NULL, ylim = NULL, xlog10 = TRUE, Peak.IDs = NULL, withLegend = TRUE, shiny_df_opt = FALSE)
MD |
DBAmmd Object. This Object can be created using |
dist.method |
specify method used for distances between samples. Currently only Maximum Mean Discrepancy (MMD) and Kolmogorov-Smirnov (KS) implemented. (DEFAULT: 'MMD') |
whichContrast |
index determining which of the set contrast should be used. (DEFAULT: 1) |
which.group1 |
subset samples from group1 (DEFAULT: NULL) |
which.group2 |
subset samples from group2 (DEFAULT: NULL) |
diff.method |
which method to use to determine significant peaks (DEFAULT: 'MMD.locfit') |
bUsePval |
if TRUE p-values instead of FDRs are used (DEFAULT: FALSE) |
th |
significance threshold for differential called peaks (DEFAULT: 0.1) |
title |
an overall title for the plot (DEFAULT: NULL) |
what |
which dists to overlay: 1: only between group distances, 2: between and within group distances, 3: between and within group distances, and significant peaks highlightend (DEFAULT: 3) |
xlim |
specify x range (DEFAULT: NULL) |
ylim |
specify y range (DEFAULT: NULL) |
xlog10 |
should x range be plotted in log10 scale (DEFAULT: TRUE) |
Peak.IDs |
Highlight specific subset of peaks (DEFAULT: NULL) |
withLegend |
(DEFAULT: TRUE) |
shiny_df_opt |
Option returns a dataframe for shiny (DEFAULT: FALSE) |
data("MMD") plotDists(MMD, whichContrast=1)
data("MMD") plotDists(MMD, whichContrast=1)
showing all distances for one region
plotDISTS4Peak(MD, Peak.id, dist.method = "MMD", whichContrast = 1, Zoom = TRUE, xlim = NULL, ylim = NULL, xlog10 = TRUE, title = NULL)
plotDISTS4Peak(MD, Peak.id, dist.method = "MMD", whichContrast = 1, Zoom = TRUE, xlim = NULL, ylim = NULL, xlog10 = TRUE, title = NULL)
MD |
DBAmmd Object. This Object can be created using |
Peak.id |
Peak id to specify which Peak to plot. (coresponding to names of Regions(MD)) |
dist.method |
specify method used for distances between samples. Currently only Maximum Mean Discrepancy (MMD) and Kolmogorov-Smirnov (KS) implemented. (DEFAULT: 'MMD') |
whichContrast |
index determining which of the set contrast should be used. (DEFAULT: 1) |
Zoom |
(DEFAULT: TRUE) |
xlim |
specify x range (DEFAULT: NULL) |
ylim |
specify y range (DEFAULT: NULL) |
xlog10 |
should x range be plotted in log10 scale (DEFAULT: TRUE) |
title |
(DEFAULT: NULL) |
dev.off() load(system.file("data/MMD.RData", package="MMDiff2")) plotDISTS4Peak(MMD,Peak.id = '6',dist.method='MMD', whichContrast=1)
dev.off() load(system.file("data/MMD.RData", package="MMDiff2")) plotDISTS4Peak(MMD,Peak.id = '6',dist.method='MMD', whichContrast=1)
This function plots histograms of fragment positions over a pre defined regions of interests / peaks. Can also show occurences of Sequence motifs and annotated objects (e.g. genes).
plotPeak(MD, Peak.id, Sample.ids = NULL, NormMethod = NULL, plot.input = FALSE, whichPos = "Center", whichContrast = NULL, Motifs = NULL, Motifcutoff = "80%", anno = NULL, xaxt = NULL, xlim = NULL, ylim = NULL)
plotPeak(MD, Peak.id, Sample.ids = NULL, NormMethod = NULL, plot.input = FALSE, whichPos = "Center", whichContrast = NULL, Motifs = NULL, Motifcutoff = "80%", anno = NULL, xaxt = NULL, xlim = NULL, ylim = NULL)
MD |
DBAmmd Object. This Object can be created using |
Peak.id |
Peak id to specify which Peak to plot. (coresponding to names of Regions(MD)) |
Sample.ids |
which samples to draw. If NULL all samples are drawn. (DEFAULT: NULL) |
NormMethod |
whether to apply normailzation factors. currently no normalization method implemented (DEFAULT: None) |
plot.input |
whether to plot input controls (DEFAULT: TRUE) |
whichPos |
specifies which relative positions of mapped fragments should to be considered. Can be one of: 'Left.p', 'Right.p', 'Right.p' and 'Left.n': Start and end positions of fragments mapping to positive or negative strand, respectively ('Right.p' and 'Left.n' are not available for single-end reads). Additionally inferred positions: 'Center.n','Center.p','Center','Left','Right'. (DEFAULT: 'Center') |
whichContrast |
index determining which of the set contrast should be used. (DEFAULT: 1) |
Motifs |
TF binding sites (DEFAULT: NULL) |
Motifcutoff |
(Default: "80%") |
anno |
either a GRanges objects containing annotated objects, e.g. genes, or a list of GRanges Objects. (Default: NULL) |
xaxt |
(Default: NULL) |
xlim |
(Default: NULL) |
ylim |
(Default: NULL) |
dev.off() data("MMD") plotPeak(MMD,Peak.id='6',plot.input=FALSE) # add annotation (Overlapping genes) data("mm9-Genes") GR <- list(UCSCKnownGenes = GR) plotPeak(MMD, Peak.id='6', plot.input = FALSE, anno=GR) # add TF binding sites library('MotifDb') motifs <- query(query(MotifDb, 'Mmusculus'), 'E2F') plotPeak(MMD, Peak.id='6', plot.input = FALSE, Motifs=motifs,Motifcutoff="80%") # split peaks by contrast plotPeak(MMD, Peak.id='6', plot.input = FALSE, whichContrast=1, Motifs=motifs,Motifcutoff="80%",anno=GR)
dev.off() data("MMD") plotPeak(MMD,Peak.id='6',plot.input=FALSE) # add annotation (Overlapping genes) data("mm9-Genes") GR <- list(UCSCKnownGenes = GR) plotPeak(MMD, Peak.id='6', plot.input = FALSE, anno=GR) # add TF binding sites library('MotifDb') motifs <- query(query(MotifDb, 'Mmusculus'), 'E2F') plotPeak(MMD, Peak.id='6', plot.input = FALSE, Motifs=motifs,Motifcutoff="80%") # split peaks by contrast plotPeak(MMD, Peak.id='6', plot.input = FALSE, whichContrast=1, Motifs=motifs,Motifcutoff="80%",anno=GR)
retrieve results of differential binding analysis
reportResults(MD, diff.method = "MMD.locfit", th = 0.1, whichContrast = 1, rm.oulier = TRUE, bUsePval = FALSE)
reportResults(MD, diff.method = "MMD.locfit", th = 0.1, whichContrast = 1, rm.oulier = TRUE, bUsePval = FALSE)
MD |
DBAmmd Object. This Object can be created using |
diff.method |
method used to determine p-values and false discovery rates. Currently only 'MMD.locfit' implemented. (DEFAULT: 'MMD.locfit') |
th |
significance threshold for differential called peaks (DEFAULT: 0.1) |
whichContrast |
index determining which of the set contrast should be used. (DEFAULT: 1) |
rm.oulier |
if TRUE, significant peaks with high within-group distances are not reported. (DEFAULT: TRUE) |
bUsePval |
if TRUE p-values instead of FDRs are used (DEFAULT: FALSE) |
data("MMD") res <- reportResults(MMD)
data("MMD") res <- reportResults(MMD)
Shiny Application for interactive visualization of MMD,GMD and Pearson Difference as well as plotting peaks
runShinyMMDiff2(MD, whichContrast = 1)
runShinyMMDiff2(MD, whichContrast = 1)
MD |
DBAmmd Object. This Object can be created using |
whichContrast |
index determining which of the set contrast should be used. (DEFAULT: 1) |
if(interactive()){ data("MMD") runShinyMMDiff2(MMD) }
if(interactive()){ data("MMD") runShinyMMDiff2(MMD) }
Shiny server code for interactive visualization of MMD distances, peak plots, and MMD distances by sample.
server.MMDiff2(MD, whichContrast = 1)
server.MMDiff2(MD, whichContrast = 1)
MD |
DBAmmd Object. This Object can be created using |
whichContrast |
index determining which of the set contrast should be used. (DEFAULT: 1) |
if(interactive()){ data("MMD") runShinyMMDiff2(MMD) }
if(interactive()){ data("MMD") runShinyMMDiff2(MMD) }
ui component for interactive visualization of MMD,GMD and Pearson Difference as well as plotting peaks
ui.MMDiff2(MD)
ui.MMDiff2(MD)
MD |
DBAmmd object |
if(interactive()){ load(system.file("data/MMD.RData", package="MMDiff2")) runShinyMMDiff2(MMD) }
if(interactive()){ load(system.file("data/MMD.RData", package="MMDiff2")) runShinyMMDiff2(MMD) }