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1 Introduction
MEDIPS was developed for analyzing data derived from methylated DNA immunoprecipita-
tion (MeDIP) experiments [1] followed by sequencing (MeDIP-seq) [2]. However, MEDIPS
provides several functionalities for the analysis of other kinds of quantitative sequencing data
(e.g. ChIP-seq, MBD-seq, CMS-seq, and others) including calculation of differential coverage
between groups of samples as well as saturation and correlation analyses [3].
In detail, MEDIPS adresses the following aspects in the context of quantitative sequencing
data analysis:

• calculating genome wide signal densities at a user specified resolution (counts, rpkm),
• calculating differential coverage comparing two groups of samples,
• estimating the reproducibility for obtaining full genome short read coverage profiles

(saturation analysis),
• correcting for copy number variations present in the genomic background of the samples

based on Input samples (if available),
• export of raw and normalized data as Wiggle files for visualization in common genome

browsers (e.g. the UCSC genome browser).
In addition, MEDIPS provides the following MeDIP/MBD-seq specific functionalities:

• analyzing the coverage of genome wide DNA sequence patterns (e.g. CpGs) by the
given short reads (or their mapping results, respectively),

• calculating a CpG enrichment factor as a quality control for MeDIP/MBD specific
immunoprecipitation,

• calculating genome wide sequence pattern densities (e.g. CpGs) at a user specified
resolution and export as wiggle track,

• plotting of calibration plots as a data quality check and for a visual inspection of the
dependency between local sequence pattern (e.g. CpG) densities and MeDIP/MBD
signals,

• normalization of MeDIP-seq data with respect to local sequence pattern (e.g. CpG)
densities (rms, relative methylation score) [4].

MEDIPS starts where the mapping tools stop (BAM or BED files) and can be used for any
genome of interest. In case a genome of interest is not available as a BSgenome package
but the sequence of the genome is available, a custom BSgenome package can be generated,
please see the "How to forge a BSgenome data package" manual of the BSgenome package.

2 Installation
To install the MEDIPS package into your R environment, start R and enter:
> if (!requireNamespace("BiocManager", quietly=TRUE))

+ install.packages("BiocManager")

> BiocManager::install("MEDIPS")
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Next, it is necessary to have a genome of interest available in your R environment. Please
load the BSgenome package
> library("BSgenome")

and check the available genomes
> available.genomes()

In the given example, we mapped the short reads against the human genome build hg19.
Therefore, we download and install this genome build:
> if (!requireNamespace("BiocManager", quietly=TRUE))

+ install.packages("BiocManager")

> BiocManager::install("BSgenome.Hsapiens.UCSC.hg19")

This takes some time, but has to be done only once for each reference genome.
Finally, the MEDIPS workflow described below requires access to example data available in
the MEDIPSData package which can be installed by typing:
> if (!requireNamespace("BiocManager", quietly=TRUE))

+ install.packages("BiocManager")

> BiocManager::install("MEDIPSData")

3 Preparations
First, the MEDIPS package has to be loaded.
> library(MEDIPS)

In the given example, we mapped the short reads against the human genome build hg19.
Therefore, we load the pre-installed hg19 library:
> library(BSgenome.Hsapiens.UCSC.hg19)

MEDIPS requires mapping results in BAM or tab-separated (|) BED text files (chr | start
| end | name | score | strand) as input. MEDIPS can also import precomputed genome
coverage from fixedStep wiggle files. In the latter case, all specified chromosomes have to
be described completely.
In order to present a typical MEDIPS workflow, we access BAM files as well as preprocessed
data included in the data package MEDIPSData. In order to load the library, please type:
> library("MEDIPSData")

The example data has been generated based on the following BAM files:
hESCs.MeDIP.Rep1.chr22.bam (7.6M), hESCs.MeDIP.Rep2.chr22.bam (14M),
hESCs.MeDIP.Rep3.chr22.bam (9.1M), hESCs.Input.chr22.bam (4.9M),
DE.MeDIP.Rep1.chr22.bam (12M), DE.MeDIP.Rep2.chr22.bam (14M),
DE.MeDIP.Rep3.chr22.bam (13M), and DE.Input.chr22.bam (11M)
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These BAM files are the bowtie [5] mapping results of MeDIP-seq data derived from three
replicates of human embryonic stem cells (hESCs) and three replicates of differentiated hESCs
(definitive endoderm, DE) [4]. For each condition there is one BAM file containg the mapping
results of corresponding Input-seq data.
In this manual, we access some BAM files located in the extdata subdirectory of the MEDIPS-
Data package. We have to point to the example BAM files as follows:
> bam.file.hESCs.Rep1.MeDIP = system.file("extdata", "hESCs.MeDIP.Rep1.chr22.bam",

+ package = "MEDIPSData")

> bam.file.hESCs.Input = system.file("extdata", "hESCs.Input.chr22.bam",

+ package = "MEDIPSData")

> bam.file.DE.Input = system.file("extdata", "DE.Input.chr22.bam",

+ package = "MEDIPSData")

Some other BAM files have been already preprocessed and will be accessed as internally saved
RData objects (see below).
Typically, you will directly specify your data file at the file parameter. It is also possible to
specify the full path to your input file together with the file name.
Next, we define several parameters which will be used throughout the manual. The reference
genome is hg19:
> BSgenome="BSgenome.Hsapiens.UCSC.hg19"

To avoid artefacts caused by PCR over amplification MEDIPS determines a maximal allowed
number of stacked reads per genomic position by a poisson distribution of stacked reads
genome wide and by a given p-value:
> uniq=1e-3

The smaller the p-value, the more reads at the same genomic position are potentially allowed.
Alternatively, all reads mapping to exactly the same genomic position can be maintained (uniq
= 0) or replaced by only one representative (uniq = 1).
All reads will be extended to a length of 300nt according to the given strand information:
> extend=300

As an alternative to the extend parameter, the shift parameter can be used. Here, the reads
are not extended but shifted by the specified number of nucleotides with respect to the given
strand infomation. One of the two parameters extend or shift has to be 0.
> shift=0

The genome will be divided into adjacent windows of length 100nt and all further calculations
(short read coverage, differential coverage between conditions etc.) will be applied to these
windows.
> ws=100

Comment: There is no general recommendation for the window size, because different DNA
enrichment experiments can have different resolutions. Smaller window sizes may lose some
statistical power due to smaller sequencing counts per window. The choice of an appropriate
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window size will depend on the available sequencing depth, the expected resolution of the
experiment, and on the memory and runtime requirements (the smaller the window size, the
higher the memory requirements and the bigger the result table).

In this manual, we are going to process only one chromosome (i.e. chr22). Therefore, we
specify the chr.select parameter. Please note, the example BAM files contain only data for
chr22 anyway.
> chr.select="chr22"

Comment: Make sure that the sequencing data has been mapped to the same version of the
reference genome as the BSgenome reference and that the mapping reference has the same
chromosome names as the BSgenome reference. By default, MEDIPS will calculate coverage
at all chromosomes of the specified BSgenome reference. To avoid unusual chromosmes in
the results, please make use of the chr.select parameter.

4 Case study: Genome wide methylation and differ-
ential coverage between two conditions
Here, we calculate genome wide short read coverage and methylation profiles for the three
hESCs and for the three DE replicates [4]. In addition, we calculate differential coverage
between conditions (here, this will be interpreted as differential methylation).

4.1 Data Import and Preprocessing
First, we create a MEDIPS SET for the first replicate from the undifferentiated hESCs:
> hESCs_MeDIP = MEDIPS.createSet(file = bam.file.hESCs.Rep1.MeDIP,

+ BSgenome = BSgenome, extend = extend, shift = shift, uniq = uniq,

+ window_size = ws, chr.select = chr.select)

where the parameters remain as defined in section Preparations. Subsequently, we have
to concatenate the remaining two replicates to the first MEDIPS SET resulting in a list of
MEDIPS SETs. In principle, this would look like:
> bam.file.hESCs.Rep2.MeDIP = system.file("extdata", "hESCs.MeDIP.Rep2.chr22.bam",

+ package = "MEDIPSData")

> hESCs_MeDIP = c(hESCs_MeDIP, MEDIPS.createSet(file = bam.file.hESCs.Rep2.MeDIP,

+ BSgenome = BSgenome, extend = extend, shift = shift, uniq = uniq,

+ window_size = ws, chr.select = chr.select))

Comment: Concatenating MEDIPS SETs into a list of MEDIPS SETs does not merge these
MEDIPS SETs. All samples will be treated as replicates.

However, here we load the preprocessed lists of MeDIP-seq MEDIPS SETs available in the
MEDIPSData package:
> data(hESCs_MeDIP)

> data(DE_MeDIP)

For the Input-seq data sets, we explicitely create MEDIPS SETs (also called INPUT SETs)
as follows
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> hESCs_Input = MEDIPS.createSet(file = bam.file.hESCs.Input, BSgenome = BSgenome,

+ extend = extend, shift = shift, uniq = uniq, window_size = ws,

+ chr.select = chr.select)

> DE_Input = MEDIPS.createSet(file = bam.file.DE.Input, BSgenome = BSgenome,

+ extend = extend, shift = shift, uniq = uniq, window_size = ws,

+ chr.select = chr.select)

Comment: Please consider the parameter paired of the MEDIPS.createSet function for
importing paired-end sequening data.

It is possible to add as many samples to each list as available. This is valid for the MeDIP
and Input sets.
For CpG density dependent normalization of MeDIP-seq data, we need to generate a coupling
set. The coupling set must be created based on the same reference genome, the same set
of chromosomes, and with the same window size used for the MEDIPS SETs. For this, we
specify the first MEDIPS SET in the hESCs object as reference, but any of the other MEDIPS
SETs would be fine as well, because all of them consist of the same set of chromosomes (here
chr22 only, hg19) and have been generated with the same window size.
> CS = MEDIPS.couplingVector(pattern = "CG", refObj = hESCs_MeDIP[[1]])

4.2 Coverage, methylation profiles and differential coverage
It is possible to calculate genome wide coverage and methylation profiles for only one MEDIPS
SET or for only one group of MEDIPS SETs using the function MEDIPS.meth. However, in
this case study we also want to calculate differential coverage (i.e. differential methyla-
tion) between two conditions. Whenever two groups of MEDIPS SETs are provided to the
MEDIPS.meth function differential coverage will be calculated.
> mr.edgeR = MEDIPS.meth(MSet1 = DE_MeDIP, MSet2 = hESCs_MeDIP,

+ CSet = CS, ISet1 = DE_Input, ISet2 = hESCs_Input, p.adj = "bonferroni",

+ diff.method = "edgeR", MeDIP = T, CNV = F, minRowSum = 10)

Parameters that can be specified are:
• MSet1: first group of MEDIPS SETs. Please specify at least one set.
• MSet2: second group of MEDIPS SETs. Differential coverage will be calculated, if

MSet1 and MSet2 are not empty.
• CSet: a coupling set (typically a CpG coupling set). Mandatory for normalization of

MeDIP data. Can be skipped, if MeDIP=F (see below).
• ISet1: first group of INPUT SETs (corresponding to MSet1).
• ISet2: second group of INPUT SETs (corresponding to MSet2). Copy number vari-

ations will be calculated, if ISet1 and ISet2 are not empty. Can be swithced off by
setting CNV=F (see below).

• p.adj: in order to correct p.values for multiple testing, MEDIPS uses R’s p.adjust

function. Therefore, the following methods are available: holm, hochberg, hommel,
bonferroni, BH, BY, fdr, none.
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• diff.method: method for calculating differential coverage. Available methods: ttest

and edgeR. The ttest method will be calculated only in case there are at least three
replicates/MEDIPS SETs per group. The ttest method can be applied to the rpkm or
CpG density normalized rms values as specified by the type parameter (see below). The
ttest method adds four vectors to the result table: score.log2.ratio, score.p.value,
score.adj.p.value, and score where score = (-log10(p.value)*10)*log(ratio). As
an alternative, edgeR can be applied for testing differential coverage at genome wide
windows even for less than 3 replicates per group. However, in case there is only one
MEDIPS SET per group, the dispersion will be set to bcv2 where bcv = 0.01 (please
consider section "What to do if you have no replicates" of edgeR’s User’s Guide).
When applying edgeR, the weighted trimmed mean of M-values (TMM) method is
used to calculate scale factors between libraries. The edgeR method will be applied to
the counts of the genome wide windows. The edgeR method adds four vectors to the
result table which are edgeR’s exactTest standard output: edgeR.logFC, edgeR.logCPM,
edgeR.p.value, and edgeR.adj.p.value.

• MeDIP: This parameter determines, if a CpG density dependent relative methylation
scores (rms) will be calculated for the MEDIPS SETs given at the slots MSet1 and
MSet2.

• CNV: In case there are INPUT SETs provided at both Input slots (i.e. ISet1 and
ISet2), copy number variation will be tested by applying the package DNAcopy to the
window-wise log-ratios calculated based on the the means per group. By setting CNV=F
this function will be disabled. Please note, the function MEDIPS.addCNV allows to run
the CNV analysis on two groups of INPUT SETs using another (typically increased)
window size. Subsequently, the MEDIPS.addCNV function matches its CNV results to a
given result table previously generated by the MEDIPS.meth function. This allows for
calculating CNVs for larger windows what might be more appropriate in case of low
Input sequencing depth.

• type: In case diff.method has been set to ttest, this parameter specifies, if differential
coverage is calculated based on the rpkm or rms values. This parameter is ignored in
case the edgeR method. edgeR will always be applied to the count data.

• chr: to process only a selected set of chromosomes, e.g. c("chr1", "chr2")).
• minRowSum: threshold for a minimum sum of counts across all samples per window

(default=10). Windows with lower coverage will not be tested for differential coverage.
• diffnorm: To normalize for different library sizes and/or for different enrichment ef-

ficiencies, normalization can be enabled by setting this parameter to tmm, quantile,
rpkm or rms (or none). If differential enrichment between conditions is calcualted based
on edgeR (diff.method=edgeR), tmm (default) or quantile (or none) are possible, while
rpkm and rms are only available when diff.method=ttest. It has been proposed [6] that
quantile normalization can correct for varying DNA enrichment efficiencies. When en-
abled, quantile normalization will be applied to the count table (including all genomic
windows and all samples) prior to testing for differential coverage between conditions.
Warning: In case of quantile normalisation, the counts - but not rpkm and rms values
- of the returned result table will be quantile normalized.

The returned object (here mr.edgeR) is a list of vectors (all of the same length) where the
rows correspond to genome wide windows (i.e. the result table). The number of vectors (or
columns of the result table) depends on the number of provided MEDIPS SETs, the number
of INPUT SETs, and on the specification of several parameters including diff.methods,
MeDIP, and CNV. For each window and for each MEDIPS or INPUT SET, there will be
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columns for the counts and rpkm values. For MEDIPS SETs there can also be columns for
rms values (if MeDIP=T). For each condition with more than one provided MEDIPS or INPUT
SET, respectively, there will be an additional column for the mean over the counts and rpkm
values (and for rms, if available). Moreover, there are columns for log2 ratios (MSet1/MSet2),
p.values, and adjusted p.values when differential coverage has been calculated. Optionally,
there will be a vector of log2 ratios (ISet1/ISet2) as a result of the CNV analysis, in case two
groups of INPUT SETs have been provided (and in case CNV=T) or in case a CNV analysis
has been added afterwards by applying the function MEDIPS.addCNV (see below).

4.3 Differential coverage: selecting significant windows
As we have processed two groups of MEDIPS SETs, we are now interested in genomic windows
which show significant differential coverage:
> mr.edgeR.s = MEDIPS.selectSig(results = mr.edgeR, p.value = 0.1,

+ adj = T, ratio = NULL, bg.counts = NULL, CNV = F)

Total number of windows: 513046

Number of windows tested for differential methylation: 138262

Remaining number of windows with adjusted p.value<=0.1: 64

Here, we set a thresold of 0.1 for the adjusted p.values in order to select significant windows.
There are the following filter criteria available:

• p.value: this is the p.value threshold as calculated either by the ttest or edgeR method
• adj: this parameter specifies whether the p.value or the adjusted p.values is considered
• ratio: this parameter sets an additional thresold for the ratio where the ratio is ei-

ther score.log2.ratio or edgeR.logFC depending on the previously selected method.
Please note, the specified value will be transformed into log2 internally.

• bg.counts: as an additional filter parameter, it is possible to require a minimal num-
ber of reads per window in at least one of the MEDIPS SET groups. To apply this
condition, the mean of the counts per group is considered. The parameter bg.counts

can either be a concrete integer or an appropriate column name of the result ma-
trix. By specifying a column name (here e.g. bg.counts="hESC.Input.bam.counts" or
bg.counts="MSets1.counts.mean"), the 0.95 quantile of the according genome wide
count distribution is determined and used as a minimal background threshold (please
note, only count columns are reasonable).

• CNV: The information on CNVs present in the samples of interest can be used for
correcting differential coverage observed in the corresponding IP data (e.g. MeDIP
or ChIP data). In the given example data, we do not expect extensive events of
copy number variation between pluripotent and differentiated hESCs because both
samples have been derived from the same cell line. However, samples derived from e.g.
cancer tissues might show an relevant occurence of copy number variations. Therefore,
when comparing MeDIP- or ChIP-seq data derived from cancer tissue against MeDIP-
or ChIP-seq data derived from corresponding healthy tissue, an event of differential
coverage might be explained in part or entirely by a local CNV. In case Input data has
been provided for both conditions, MEDIPS is capable of calculating genome wide CNV
ratios by employing the package DNAcopy. In case the parameter CNV is set to TRUE,
MEDIPS will consider only genomic windows having a CNV corrected IP ratio higher
than the specified ratio threshold (specification of the ratio parameter is required in
this case).
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4.4 Merging neighboring significant windows
After having identified and extracted genomic windows showing significant differential cov-
erage between conditions, it remains of interest to merge neighboring significant windows
into a larger continuous region. Please note, the result object mr.edgeR.s returned by the
MEDIPS.selectSig contains genomic regions that show differential coverage into both direc-
tions, i.e. either a higher coverage in the group of samples in MSet1 (here DE) over the group
of samples in MSet2 (here hESCs) or vice versa. In order to isolate the subset of genomic
regions that show e.g. higher coverage in MSet1 over MSet2, we use the following R syntax:
> mr.edgeR.s.gain = mr.edgeR.s[which(mr.edgeR.s[, grep("logFC",

+ colnames(mr.edgeR.s))] > 0), ]

Subsequently, the function MEDIPS.mergeFrames can be applied to merge all adjacent sig-
nificant regions into one region which will be finally regarded as one event of differential
coverage:
> mr.edgeR.s.gain.m = MEDIPS.mergeFrames(frames = mr.edgeR.s.gain,

+ distance = 1)

Here we interpret the selected and merged genomic regions as differentially methylated regions
(DMRs) showing gain of methylation during differentiation.
The distance parameter allows for merging windows having an according gap in between.
Please note, merged windows are represented only by their genomic coordinates and do not
contain any summarized values (counts, rpkm, ratios etc.).

4.5 Extracting data at regions of interest
MEDIPS provides the functionality to select subsets of the result matrix returned by the
MEDIPS.meth function according to any given set of regions of interest (ROIs). As an example,
we consider the set of merged windows (here mr.edgeR.s.gain.m, see previous section) as a
set of ROIs:
> columns = names(mr.edgeR)[grep("counts", names(mr.edgeR))]

> rois = MEDIPS.selectROIs(results = mr.edgeR, rois = mr.edgeR.s.gain.m,

+ columns = columns, summarize = NULL)

The function MEDIPS.selectROIs will select all genomic windows in the original result table
(here mr.edgeR) which are included in the boundaries defined by the genomic coordinates of
the given set of ROIs. The number of returned windows depends on the window size and
on the length of the provided ROIs. Please note, only selected columns will be returned as
determined by the columns parameter. In the given example, all columns that contain count
values will be extracted.
As an alternative, it is also possible to calculate mean values over the extracted windows for
each ROI, a behaviour that is controlled by the parameter summarize:
> rois.s = MEDIPS.selectROIs(results = mr.edgeR, rois = mr.edgeR.s.gain.m,

+ columns = columns, summarize = "avg")

For each ROI and for each specified column, there will be one mean value returned.
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5 Quality controls
MEDIPS provides three different quality controls. In this section, the quality controls are
demonstrated for the MeDIP-seq hESCs sample hESCs_Rep1_MeDIP.bam.

5.1 Saturation analysis
The saturation analysis addresses the question, whether the given set of mapped reads is
sufficient to generate a saturated and reproducible coverage profile of the reference genome.
Only if there is a sufficient number of short reads, the resulting genome wide coverage profile
will be reproducible by another independent set of a similar number of short reads. The
saturation analysis is not specific for MeDIP-seq data and can be applied to other types of
sequencing data like e.g. ChIP-seq.
> sr = MEDIPS.saturation(file = bam.file.hESCs.Rep1.MeDIP, BSgenome = BSgenome,

+ uniq = uniq, extend = extend, shift = shift, window_size = ws,

+ chr.select = chr.select, nit = 10, nrit = 1, empty_bins = TRUE,

+ rank = FALSE)

The saturation analysis divides the total set of available regions into two distinct random sets
(A and B) of equal size. Both sets A and B are again divided into random subsets of equal
size where the number of subsets is determined by the parameter nit (default=10). For each
set, A and B, the saturation analysis iteratively selects an increasing number of subsets and
calculates short read coverage at genome wide windows where the window sizes are defined
by the window_size parameter. In each iteration step, the resulting genome wide coverages
for the current subsets of A and B are compared using pearson correlation. As the number
of considered reads increases during each iteration step, it is assumed that the resulting
genome wide coverages become more similar, a dependency that is expressed by an increased
correlation.
It has to be noted that the saturation analysis can be performed on two independent sets of
short reads only. Therefore, a true saturation for one given sample can only be calculated
for half of the available short reads. As it is of interest to examine the reproducibility for
the total set of available short reads of the given sample, the saturation analysis is followed
by an estimated saturation analysis. For the estimated saturation analysis, the full set of
given regions is artifically doubled by considering each given region twice. Subsequently, the
described saturation analysis is performed on the artificially doubled set of regions (see also
Supplementary Methods in [4]).
The results of the saturation and of the estimated saturation analysis can be viewed by typing
> sr

$distinctSets

[,1] [,2]

[1,] 0 0.0000000

[2,] 7539 0.1348537

[3,] 15078 0.2461437

[4,] 22617 0.3278811

[5,] 30156 0.3954628

[6,] 37695 0.4511133

[7,] 45234 0.4961036

[8,] 52773 0.5358282
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[9,] 60312 0.5700564

[10,] 67851 0.5995583

[11,] 75396 0.6236120

$estimation

[,1] [,2]

[1,] 0 0.0000000

[2,] 7539 0.1559048

[3,] 15078 0.2753260

[4,] 22617 0.3626626

[5,] 30156 0.4339064

[6,] 37695 0.4868204

[7,] 45234 0.5359467

[8,] 52773 0.5726005

[9,] 60312 0.6056393

[10,] 67851 0.6321072

[11,] 75390 0.6559118

[12,] 82929 0.6769071

[13,] 90468 0.6954802

[14,] 98007 0.7128425

[15,] 105546 0.7273343

[16,] 113085 0.7419181

[17,] 120624 0.7532826

[18,] 128163 0.7646934

[19,] 135702 0.7748964

[20,] 143241 0.7840930

[21,] 150793 0.7925481

$numberReads

[1] 150793

$maxEstCor

[1] 1.507930e+05 7.925481e-01

$maxTruCor

[1] 7.53960e+04 6.23612e-01

The maximal obtained correlation of the saturation analysis is stored at the maxTruCor slot
and the maximal obtained correlation of the estimated saturation analysis is stored at the
maxEstCor slot of the saturation results object (here sr, first column: total number of con-
sidered reads, second column: correlation). The results of each iteration step are stored in
the distinctSets and estimation slots for the saturation and estimated saturation analy-
sis, respectively (first column: total number of considered reads, second column: obtained
correlation).
In addition, the results can be visualized as shown in Figure 1 by typing
> MEDIPS.plotSaturation(sr)

Further parameters that can be specified for the saturation analysis are:
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Figure 1: Saturation analysis. The saturation analysis indicates the reproducibility of the genome wide
coverage at regular genomic intervals given an increasing sequencing depth.

• nrit: methods that randomly select data entries may be processed several times in
order to obtain more stable results. By specifying the nrit parameter (default=1) it is
possible to run the saturation analysis several times. The final results returned to the
saturation results object are the averaged results of all random iteration steps.

• empty_bins: can be either TRUE or FALSE (default TRUE). This parameter affects the
way of calculating correlations between the resulting genome wide coverages. If there
occur genomic bins which contain no overlapping regions, neither from the subset(s)
of A nor from the subset(s) of B, these windows will be neglected when the paramter is
set to FALSE.

• rank: can be either TRUE or FALSE (default FALSE). This parameter also effects the
way of calculating correlations between the resulting genome vectors. If rank is set to
TRUE, the correlation will be calculated for the ranks of the bins instead of considering
the counts (i.e. spearman correlation). Setting this parameter to TRUE is a more
robust approach which reduces the effect of possible occuring outliers (i.e. windows
with very high counts) on the correlation.

5.2 Correlation between samples
Genome wide short read coverage profiles are expected to be similar for biological or technical
replicates given a sufficient sequencing depth (compare section Saturation Analysis). The
MEDIPS.correlation function comapares genome wide coverage profiles of given MEDIPS
SETs and returns a correlation matrix containing pair-wise correlations.
> cor.matrix = MEDIPS.correlation(MSets = c(hESCs_MeDIP, DE_MeDIP,

+ hESCs_Input, DE_Input), plot = T, method = "pearson")

5.3 Sequence Pattern Coverage
The main idea of the sequence pattern coverage analysis is to test the number of CpGs (or
any other predefined sequence pattern) covered by the given short reads. In addition, the
depth of coverage per CpG is tested. The sequence pattern coverage analysis can be started
by typing
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> cr = MEDIPS.seqCoverage(file = bam.file.hESCs.Rep1.MeDIP, pattern = "CG",

+ BSgenome = BSgenome, chr.select = chr.select, extend = extend,

+ shift = shift, uniq = uniq)

The sequence pattern coverage results object (here cr) contains four different slots:
• cov.res: is a vector of length equal to the total number of sequence patterns (e.g.

CpGs). The entries correspond to the number of overlapping regions (coverage).
• pattern: the tested sequence pattern (e.g. CpG)
• numberReads: the total number of tested reads
• numberReadsWO: the number of reads which do not cover a tested sequence pattern

The results of the coverage analysis can be visualized by a pie chart as shown in Figure 2:
> MEDIPS.plotSeqCoverage(seqCoverageObj=cr, type="pie", cov.level = c(0,1, 2, 3, 4, 5))

Creating summary...

<=0x (40.86%)

1−1x (21.28%)

2−2x (13.76%) 3−3x (8.55%)

4−4x (5.45%)

5−5x (3.35%)

>5x (6.75%)

Total number of CG's: 578097

2817 of 150793 reads (1.87%) do not cover a pattern

Figure 2: Coverage analysis- pie chart The coverage analysis illustrates the fraction of CpGs covered by the
given reads according to their coverage level.

The visualized coverage levels can be adjusted by the cov.level parameter.
Alternatively, a histogram can be plotted to visalizes the total number of CpGs that have
been covered at different level (see Figure 3):
> MEDIPS.plotSeqCoverage(seqCoverageObj=cr, type="hist", t = 15, main="Sequence pattern coverage, histogram")

5.4 CpG Enrichment
As a quality check for the enrichment of CpG rich DNA fragments obtained by the im-
munoprecipitation step of a MeDIP/MBD experiment, MEDIPS provides the functionality to
calculate CpG enrichment values. The main idea is to test the enrichment of CpGs within
the genomic regions covered by the given set of short reads compared to the full reference
genome. For this, MEDIPS counts the number of Cs, the number of Gs, the number CpGs,
and the total number of bases within the specified reference genome. Subsequently, MEDIPS
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Figure 3: Coverage analysis- histogram The histogram shows the distribution of CpG coverages. The pa-
rameter t specifies the maximal coverage depth to be plotted (here: 15 reads).

calculates the relative frequency of CpGs and the observed/expected ratio of CpGs present
in the reference genome. Additionally, MEDIPS calculates the same for the DNA sequences
underlying the given regions. The final enrichment values result by dividing the relative fre-
quency of CpGs (or the observed/expected value, respectively) of the regions by the relative
frequency of CpGs (or the observed/expected value, respectively) of the reference genome.
> er = MEDIPS.CpGenrich(file = bam.file.hESCs.Rep1.MeDIP, BSgenome = BSgenome,

+ chr.select = chr.select, extend = extend, shift = shift,

+ uniq = uniq)

The enrichment results object (here er) contains several slots which show the number of
Cs, Gs, and CpGs within the reference genome and within the given regions. Addition-
ally, there are slots that show the relative frequency as well as the observed/expected CpG
ratio within the reference genome and within the given regions. Finally, the slots enrich

ment.score.relH and enrichment.score.GoGe indicate the enrichment of CpGs within the
given regions compared to the reference genome. For short reads derived from Input exper-
iments (i.e. sequencing of none-enriched DNA fragments), the enrichment values should be
close to 1. In contrast, a MeDIP-seq experiment should return CpG rich sequences what will
be indicated by increased CpG enrichment scores.

6 Miscellaneous
In this section we discuss several additional functionalities currently available in the MEDIPS
package.

6.1 Processing regions of interest
Instead of caluclating coverage and differential coverage at genome wide small windows,
it is also possible to perform targetd analyses of regions of interest (ROI’s, e.g. exons,
promoter regions, CpG islands etc.). Here, the alignment files have to be imported using the
function MEDIPS.createROIset. The function MEDIPS.createROIset has the same parameters
as MEDIPS.createSet except that the window_size parameter has been replaced by the ROI
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parameter. The ROI parameter expects a data.frame with columns "chr", "start", "end" and
"name" defining the regions of interest. Furthermore, ROIs can be divided into bins prior
to calculating sequencing coverage, a behaviour controlled by the parameter bn. Comment:
Please note, all ROIs will be divided into the same number of bins regardless of their length,
possibly resulting into bins of different sizes.

6.2 Export Wiggle Files
MEDIPS allows to export genome wide coverage profiles as wiggle files for visualization in
common genome browsers.
> MEDIPS.exportWIG(Set = hESCs_MeDIP[[1]], file = "hESC.MeDIP.rep1.wig",

+ format = "rpkm", descr = "")

• Set: a MEDIPS SET to be exported as a wiggle file. Required when the parameter
format is count, rpkm, or rms.

• CSet: a COUPLING SET to be exported as a wiggle file. Required when the parameter
format is pdensity or rms.

• file: the output file name
• format: can be either count, rpkm, or rms for a MEDIPS SET or pdensity for a

COUPLING SET.
• descr: a track description for the wiggle file

6.3 Merging MEDIPS SETs
A MEDIPS SET represents the mapping results of a biological sample of interest, typically
a biological or technical replicate. However, a biological or technical replicate might be
sequenced several times or distributed over different lanes resulting in several bam files.
Instead of merging associated bam files in advance of a MEDIPS analysis, the MEDIPS
package allows to merge MEDIPS SETs generated from associated bam files.
> Input.merged = MEDIPS.mergeSets(MSet1 = hESCs_Input, MSet2 = DE_Input,

+ name = "Input.hESCs.DE")

Please note, MEDIPS SETs to be merged are required to be previously generated based on
the same reference genome, chromosome set, and window size. The extend, shift or uniq

parameters can be different and are left blank in the resulting MEDIPS SET specification.
The parameter name assigns a new name to the merged MEDIPS SET. Consequently, the
merged MEDIPS SET does not have a concrete path and file association anymore and cannot
be used as input for the MEDIPS.addCNV function.

6.4 Annotation of significant windows
It is of interest to annotate genomic windows with known genome characteristics like tran-
scription start sites, exons, CpG islands etc. MEDIPS provides a basic function for adding
additional annotation columns to the result table. For this, an annotation object is required
which contains the annotation ids, chromosome names, start and end positions. As an ex-
ample, MEDIPS allows to generate such an annotation object by accessing BioMart [7]:
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> anno.mart.gene = MEDIPS.getAnnotation(dataset = c("hsapiens_gene_ensembl"),

+ annotation = c("GENE"), chr = "chr22")

Annotation of the result matrix (either the full matrix or a subset of the matrix as selected
by e.g. the MEDIPS.selectSig function) can now be performed as follows:
> mr.edgeR.s = MEDIPS.setAnnotation(regions = mr.edgeR.s, annotation = anno.mart.gene)

An annotation is assigned to a genomic window, if their genomic coordinates overlap.

6.5 addCNV
In case there are INPUT SETs provided at both Input slots (i.e. ISet1 and ISet2) of the
MEDIPS.meth function, copy number variation will be tested by applying the package DNAcopy

to window-wise log-ratios calculated based on the the means per group. However, by setting
CNV=F copy number variation analysis will be disabled avoiding a computational demanding
CNV analysis at previously determined (typically short) genome wide windows. The function
MEDIPS.addCNV allows to run the CNV analysis on two groups of INPUT SETs using another
(typically increased) window size. Subsequently, the MEDIPS.addCNV function matches its
CNV results to the given result table as previously generated by the MEDIPS.meth function.
This allows for calculating CNVs for larger windows what might be more appropriate in case
of low sequencing depth of Input-seq data.
> mr.edgeR = MEDIPS.addCNV(cnv.Frame = 10000, ISet1 = hESCs_Input,

+ ISet2 = DE_Input, results = mr.edgeR)

6.6 Calibration Plot
MeDIP-seq data is transformed into genome wide relative methylation scores by a previ-
ously presented CpG dependent normalization method [4]. Normalization is based on the
dependency between short read coverage and CpG density at genome wide windows. This
dependency has been originally demonstrated by Down et al. [2] and can be visualized as a
calibration plot.
> MEDIPS.plotCalibrationPlot(CSet = CS, main = "Calibration Plot",

+ MSet = hESCs_MeDIP[[1]], plot_chr = "chr22", rpkm = TRUE,

+ xrange = TRUE)

• CS: the COUPLING SET
• ISet: an INPUT SET (i.e. a MEDIPS SET created from Input sequening data). No

linear regression will be calculated for the Input Set.
• main: the main of the figure
• MSet: the MEDIPS SET object
• plot_chr: the chromsome for which the calibration plot will be generated
• rpkm: specifies, if the MeDIP data range will be plotted in count or rpkm format. It

is necessary to set rpkm=T, if both, a MSet and an ISet are given and plotted at the
same time.
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• xrange: if set to TRUE, only the lower data range of the calibration plot will be
visualized

Please note, it is strongly recommended to direct the output to a graphics device like e.g.
png().

6.7 Comments on the experimental design and Input data
There are two common questions for conducting and analyzing MeDIP or any other kind of
enrichment/immunoprecipitation (IP) based sequencing data: first, it is of interest to identify
enriched regions in an IP sample in order to reveal e.g. methylated regions, the occurrence
of histone modifications, or to localize transcription factor binding sites. Second, it is of
interest to identify differential short read coverage comparing two conditions (here treatment
vs. control) in order to identify genomic regions that show e.g. differential methylation
or differential transcription factor binding. An intutive approach for identifying differential
coverage is to first calculate condition-wise enrichments (or ’peaks’) followed by mutual
subtraction of these ’peak sets’. However, this approach has several limitations (not discussed
here) and the MEDIPS package follows an alternative strategy directly comparing the groups
of IP samples against each other.
For the identification of sample-wise local enrichments, any peak finder appropriate for the
analyzed data type may be applied (differences of peak finding tools are not discussed here).
In addition, it is recommended to include Input data for estimating a background coverage
distribution and local coverage bias. Most peak finders are capable of incorporating Input
data. For MeDIP data, a CpG density bias has been observed that is not considered by
standard peak callers. MEDIPS allows to incorporate the CpG density into the short-read
counts resulting in relative methylation values (rms), and we have shown an improved cor-
relation of rms values to bisulfite sequencing data compared to counts or rpkm values [4].
However, the resulting range of rms values depends on several unknown factors including the
total abundance of methyalted cytosines in the sample or high outlier signals which might
be present even in Input data. In case reference bisulfite data of selected genomic regions is
available (low to high methylation), it is possible to associate the range of MeDIP-seq derived
rms values to the bisulfite derived data range (i.e. percentage of methylated cytosines per
window) [8]. However, without reference data, it remains an insufficiently solved problem to
estimate thresholds for low, intermediate, and high metylation, or to caluculate significant
local enrichments based on CpG density corrected data in order to identify methylated regions
(or ’peaks’) over background.
For the identification of differential coverage, it can be assumed that any experiment indepen-
dent bias, like local CpG density, affects the short read coverage in both samples (control and
treatment) the same way. Therefore, no normalization of CpG density or other experiment
independent factors may be performed when differential coverage between two groups of IP
samples is calculated. As a consequence, Input samples for the control and for the treat-
ment samples might not be necessary. However, there can exist differences in the genomic
backgrounds of the control and treatment samples caused by e.g. copy number variations
in cancer versus healthy cells. In such cases, it is necessary to explicitly create independent
Input samples for the control and for the treatment samples in order to reveal local back-
ground differences that can influence the identification of differential coverage comparing
the according IP samples. MEDIPS (1.10.0 or higher) can process an arbitrary number of
Input samples per condition, if available, and allows for considering copy number variations
observed in the Input data when differential coverage is calculated for the IP data.
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In summary, the need for Input data depends on two conditions: the experimental design ("Am
I interested in IP enrichments over Input or do I want to calculate differential coverage between
groups of IP samples?") and the genomic background or different experimental conditions of
the biological samples ("Do my samples have the same genomic background?").
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