Package 'MAPFX'

Title: MAssively Parallel Flow cytometry Xplorer (MAPFX): A Toolbox for Analysing Data from the Massively-Parallel Cytometry Experiments
Description: MAPFX is an end-to-end toolbox that pre-processes the raw data from MPC experiments (e.g., BioLegend's LEGENDScreen and BD Lyoplates assays), and further imputes the ‘missing’ infinity markers in the wells without those measurements. The pipeline starts by performing background correction on raw intensities to remove the noise from electronic baseline restoration and fluorescence compensation by adapting a normal-exponential convolution model. Unwanted technical variation, from sources such as well effects, is then removed using a log-normal model with plate, column, and row factors, after which infinity markers are imputed using the informative backbone markers as predictors. The completed dataset can then be used for clustering and other statistical analyses. Additionally, MAPFX can be used to normalise data from FFC assays as well.
Authors: Hsiao-Chi Liao [aut, cre] , Agus Salim [ctb], infinityFlow [ctb]
Maintainer: Hsiao-Chi Liao <[email protected]>
License: GPL-2
Version: 1.3.0
Built: 2025-01-06 06:26:25 UTC
Source: https://github.com/bioc/MAPFX

Help Index


Background correction for the backbone markers

Description

This function has been designed to do background correction for the backbone markers by using normal-exponential convolution model.

Usage

bkc_bkb(
  paths,
  bkb.v,
  MPC,
  bkb.upper.quantile = 0.9,
  bkb.lower.quantile = 0.1,
  bkb.min.quantile = 0.01,
  plots = TRUE
)

Arguments

paths

a vector of characters of paths to store intput, intermediary results, outputs...

bkb.v

a vector of the names of the backbone markers (MUST match to the names in the FCS file).

MPC

if the data is from MPC experiments, set MPC = TRUE. Setting FALSE represents data from the fluorescence flow cytometry (FFC) assay.

bkb.upper.quantile

the cut-off (default = 0.9) for selecting cells used for estimating the parameter of signal.

bkb.lower.quantile

the cut-off (default = 0.1) for selecting cells used for estimating the parameters of noise.

bkb.min.quantile

the cut-off (default = 0.01) for omitting the cells with the smallest values to minimise the impact of outliers.

plots

logical; if TRUE (default), produce scatter plots for pre- and post- background adjusted backbone markers (calibrated values on y-axis and raw values on x-axis).

Details

Generating the calibrated measurements and save to medpara_bkc.bkb_no.bkcPhy_mt.rds file, and visualising the result with the scatter plots in the output directory.

Value

Background noise corrected backbone markers and graphs if specified

Author(s)

Hsiao-Chi Liao and Agus Salim


Background correction for the well-specific markers (PE)

Description

This function has been designed to do background correction for the well-specific markers (PE) by using normal-exponential convolution model.

Usage

bkc_pe(paths, pe.lower.quantile = 0.1, pe.min.quantile = 0.01, plots = TRUE)

Arguments

paths

a vector of characters of paths to store intput, intermediary results, outputs...

pe.lower.quantile

the cut-off (default = 0.1) for selecting cells used for estimating the parameters of noise for infinity markers.

pe.min.quantile

the cut-off (default = 0.01) for omitting the cells with the smallest values to minimise the impact of outliers for infinity markers.

plots

logical; if TRUE (default), produce scatter plots for pre- and post- background adjusted infinity markers (calibrated values on y-axis and raw values on x-axis).

Details

Generating the calibrated measurements and save to bkc.pe_mt.rds file, and visualising the result with the scatter plots in the output directory.

Value

Background noise corrected infinity markers and graphs if specified

Author(s)

Hsiao-Chi Liao and Agus Salim


Cluster analysis with normalised backbone measurements and the complete dataset

Description

This function has been designed to perform cluster analysis for the normalised backbone measurements and the complete dataset which includes the normalised backbone measurements and the imputed well-specific markers.

Usage

cluster.analysis(paths, bkb.v, yvar = "Legend", control.wells, plots = TRUE)

Arguments

paths

a vector of characters of paths to store intput, intermediary results, outputs...

bkb.v

a vector of the names of the backbone markers (MUST match to the names in the FCS file).

yvar

the name of the well-specific marker in the FCS files (e.g., "Legend").

control.wells

the well label of the control wells, including the autofluorescence and the isotype controls (format: plate_well, e.g., P1_A01)

plots

logical; if TRUE (default), produce an UMAP embedding plot from the normalised backbone markers and the imputed infinity markers to visualise the structure of the biological clusters.

Details

Updating the metadata for cells in the fcs_metadata_df.rds file, adding the information of the biological clusters from the clean and complete dataset, and visualising the result with the scatter plots in the output directory.

Value

Metadata for cells with group labels from the cluster analysis

Author(s)

Hsiao-Chi Liao


Cluster analysis with normalised backbone measurements

Description

This function has been designed to perform cluster analysis for the normalised backbone measurements.

Usage

cluster.analysis.bkbOnly(paths, bkb.v, plots = TRUE)

Arguments

paths

a vector of characters of paths to store intput, intermediary results, outputs...

bkb.v

a vector of the names of the backbone markers (MUST match to the names in the FCS file).

plots

logical; if TRUE (default), produce an UMAP embedding plot from the normalised backbone markers to visualise the structure of the biological clusters.

Details

Updating the metadata for cells in the fcs_metadata_df.rds file, adding the information of the biological clusters from the clean and complete dataset, and visualising the result with the scatter plots in the output directory.

Value

Metadata for cells with group labels from the cluster analysis

Author(s)

Hsiao-Chi Liao


Converting FCS files to RDS files

Description

This function has been designed to convert the raw FCS files to data matrix and export to RDS files.

Usage

fcs_to_rds(paths, file_meta, yvar)

Arguments

paths

a vector of characters of paths to store intput, intermediary results, outputs...

file_meta

if the file names of the FCS files are in the specified format, set file_meta="auto"; otherwise set file_meta="usr" and provide "filename_meta.csv" in FCSpath.

yvar

the name of the well-specific marker in the FCS files (e.g., "Legend").

Details

Generating fcs_metadata_df.rds and fcs_rawInten_mt.rds files in the output directory.

Value

Raw protein intensities and the corresponding metadata from MPC experiments

Author(s)

Hsiao-Chi Liao


Converting FCS files to RDS files (for the case without exploratory markers)

Description

This function has been designed to convert the raw FCS files to data matrix and export to RDS files.

Usage

fcs_to_rds_bkb(paths, file_meta, MPC)

Arguments

paths

a vector of characters of paths to store intput, intermediary results, outputs...

file_meta

if the file names of the FCS files are in the specified format, set file_meta="auto"; otherwise set file_meta="usr" and provide "filename_meta.csv" in FCSpath.

MPC

if the data is from MPC experiments, set MPC = TRUE. Setting FALSE represents data from the fluorescence flow cytometry (FFC) assay.

Details

Generating fcs_metadata_df.rds and fcs_rawInten_mt.rds files in the output directory.

Value

Raw protein intensities and the corresponding metadata from FFC experiments

Author(s)

Hsiao-Chi Liao


Imputing the unmeasured well-specific markers with regression models

Description

This function has been designed to impute/predict the unmeasured well-specific markers with regression models.

Usage

imputation_bkb.predictors(
  paths,
  chans,
  yvar = "Legend",
  cores = 4L,
  models.use,
  extra_args_regression_params,
  prediction_events_downsampling = NULL,
  impu.training,
  plots = TRUE
)

Arguments

paths

a vector of characters of paths to store intput, intermediary results, outputs...

chans

a vector of the names of the backbone markers (MUST match to the names in the FCS file).

yvar

the name of the well-specific marker in the FCS files (has been changed to "Legend" in the first function).

cores

the number of cores used to perform parallel computation (default = 8L).

models.use

a vector of the names of the models used for imputation (an example: c("LM", "LASSO3", "SVM", "XGBoost")). The length of the vector is arbitrary.

extra_args_regression_params

a list of the lists of the parameters for running regression models.

prediction_events_downsampling

default = NULL (not doing subsampling). How many cells per well you want to have the imputation? (must be less than or equal to a half as we won't get the prediction for cells in the training set).

impu.training

logical; if FALSE (default), not impute the training set (the dataset used to train the imputation models).

plots

logical; if TRUE (default), visualise the distribution of R-sq from each infinity marker.

Details

This function returns the object of imputation of the unmeasured well-specific markers. In the output directory, the imputations are saved to predictions.Rds file. Visualisation of the imputation accuracy will be provided if specified.

Value

A list of imputations

Author(s)

Hsiao-Chi Liao and InfinityFlow (Becht et. al, 2021)


Initial biological clusters

Description

Generating the M matrix for removing well effects.

Usage

initM(paths, assay, bkb.v, plots = TRUE)

Arguments

paths

a vector of characters of paths to store intput, intermediary results, outputs...

assay

the type of the input data - MPC or FFC.

bkb.v

a vector of the names of the backbone markers (MUST match to the names in the FCS file).

plots

logical; if TRUE (default), produce a UMAP embedding plot to visualise the structure of the biological clusters to form the initial M matrix for removal of well effect.

Details

This function has been designed to find initial biological clusters with centred transformed data.

Updating the metadata for cells in the fcs_metadata_df.rds file, adding the information of the initial biological clusters, and visualising the result with the scatter plots in the output directory.

Value

Metadata for cells with the initial biological clusters labels added

Author(s)

Hsiao-Chi Liao


Normalising data from the Fluorescence Flow Cytometry (FFC) Experiments with mapfx.norm

Description

This function is used to normalise, including background correction and removal of batch effects, protein intensity data from FFC assays. The input data is in FCS format. The functions include data normalisation and cluster analysis.

Usage

MapfxFFC(
  runVignette = FALSE,
  runVignette_meta = NULL,
  runVignette_rawInten = NULL,
  FCSpath = NULL,
  Outpath = NULL,
  protein.v = NULL,
  protein.upper.quantile = 0.9,
  protein.lower.quantile = 0.1,
  protein.min.quantile = 0.01,
  plots.bkc.protein = TRUE,
  plots.initM = TRUE,
  plots.rmBatchEffect = TRUE,
  cluster.analysis.protein = TRUE,
  plots.cluster.analysis.protein = TRUE
)

Arguments

runVignette

logical; if FALSE (default), specify a path to FCSpath argument; TRUE for running Vignette using built-in data.

runVignette_meta

the argument for the built-in metadata when running Vignette; NULL (default).

runVignette_rawInten

the argument for the built-in raw intensities when running Vignette; NULL (default).

FCSpath

path to the input directory where filename_meta.csv and FCS files are stored. filename_meta.csv should be saved under ⁠FCSpath/FCS/meta/⁠ and FCS files should be saved under ⁠FCSpath/FCS/fcs/⁠. See Vignette for details.

Outpath

path to the output directory where intermediate results and final results will be stored.

protein.v

a vector of the names of the protein markers (MUST be the same as the names in the FCS files). For example, protein.v = c("FSC-H","FSC-W","SSC-H","SSC-W","CD3","CD4","CD8","CD45").

protein.upper.quantile

the cut-off (default = 0.9) for selecting cells used for estimating the parameter of signal for protein markers.

protein.lower.quantile

the cut-off (default = 0.1) for selecting cells used for estimating the parameters of noise for protein markers.

protein.min.quantile

the cut-off (default = 0.01) for omitting the cells with the smallest values to minimise the impact of outliers during estimation.

plots.bkc.protein

logical; if TRUE (default), produce scatter plots for pre- and post- background adjusted protein markers (calibrated values on y-axis and raw values on x-axis).

plots.initM

logical; if TRUE (default), produce an UMAP embedding plot to visualise the structure of the biological clusters used to form the initial M matrix for removal of batch effects.

plots.rmBatchEffect

logical; if TRUE (default), produce heatmaps to visualise the unwanted (batch) effects and biological effects in the pre- and post- adjusted datasets.

cluster.analysis.protein

logical; if TRUE (default), perform cluster analysis using normalised protein markers.

plots.cluster.analysis.protein

logical; if TRUE (default), produce an UMAP embedding plot from the normalised protein markers to visualise the structure of the biological clusters.

Details

In the output directory, this function produces the normalised protein measurements, cell group labels from the cluster analysis using normalised proteins, and graphs will be provided if specified.

Value

Normalised protein markers on log scale and metadata for cells

Author(s)

Hsiao-Chi Liao, Agus Salim

Examples

# import built-in data
data(ord.fcs.raw.meta.df.out_ffc)
data(ord.fcs.raw.mt_ffc)

# create an Output directory for the MapfxFFC function
dir.create(file.path(tempdir(), "FFCnorm_Output"))

MapfxFFC_obj <- MapfxFFC(
  runVignette = TRUE, #set FALSE if not running this example
  runVignette_meta = ord.fcs.raw.meta.df.out_ffc, #set NULL if not running this example
  runVignette_rawInten = ord.fcs.raw.mt_ffc, #set NULL if not running this example
  FCSpath = NULL, # users specify their own input path if not running this example
  Outpath = file.path(tempdir(), "FFCnorm_Output"),
  protein.v = c("CD3","CD4","CD8","CD45"),
  protein.upper.quantile = 0.9, 
  protein.lower.quantile = 0.1, 
  protein.min.quantile = 0.01,
  plots.bkc.protein = TRUE,
  plots.initM = TRUE,
  plots.rmBatchEffect = TRUE,
  cluster.analysis.protein = TRUE, plots.cluster.analysis.protein = TRUE)

MAssively Parallel Flow cytometry Xplorer (MAPFX)

Description

This function is an end-to-end toolbox for analysing single-cell protein intensity data from the Massively-Parallel Cytometry (MPC) Experiments in FCS format. The functions include data normalisation, imputation (using backbone markers), and cluster analysis.

Usage

MapfxMPC(
  runVignette = FALSE,
  runVignette_meta = NULL,
  runVignette_rawInten = NULL,
  FCSpath = NULL,
  Outpath = NULL,
  file_meta = "auto",
  bkb.v = NULL,
  yvar = "Legend",
  control.wells = NULL,
  bkb.upper.quantile = 0.9,
  bkb.lower.quantile = 0.1,
  bkb.min.quantile = 0.01,
  inf.lower.quantile = 0.1,
  inf.min.quantile = 0.01,
  plots.bkc.bkb = TRUE,
  plots.bkc.inf = TRUE,
  plots.initM = TRUE,
  plots.rmWellEffect = TRUE,
  impute = TRUE,
  models.use = c("XGBoost"),
  extra_args_regression_params = list(list(nrounds = 1500, eta = 0.03)),
  prediction_events_downsampling = NULL,
  impu.training = FALSE,
  plots.imputation = TRUE,
  cluster.analysis.bkb = TRUE,
  plots.cluster.analysis.bkb = TRUE,
  cluster.analysis.all = TRUE,
  plots.cluster.analysis.all = TRUE,
  cores = 4L
)

Arguments

runVignette

logical; if FALSE (default), specify a path to FCSpath argument; TRUE for running Vignette using built-in data.

runVignette_meta

the argument for the built-in metadata when running Vignette; NULL (default).

runVignette_rawInten

the argument for the built-in raw intensities when running Vignette; NULL (default).

FCSpath

path to the input directory where filename_meta.csv and FCS files are stored (one file per well). filename_meta.csv should be saved under ⁠FCSpath/FCS/meta/⁠ and FCS files should be saved under ⁠FCSpath/FCS/fcs/⁠ (See Vignette for details.)

Outpath

path to the output directory where intermediate results and final results will be stored.

file_meta

if the file names of the FCS files are in the specified format, set file_meta = "auto"; otherwise set file_meta = "usr" and provide a filename_meta.csv file in ⁠FCSpath/FCS/meta/⁠.

bkb.v

a vector of the names of the backbone markers (MUST be the same as the names in the FCS files). For example, bkb.v = c("FSC-H", "FSC-W", "SSC-H", "SSC-W", "CD69-CD301b", "MHCII", "CD4", "CD44", "CD8", "CD11c", "CD11b", "F480", "Ly6C", "Lineage", "CD45a488", "CD24", "CD103").

yvar

the name of the well-specific exploratory marker in the FCS files (e.g., "Legend").

control.wells

the well label of the control wells, including the autofluorescence and the isotype controls (format: plate_well, e.g., P1_A01). Users need to provide this information when cluster.analysis.all = TRUE. For example, control.wells = c("P1_A01", "P2_A01", "P3_A01", "P3_F04", "P3_F05", "P3_F06", "P3_F07", "P3_F08", "P3_F09", "P3_F10", "P3_F11", "P3_F12", "P3_G01", "P3_G02").

bkb.upper.quantile

the cut-off (default = 0.9) for selecting cells used for estimating the parameter of signal for backbone markers.

bkb.lower.quantile

the cut-off (default = 0.1) for selecting cells used for estimating the parameters of noise for backbone markers.

bkb.min.quantile

the cut-off (default = 0.01) for omitting the cells with the smallest values to minimise the impact of outliers during estimation (backbone).

inf.lower.quantile

the cut-off (default = 0.1) for selecting cells used for estimating the parameters of noise for infinity markers.

inf.min.quantile

the cut-off (default = 0.01) for omitting the cells with the smallest values to minimise the impact of outliers during estimation (infinity).

plots.bkc.bkb

logical; if TRUE (default), produce scatter plots for pre- and post- background adjusted backbone markers (calibrated values on y-axis and raw values on x-axis).

plots.bkc.inf

logical; if TRUE (default), produce scatter plots for pre- and post- background adjusted infinity markers (calibrated values on y-axis and raw values on x-axis).

plots.initM

logical; if TRUE (default), produce an UMAP embedding plot to visualise the structure of the biological clusters used to form the initial M matrix for removal of well effects.

plots.rmWellEffect

logical; if TRUE (default), produce heatmaps to visualise the unwanted (well) effects and biological effects in the pre- and post- adjusted datasets.

impute

logical; if TRUE (default), impute the missing infinity markers.

models.use

a vector of the names of the models used for imputation. For example, models.use = c("LM", "LASSO3", "SVM", "XGBoost").

extra_args_regression_params

a list of the lists of the parameters for running regression models. The order should be the same as the models specified in models.use. For example, extra_args_regression_params = list(list(degree = 1), list(nfolds = 10, degree = 3), list(type = "nu-regression", cost = 8, nu = 0.5, kernel = "radial"), list(nrounds = 1500, eta = 0.03)).

prediction_events_downsampling

integer (default = NULL); the number of samples used for the downsampling for the prediction.

impu.training

logical; if FALSE (default), not impute the training set (the dataset used to train the imputation models).

plots.imputation

logical; if TRUE (default), visualise the distribution of R-sq values of infinity markers.

cluster.analysis.bkb

logical; if TRUE (default), perform cluster analysis using normalised backbone markers for all cells.

plots.cluster.analysis.bkb

logical; if TRUE (default), produce an UMAP embedding plot from the normalised backbone markers to visualise the structure of the biological clusters for all cells.

cluster.analysis.all

logical; must set FALSE if impute = FALSE; if TRUE (default), perform cluster analysis using normalised backbone markers and imputed infinity markers for cells in testing set.

plots.cluster.analysis.all

logical; must set FALSE if impute = FALSE; if TRUE (default), produce an UMAP embedding plot from the normalised backbone markers and the imputed infinity markers to visualise the structure of the biological clusters for cells in testing set.

cores

the number of cores used to perform parallel computation during the imputation process (default = 4L).

Details

In the output directory, this function produces the normalised backbone measurements, the background corrected infinity measurements, and imputed infinity markers (if set impute = TRUE), cell group labels from the cluster analysis using both normalised backbones and the completed dataset (if impute = TRUE), and graphs will be provided if specified.

Value

Normalised backbone markers on log scale, background noise corrected infinity markers, imputations, and metadata for cells

Author(s)

Hsiao-Chi Liao, Agus Salim, and InfinityFlow (Becht et. al, 2021)

Examples

# import built-in data
data(ord.fcs.raw.meta.df.out_mpc)
data(ord.fcs.raw.mt_mpc)

# create an Output directory for the MapfxMPC function
dir.create(file.path(tempdir(), "MPC_impu_Output"))

# When `impute = TRUE`, randomly selecting 50% of the cells in each well for model training
set.seed(123) 
MapfxMPC_impu_obj <- MapfxMPC(
  runVignette = TRUE, #set FALSE if not running this example
  runVignette_meta = ord.fcs.raw.meta.df.out_mpc, #set NULL if not running this example
  runVignette_rawInten = ord.fcs.raw.mt_mpc, #set NULL if not running this example
  FCSpath = NULL, # users specify their own input path if not running this example
  Outpath = file.path(tempdir(), "MPC_impu_Output"),
  file_meta = "auto",
  bkb.v = c(
    "FSC-H", "FSC-W", "SSC-H", "SSC-W", "CD69-CD301b", "MHCII", 
    "CD4", "CD44", "CD8", "CD11c", "CD11b", "F480", 
    "Ly6C", "Lineage", "CD45a488", "CD24", "CD103"),
  yvar = "Legend", 
  control.wells = c(
    "P1_A01", "P2_A01", "P3_A01",
    "P3_F04", "P3_F05", "P3_F06", "P3_F07", "P3_F08", 
    "P3_F09", "P3_F10", "P3_F11", "P3_F12",
    "P3_G01", "P3_G02"),
  bkb.upper.quantile = 0.9, 
  bkb.lower.quantile = 0.1, 
  bkb.min.quantile = 0.01,
  inf.lower.quantile = 0.1, 
  inf.min.quantile = 0.01, 
  plots.bkc.bkb = TRUE, plots.bkc.inf = TRUE, 
  plots.initM = TRUE,
  plots.rmWellEffect = TRUE,
  impute = TRUE,
  models.use = c("XGBoost"),
  extra_args_regression_params = list(list(nrounds = 1500, eta = 0.03)),
  prediction_events_downsampling = NULL,
  impu.training = FALSE,
  plots.imputation = TRUE,
  cluster.analysis.bkb = TRUE, plots.cluster.analysis.bkb = TRUE,
  cluster.analysis.all = TRUE, plots.cluster.analysis.all = TRUE,
  cores = 2L)

Making the input for imputation

Description

This function has been designed to combine the normalised backbone measurements and the normalised PE markers for later imputation.

Usage

mkImputeMT(paths)

Arguments

paths

a vector of characters of paths to store intput, intermediary results, outputs...

Details

Generating the combined data and saving to impu.input_log.mt.rds (on log scale) in the output directory.

Value

Combined normalised backbone and infinity markers for imputation

Author(s)

Hsiao-Chi Liao


Metadata of the example MPC data

Description

Metadata of the example MPC data

Usage

data(ord.fcs.raw.meta.df.out_ffc)

Format

a data.frame


Metadata of the example FFC data

Description

Metadata of the example FFC data

Usage

data(ord.fcs.raw.meta.df.out_mpc)

Format

a data.frame


Subset of the single-cell murine lung data at steady state from an MPC experiment

Description

Subset of the single-cell murine lung data at steady state from an MPC experiment

Usage

data(ord.fcs.raw.mt_ffc)

Format

a matrix containing cells from 266 wells (50 cells/well)

Source

https://flowrepository.org/id/FR-FCM-Z2LP


Subset of the sorted CD4+ and CD8+ T cells from mice splenocytes from an FFC experiment

Description

Subset of the sorted CD4+ and CD8+ T cells from mice splenocytes from an FFC experiment

Usage

data(ord.fcs.raw.mt_mpc)

Format

a matrix containing cells from 5 batches (50 cells/batch)

Source

http://flowrepository.org/id/FR-FCM-Z6UG


Removing batch effect from the data (FFC)

Description

This function has been designed to remove the unwanted effects (batch effects) from the background corrected measurements.

Usage

rmBatchEffect(paths, plots = TRUE)

Arguments

paths

a vector of characters of paths to store intput, intermediary results, outputs...

plots

logical; if TRUE (default), produce heatmaps to visualise the unwanted (batch) effects and biological effects in the pre- and post- adjusted datasets.

Details

Generating the calibrated measurements and saving to bkc.adj.bkb_logScale_mt.rds (on log scale) and bkc.adj.bkb_linearScale_mt.rds (on linear scale), and visualising the result with the heatmaps in the output directory.

Value

Normalised markers on log scale

Author(s)

Hsiao-Chi Liao


Removing well effect from the data

Description

This function has been designed to remove the unwanted effects (well effects) from the background corrected measurements.

Usage

rmWellEffect(paths, plots = TRUE)

Arguments

paths

a vector of characters of paths to store intput, intermediary results, outputs...

plots

logical; if TRUE (default), produce heatmaps to visualise the unwanted (well) effects and biological effects in the pre- and post- adjusted datasets.

Details

Generating the calibrated measurements and saving to bkc.adj.bkb_logScale_mt.rds (on log scale) and bkc.adj.bkb_linearScale_mt.rds (on linear scale), and visualising the result with the heatmaps in the output directory.

Value

Normalised backbone markers on log scale

Author(s)

Hsiao-Chi Liao