Title: | CGH Micro-Array NORmalization |
---|---|
Description: | Importation, normalization, visualization, and quality control functions to correct identified sources of variability in array-CGH experiments. |
Authors: | Pierre Neuvial <[email protected]>, Philippe Hupé <[email protected]> |
Maintainer: | Pierre Neuvial <[email protected]> |
License: | GPL-2 |
Version: | 1.79.0 |
Built: | 2025-01-17 03:52:14 UTC |
Source: | https://github.com/bioc/MANOR |
The function arrayTrend
computes the spatial trend.
## Default S3 method: arrayTrend(Statistic, Col, Row, ...) ## S3 method for class 'arrayCGH' arrayTrend(arrayCGH, variable, ...)
## Default S3 method: arrayTrend(Statistic, Col, Row, ...) ## S3 method for class 'arrayCGH' arrayTrend(arrayCGH, variable, ...)
Statistic |
Statistic to be smoothed. |
Col |
Vector of columns coordinates. |
Row |
Vector of rows coordinates. |
arrayCGH |
Object of class |
variable |
Variable to be smooth. |
... |
Parameters to be passed to |
Spatial trend of microarray spots statistic.
Either a data frame with elements :
Trend |
Trend fitted by |
Col |
Vector of columns coordinates. |
Row |
Vector of rows coordinates. |
or the element Trend
is added to the data.frame arrayValues
of the arrayCGH
object.
People interested in tools for array-CGH analysis can visit our web-page: http://bioinfo.curie.fr.
Philippe Hupé, [email protected].
P. Neuvial, P. Hup?, I. Brito, S. Liva, E. Mani?, C. Brennetot, A. Aurias, F. Radvanyi, and E. Barillot. Spatial normalization of array-CGH data. BMC Bioinformatics, 7(1):264. May 2006.
data(spatial) ## arrays with local spatial effects edgeTrend <- arrayTrend(edge, "LogRatio", span=0.03, degree=1, iterations=3, family="symmetric") GLAD::arrayPlot(edgeTrend, "Trend", main="Spatial trend of array CGH", bar="v")
data(spatial) ## arrays with local spatial effects edgeTrend <- arrayTrend(edge, "LogRatio", span=0.03, degree=1, iterations=3, family="symmetric") GLAD::arrayPlot(edgeTrend, "Trend", main="Spatial trend of array CGH", bar="v")
This function detects spatial bias on array CGH.
## S3 method for class 'arrayCGH' detectSB(arrayCGH, variable, proportionup=0.25, proportiondown,type="up", thresholdup=0.2, thresholddown=0.2, ... )
## S3 method for class 'arrayCGH' detectSB(arrayCGH, variable, proportionup=0.25, proportiondown,type="up", thresholdup=0.2, thresholddown=0.2, ... )
arrayCGH |
Object of |
variable |
Variable used to compare the mean of zones detected by
|
proportionup |
Maximal proportion of the array which may be affected by spatial bias with high values. |
proportiondown |
Maximal proportion of the array which may be affected by spatial bias with low values. |
type |
Type of spatial bias detected. Specify either "up" (to detect spatial bias with high values), or "down" (to detect spatial bias with low values) or "upanddown" (to detect both type of spatial bias). |
thresholdup |
Threshold used to detect spatial bias with high values. |
thresholddown |
Threshold used to detect spatial bias with low values. |
... |
... |
You must run the arrayTrend
and nem
function before detecting spatial bias: the arrayTrend
computes a spatial trend and the nem
function performs a
classification with spatial constraints defining different zones on
the array. Based on those results, spatial bias is detected.
An object of class arrayCGH
with the following added
information in the data.frame attribute arrayValues
:
SB |
Spots located in zone of spatial bias are coded either by 1 (if they correspond to a spatial bias with high values) or by -1 (if they correspond to a spatial bias with low values). Otherwise they are coded by 0. |
People interested in tools for array-CGH analysis can visit our web-page: http://bioinfo.curie.fr.
Philippe Hupé, [email protected].
P. Neuvial, P. Hup?, I. Brito, S. Liva, E. Mani?, C. Brennetot, A. Aurias, F. Radvanyi, and E. Barillot. Spatial normalization of array-CGH data. BMC Bioinformatics, 7(1):264. May 2006.
data(spatial) ## arrays with local spatial effects ## Plot of LogRatio measured on the array CGH GLAD::arrayPlot(edge,"LogRatio", main="Log2-Ratio measured on the array CGH", zlim=c(-1,1), bar="v", mediancenter=TRUE) ## Spatial trend of the scaled log-ratios (the variable "ScaledLogRatio" ## equals to the log-ratio minus the median value of the corresponding ## chromosome arm) edgeTrend <- arrayTrend(edge, variable="ScaledLogRatio", span=0.03, degree=1, iterations=3, family="symmetric") GLAD::arrayPlot(edgeTrend, variable="Trend", main="Spatial trend of the array CGH", bar="v") ## Not run: ## Classification with spatial constraint of the spatial trend edgeNem <- nem(edgeTrend, variable="Trend") GLAD::arrayPlot(edgeNem, variable="ZoneNem", main="Spatial zones identified by nem", bar="v") # Detection of spatial bias edgeDet <- detectSB(edgeNem, variable="LogRatio", proportionup=0.25,type="up", thresholdup=0.15) GLAD::arrayPlot(edgeDet, variable="SB", main="Zone of spatial bias in red", bar="v") # CGH profile plot(LogRatio ~ PosOrder, data=edgeDet$arrayValues, col=c("black","red")[as.factor(SB)], pch=20, main="CGH profile: spots located in spatial bias are in red") ## End(Not run)
data(spatial) ## arrays with local spatial effects ## Plot of LogRatio measured on the array CGH GLAD::arrayPlot(edge,"LogRatio", main="Log2-Ratio measured on the array CGH", zlim=c(-1,1), bar="v", mediancenter=TRUE) ## Spatial trend of the scaled log-ratios (the variable "ScaledLogRatio" ## equals to the log-ratio minus the median value of the corresponding ## chromosome arm) edgeTrend <- arrayTrend(edge, variable="ScaledLogRatio", span=0.03, degree=1, iterations=3, family="symmetric") GLAD::arrayPlot(edgeTrend, variable="Trend", main="Spatial trend of the array CGH", bar="v") ## Not run: ## Classification with spatial constraint of the spatial trend edgeNem <- nem(edgeTrend, variable="Trend") GLAD::arrayPlot(edgeNem, variable="ZoneNem", main="Spatial zones identified by nem", bar="v") # Detection of spatial bias edgeDet <- detectSB(edgeNem, variable="LogRatio", proportionup=0.25,type="up", thresholdup=0.15) GLAD::arrayPlot(edgeDet, variable="SB", main="Zone of spatial bias in red", bar="v") # CGH profile plot(LogRatio ~ PosOrder, data=edgeDet$arrayValues, col=c("black","red")[as.factor(SB)], pch=20, main="CGH profile: spots located in spatial bias are in red") ## End(Not run)
Function flag$FUN
is applied to a flag
object for
normalization
flag.arrayCGH(flag, arrayCGH)
flag.arrayCGH(flag, arrayCGH)
flag |
an object of type 'flag' |
arrayCGH |
an object of type |
Optional arguments in flag$args
are passed to
flag$FUN
An object of class arrayCGH
, which corresponds to the return
value of flag$FUN
if flag$char
is null, and to the
input arrayCGH
object with spots given by flag$FUN
flagged with flag$char
People interested in tools for array-CGH analysis can visit our web-page: http://bioinfo.curie.fr.
Pierre Neuvial, [email protected].
data(spatial) data(flags) gradient$arrayValues$LogRatioNorm <- gradient$arrayValues$LogRatio ## flag spots with no available position on the genome gradient <- flag.arrayCGH(position.flag, gradient) ## flag spots corresponding to low poor quality clones gradient <- flag.arrayCGH(val.mark.flag, gradient) ## flag spots excluded by Genepix pro gradient <- flag.arrayCGH(spot.flag, gradient) ## flag local spatial bias zones ## Not run: gradient <- flag.arrayCGH(local.spatial.flag, gradient) ## correct global spatial bias gradient <- flag.arrayCGH(global.spatial.flag, gradient) ## flag spots with low signal to noise gradient <- flag.arrayCGH(SNR.flag, gradient) ## flag spots with extremely high log-ratios gradient <- flag.arrayCGH(amplicon.flag, gradient) ## flag spots with poor within replicate consistency gradient <- flag.arrayCGH(replicate.flag, gradient) ## flag spots corresponding to clones for which all other spot ## replicates have already been flagged gradient <- flag.arrayCGH(unique.flag, gradient) summary.factor(gradient$arrayValues$Flag)
data(spatial) data(flags) gradient$arrayValues$LogRatioNorm <- gradient$arrayValues$LogRatio ## flag spots with no available position on the genome gradient <- flag.arrayCGH(position.flag, gradient) ## flag spots corresponding to low poor quality clones gradient <- flag.arrayCGH(val.mark.flag, gradient) ## flag spots excluded by Genepix pro gradient <- flag.arrayCGH(spot.flag, gradient) ## flag local spatial bias zones ## Not run: gradient <- flag.arrayCGH(local.spatial.flag, gradient) ## correct global spatial bias gradient <- flag.arrayCGH(global.spatial.flag, gradient) ## flag spots with low signal to noise gradient <- flag.arrayCGH(SNR.flag, gradient) ## flag spots with extremely high log-ratios gradient <- flag.arrayCGH(amplicon.flag, gradient) ## flag spots with poor within replicate consistency gradient <- flag.arrayCGH(replicate.flag, gradient) ## flag spots corresponding to clones for which all other spot ## replicates have already been flagged gradient <- flag.arrayCGH(unique.flag, gradient) summary.factor(gradient$arrayValues$Flag)
Compute spot-level information (number of flagged spots, normalization parameters), and display it in a convenient way
## S3 method for class 'arrayCGH' flag.summary(arrayCGH, flag.list, flag.var="Flag", nflab="not flagged", ...) ## Default S3 method: flag.summary(spot.flags, flag.list, nflab="not flagged", ...)
## S3 method for class 'arrayCGH' flag.summary(arrayCGH, flag.list, flag.var="Flag", nflab="not flagged", ...) ## Default S3 method: flag.summary(spot.flags, flag.list, nflab="not flagged", ...)
arrayCGH |
an object of type arrayCGH, after normalization by MANOR |
flag.list |
a list of flags with |
flag.var |
the name of a variable of |
var |
the name of a variable of |
spot.flags |
a character vector containing information about flags |
nflab |
a character vector providing a legend for "not flagged" spots |
... |
... |
This function is used by the function html.report
for
the generation of an HMTL report of the normalization step.
It can also be used by itself.
A data.frame data.frame with 4 columns:
name |
flag character |
label |
flag label |
arg |
first numeric argument of |
count |
number of flagged spots |
People interested in tools for array-CGH analysis can visit our web-page: http://bioinfo.curie.fr.
Pierre Neuvial, [email protected].
data(spatial) data(flags) flag.list <- list(spatial=local.spatial.flag, spot=spot.corr.flag, ref.snr=ref.snr.flag, dapi.snr=dapi.snr.flag, rep=rep.flag, unique=unique.flag) flag.list$spatial$args <- alist(var="ScaledLogRatio", by.var=NULL, nk=5, prop=0.25, thr=0.15, beta=1, family="symmetric") flag.list$spot$args <- alist(var="SpotFlag") flag.list$spot$char <- "O" flag.list$spot$label <- "Image analysis" ## normalize arrayCGH ## Not run: edge.norm <- norm(edge, flag.list=flag.list, var="LogRatio", FUN=median, na.rm=TRUE) ## End(Not run) fs <- flag.summary(edge.norm, flag.list=flag.list, flag.var="Flag") print("Flag and normalization parameters summary") print(fs)
data(spatial) data(flags) flag.list <- list(spatial=local.spatial.flag, spot=spot.corr.flag, ref.snr=ref.snr.flag, dapi.snr=dapi.snr.flag, rep=rep.flag, unique=unique.flag) flag.list$spatial$args <- alist(var="ScaledLogRatio", by.var=NULL, nk=5, prop=0.25, thr=0.15, beta=1, family="symmetric") flag.list$spot$args <- alist(var="SpotFlag") flag.list$spot$char <- "O" flag.list$spot$label <- "Image analysis" ## normalize arrayCGH ## Not run: edge.norm <- norm(edge, flag.list=flag.list, var="LogRatio", FUN=median, na.rm=TRUE) ## End(Not run) fs <- flag.summary(edge.norm, flag.list=flag.list, flag.var="Flag") print("Flag and normalization parameters summary") print(fs)
This data set provides flag
objects that can be applied to arrayCGH
objects in order to normalize them.
data(flags)
data(flags)
These flag
objects typically take part to a normalization process:
amplicon.flag |
flags spots with high log-ratios (temp flag) | |
chromosome.flag |
flags spots located on sexual chromosomes (named "X" and "Y") | |
control.flag |
flag control spots | |
global.spatial.flag |
corrects arrayCGH from global spatial trend on the array | |
local.spatial.flag |
flags spots belonging to local spatial bias zones on the array | |
num.chromosome.flag |
flags spots located on sexual chromosomes (named 23 and 24) | |
position.flag |
flag spots with no available genome position | |
replicate.flag |
flag spots with poor within-clone-replicate consitency | |
ref.snr.flag |
flags spots with low signal to noise ratio for reference | |
dapi.snr.flag |
flags spots with low signal to noise ratio for DAPI | |
SNR.flag |
flags spots with low signal to noise ratio | |
spot.corr.flag |
flags spots with low correlation coefficient after image analysis | |
spot.flag |
flags spots excluded by the image analysis software | |
unique.flag |
exclude last non-flagged spot of a clone | |
val.mark.flag |
flags spots corresponding to bad quality clones | |
intensity.flag |
corrects for an intensity effect (using loess regression) | |
People interested in tools for array-CGH analysis can visit our web-page: http://bioinfo.curie.fr.
Pierre Neuvial, [email protected].
Institut Curie, [email protected].
spatial
, norm.arrayCGH
,
flag
, flag.summary
data(flags) ### complete normalization of an arrayCGH object (with spatial gradient): ## Initialize flag$args flag.list1 <- list(local.spatial=local.spatial.flag, global.spatial=global.spatial.flag, spot=spot.flag, SNR=SNR.flag, val.mark=val.mark.flag, unique=unique.flag, amplicon=amplicon.flag, chromosome=chromosome.flag, replicate=replicate.flag) data(spatial) ## Not run: gradient.norm <- norm(gradient, flag.list=flag.list1, var="LogRatio", FUN=median, na.rm=TRUE) ## End(Not run) print(gradient.norm$flags) ## spot-level flag summary (computed by flag.summary) ### complete normalization of an arrayCGH object (with local spatial bias): ## Initialize flag$args flag.list2 <- list(spatial=local.spatial.flag, spot=spot.corr.flag, ref.snr=ref.snr.flag, dapi.snr=dapi.snr.flag, rep=rep.flag, unique=unique.flag) flag.list2$spatial$args <- alist(var="ScaledLogRatio", by.var=NULL, nk=5, prop=0.25, thr=0.15, beta=1, family="symmetric") flag.list2$spot$args <- alist(var="SpotFlag") flag.list2$spot$char <- "O" flag.list2$spot$label <- "Image analysis" ## Not run: edge.norm <- norm(edge, flag.list=flag.list2, var="LogRatio", FUN=median, na.rm=TRUE) ## End(Not run) print(edge.norm$flags) ## spot-level flag summary (computed by flag.summary)
data(flags) ### complete normalization of an arrayCGH object (with spatial gradient): ## Initialize flag$args flag.list1 <- list(local.spatial=local.spatial.flag, global.spatial=global.spatial.flag, spot=spot.flag, SNR=SNR.flag, val.mark=val.mark.flag, unique=unique.flag, amplicon=amplicon.flag, chromosome=chromosome.flag, replicate=replicate.flag) data(spatial) ## Not run: gradient.norm <- norm(gradient, flag.list=flag.list1, var="LogRatio", FUN=median, na.rm=TRUE) ## End(Not run) print(gradient.norm$flags) ## spot-level flag summary (computed by flag.summary) ### complete normalization of an arrayCGH object (with local spatial bias): ## Initialize flag$args flag.list2 <- list(spatial=local.spatial.flag, spot=spot.corr.flag, ref.snr=ref.snr.flag, dapi.snr=dapi.snr.flag, rep=rep.flag, unique=unique.flag) flag.list2$spatial$args <- alist(var="ScaledLogRatio", by.var=NULL, nk=5, prop=0.25, thr=0.15, beta=1, family="symmetric") flag.list2$spot$args <- alist(var="SpotFlag") flag.list2$spot$char <- "O" flag.list2$spot$label <- "Image analysis" ## Not run: edge.norm <- norm(edge, flag.list=flag.list2, var="LogRatio", FUN=median, na.rm=TRUE) ## End(Not run) print(edge.norm$flags) ## spot-level flag summary (computed by flag.summary)
Displays a pan-genomic representation of a normalized arrayCGH.
## S3 method for class 'arrayCGH' genome.plot(arrayCGH, x="PosOrder", y="LogRatio", chrLim=NULL, col.var=NULL, clim=NULL, cex=NULL, pch=NULL, ...) ## Default S3 method: genome.plot(data, pch=NULL, cex=NULL, xlab="", ylab="", ...)
## S3 method for class 'arrayCGH' genome.plot(arrayCGH, x="PosOrder", y="LogRatio", chrLim=NULL, col.var=NULL, clim=NULL, cex=NULL, pch=NULL, ...) ## Default S3 method: genome.plot(data, pch=NULL, cex=NULL, xlab="", ylab="", ...)
arrayCGH |
an object of type |
data |
a data frame with two columns: 'x' and 'y', and optionally a column data\$chrLim giving the limits of each chromosome |
x |
a variable name from |
y |
a variable name from |
chrLim |
an optional variable name from |
col.var |
a variable name from |
clim |
a numeric vector of length 2: color range limits (used if |
cex |
a numerical value giving the amount by which plotting text
and symbols should be scaled relative to the default: see |
xlab |
a title for the x axis: see |
ylab |
a title for the y axis: see |
pch |
either an integer specifying a symbol or a single character
to be used as the default in plotting points: see |
... |
further arguments to be passed to |
if col.var
is a numeric variable, y
colors are
proportionnal to col.var
values; if it is a character variable
or a factor, one color is assigned to each different value of
col.var
. If col.var
is NULL, colors are proportionnal to
y
values.
People interested in tools for array-CGH analysis can visit our web-page: http://bioinfo.curie.fr.
Pierre Neuvial, [email protected].
data(spatial) ## default color code: log-ratios ## Not run: genome.plot(edge.norm, chrLim="LimitChr") ## End(Not run) ## color code determined by a qualitative variable: ZoneGNL (DNA copy number code) edge.norm$cloneValues$ZoneGNL <- as.factor(edge.norm$cloneValues$ZoneGNL) ## Not run: genome.plot(edge.norm, col.var="ZoneGNL") ## End(Not run) ## comparing profiles with and without normalization ## aggregate data without normalization (flags) gradient.nonorm <- norm(gradient, flag.list=NULL, var="LogRatio", FUN=median, na.rm=TRUE) gradient.nonorm <- sort(gradient.nonorm) ## Not run: genome.plot(gradient.nonorm, pch=20, main="Genomic profile without normalization", chrLim="LimitChr") x11() genome.plot(gradient.norm, pch=20, main="Genomic profile with normalization", chrLim="LimitChr") ## End(Not run)
data(spatial) ## default color code: log-ratios ## Not run: genome.plot(edge.norm, chrLim="LimitChr") ## End(Not run) ## color code determined by a qualitative variable: ZoneGNL (DNA copy number code) edge.norm$cloneValues$ZoneGNL <- as.factor(edge.norm$cloneValues$ZoneGNL) ## Not run: genome.plot(edge.norm, col.var="ZoneGNL") ## End(Not run) ## comparing profiles with and without normalization ## aggregate data without normalization (flags) gradient.nonorm <- norm(gradient, flag.list=NULL, var="LogRatio", FUN=median, na.rm=TRUE) gradient.nonorm <- sort(gradient.nonorm) ## Not run: genome.plot(gradient.nonorm, pch=20, main="Genomic profile without normalization", chrLim="LimitChr") x11() genome.plot(gradient.norm, pch=20, main="Genomic profile with normalization", chrLim="LimitChr") ## End(Not run)
Create an HTML file with various illustrations of array normalization, including plots before and after normalization, and statistics about flagged spots and clones
## S3 method for class 'arrayCGH' html.report(array.norm, array.nonorm=NULL, dir.out=".", array.name=NULL, x="PosOrder", y=c("LogRatioNorm", "LogRatio"), chrLim=NULL, ylim=NULL, zlim=NULL, clim=NULL, intensity=NULL, light=FALSE, file.name="report", width=10, height=5, ...) ## Default S3 method: html.report(spot.data, clone.data=NULL, flag.data=NULL, quality.data=NULL, ...)
## S3 method for class 'arrayCGH' html.report(array.norm, array.nonorm=NULL, dir.out=".", array.name=NULL, x="PosOrder", y=c("LogRatioNorm", "LogRatio"), chrLim=NULL, ylim=NULL, zlim=NULL, clim=NULL, intensity=NULL, light=FALSE, file.name="report", width=10, height=5, ...) ## Default S3 method: html.report(spot.data, clone.data=NULL, flag.data=NULL, quality.data=NULL, ...)
array.norm |
an object of type |
array.nonorm |
an optional object of type arrayCGH after a normalization step with no flags |
spot.data |
a data.frame containing spot-level informations
(e.g. |
clone.data |
a data.frame containing clone-level informations
(e.g. |
flag.data |
a data.frame containing information about flags, with
fields |
quality.data |
a data.frame containing information about quality
scores with fields |
dir.out |
absolute path of a directory where the file is generated (defaults to the current directory) |
array.name |
name or identifier of the array |
x |
a variable name from |
y |
a vector of one or two variable names to be passed to |
chrLim |
an optional variable name from |
ylim |
a numeric vector of length 2 to be passed to
|
clim |
a numeric vector of length 2 to be passed to
|
zlim |
a numeric vector of length 2 to be passed to
|
intensity |
an optional list with names c("M.var", "A.var",
"pred.var", "span"). The first 3 items specify existing variable names
from |
light |
boolean value: if (light), only the core of the html file is generated; if (!light), a complete html file is generated |
file.name |
file name of the generated report (defaults to "report") |
width |
plot width, in inches |
height |
plot height, in inches |
... |
further arguments to be passed to |
This function creates an HTML report file showing
- the array image and the genome representation before normalization
(if array.nonorm
is provided) and after normalization, and
optionally a MA-plot
- a table with information about the number of flagged spots for each
flag, and the number of remaining spots after normalization
- a table with information about various quality criteria for the
array
none
People interested in tools for array-CGH analysis can visit our web-page: http://bioinfo.curie.fr.
Pierre Neuvial, [email protected].
Load raw data from a text file coming from image analysis and convert it to an arrayCGH
object, using additional information about the array design.
Supported file types are Genepix Results file (.gpr), outputs from SPOT, or any text file with appropriate fields "Row" and "Column" and specified array design
import(file, var.names=NULL, spot.names=NULL, clone.names=NULL, type=c("default", "gpr", "spot"), id.rep=1, design=NULL, add.lines=FALSE, ...)
import(file, var.names=NULL, spot.names=NULL, clone.names=NULL, type=c("default", "gpr", "spot"), id.rep=1, design=NULL, add.lines=FALSE, ...)
file |
a connection or character string giving the name of the file to import. |
var.names |
a vector of variables names used to compute the array design. If default is not overwritten, it is set to c("Block", "Column", "Row", "X", "Y") for gpr files, c("Arr.colx", "Arr.rowy", "Spot.colx", "Spot.rowy") for SPOT files, and c("Col", "Row") for other text files |
spot.names |
a list with spot-level variable names to be added to
|
clone.names |
a list with clone-level variable names to be added
to |
type |
a character value specifying the type of input file: currently .gpr files ("gpr"), spot files ("spot") and other text files with fields 'Col' and 'Row' ("default") are supported |
id.rep |
index of the replicate identifier (e.g. the name of the clone) in the vector(clone.names) |
design |
a numeric vector of length 4 specifying array design as number of blocks per column, number of blocks per row, number of columns by block, number of rows per block. This field is mandatory for "default" text files, optional for "gpr" files, and not used for "SPOT" files |
add.lines |
boolean value to handle the case when array design does not match number of lines. If TRUE, empty lines are added; if FALSE, execution is stopped |
... |
additional import parameters (e.g. ' |
Mandatory elements of arrayCGH
objects are the array design and the x and y
absolute coordinates of each spot on the array. Output files
from SPOT contain x and y relative coordinates of each spot within a
block, as well as block coordinates on the array; one can therefore
easily construct te corresponding arrayCGH
object.
.gpr files currently only contain x and y relative coordinates of each
spot within a block, and block index with no specification of the
spatial block design: if block design is not specified by user, we
compute it using the real pixel locations of each spot (X
and Y
variables in
usual .gpr files)
If clone.names is provided, an additional data frame is created with
clone-level information (e.g. clone names, positions,
chromosomes, quality marks), aggregated from array-level information
using the identifier specified by id.rep. This identifier is also
added to the arrayCGH
object created, with name 'id.rep'.
Due to space limitations, only the first 100 lines of sample 'gpr' and
'spot' files are given in the standard distribution of
MANOR
. Complete files are available at http://bioinfo.curie.fr/projects/manor/index.html
an object of class arrayCGH
People interested in tools for array-CGH analysis can visit our web-page: http://bioinfo.curie.fr.
Pierre Neuvial, [email protected].
dir.in <- system.file("extdata", package="MANOR") ## import from 'spot' files spot.names <- c("LogRatio", "RefFore", "RefBack", "DapiFore", "DapiBack", "SpotFlag", "ScaledLogRatio") clone.names <- c("PosOrder", "Chromosome") edge <- import(paste(dir.in, "/edge.txt", sep=""), type="spot", spot.names=spot.names, clone.names=clone.names, add.lines=TRUE) ## import from 'gpr' files spot.names <- c("Clone", "FLAG", "TEST_B_MEAN", "REF_B_MEAN", "TEST_F_MEAN", "REF_F_MEAN", "ChromosomeArm") clone.names <- c("Clone", "Chromosome", "Position", "Validation") ac <- import(paste(dir.in, "/gradient.gpr", sep=""), type="gpr", spot.names=spot.names, clone.names=clone.names, sep="\t", comment.char="@", add.lines=TRUE)
dir.in <- system.file("extdata", package="MANOR") ## import from 'spot' files spot.names <- c("LogRatio", "RefFore", "RefBack", "DapiFore", "DapiBack", "SpotFlag", "ScaledLogRatio") clone.names <- c("PosOrder", "Chromosome") edge <- import(paste(dir.in, "/edge.txt", sep=""), type="spot", spot.names=spot.names, clone.names=clone.names, add.lines=TRUE) ## import from 'gpr' files spot.names <- c("Clone", "FLAG", "TEST_B_MEAN", "REF_B_MEAN", "TEST_F_MEAN", "REF_F_MEAN", "ChromosomeArm") clone.names <- c("Clone", "Chromosome", "Position", "Validation") ac <- import(paste(dir.in, "/gradient.gpr", sep=""), type="gpr", spot.names=spot.names, clone.names=clone.names, sep="\t", comment.char="@", add.lines=TRUE)
The function nem
computes spatial classification by EM algorithm.
## Default S3 method: nem(LogRatio, Col, Row, nk=nk, beta=1, iters=2000, ...) ## S3 method for class 'arrayCGH' nem(arrayCGH, variable, nk=5, beta=1, iters=2000, ...)
## Default S3 method: nem(LogRatio, Col, Row, nk=nk, beta=1, iters=2000, ...) ## S3 method for class 'arrayCGH' nem(arrayCGH, variable, nk=5, beta=1, iters=2000, ...)
LogRatio |
Vector that corresponds to the values to be classified. |
Col |
Vector of columns coordinates. |
Row |
Vector of rows coordinates. |
nk |
Integer value corresponding to the number classes. |
beta |
Scale parameter for importance of spatial information. |
iters |
Maximum number of iterations allowed. |
arrayCGH |
Object of class |
variable |
Variable that corresponds to the values to be classified. |
... |
... |
Either a data frame with the following added elements:
ZoneNem |
Vector of label zones. |
or an object of class arrayCGH
with the following
elements added to the data.frame attribute arrayValues
:
ZoneNem |
Vector of label zones. |
People interested in tools for array-CGH analysis can visit our web-page: http://bioinfo.curie.fr.
Philippe Hup?, [email protected].
C. Ambroise, Approche probabiliste en classification automatique et contraintes de voisinage, Ph.D. thesis, Universit? de Technologie de Compi?gne, 1996.
C. Ambroise, M. Dang, and G. Govaert, Clustering of spatial data by the em algorithm in Geostatistics for Environmental Applications, A. Soares, J. Gomez-Hernandez, and R. Froidevaux, Eds., pp. 493-504. Kluwer Academic Publisher, 1997.
P. Neuvial, P. Hup?, I. Brito, S. Liva, E. Mani?, C. Brennetot, A. Aurias, F. Radvanyi, and E. Barillot. Spatial normalization of array-CGH data. BMC Bioinformatics, 7(1):264. May 2006.
data(spatial) ## arrays with local spatial effects ## Plot of LogRatio measured on the array CGH ## Not run: GLAD::arrayPlot(edge,"LogRatio", main="Log2-Ratio measured on the array CGH", zlim=c(-1,1), bar="v", mediancenter=TRUE) ## End(Not run) ## Spatial trend of the scaled log-ratios (the variable "ScaledLogRatio" ## equals to the log-ratio minus the median value of the corresponding chromosome arm) edgeTrend <- arrayTrend(edge, variable="ScaledLogRatio", span=0.03, degree=1, iterations=3, family="symmetric") ## Not run: GLAD::arrayPlot(edgeTrend, variable="Trend", main="Spatial trend of the array CGH", bar="v") ## End(Not run) ## Classification with spatial constraint of the spatial trend edgeNem <- nem(edgeTrend, variable="Trend") ## Not run: GLAD::arrayPlot(edgeNem, variable="ZoneNem", main="Spatial zones identified by nem", bar="v") ## End(Not run)
data(spatial) ## arrays with local spatial effects ## Plot of LogRatio measured on the array CGH ## Not run: GLAD::arrayPlot(edge,"LogRatio", main="Log2-Ratio measured on the array CGH", zlim=c(-1,1), bar="v", mediancenter=TRUE) ## End(Not run) ## Spatial trend of the scaled log-ratios (the variable "ScaledLogRatio" ## equals to the log-ratio minus the median value of the corresponding chromosome arm) edgeTrend <- arrayTrend(edge, variable="ScaledLogRatio", span=0.03, degree=1, iterations=3, family="symmetric") ## Not run: GLAD::arrayPlot(edgeTrend, variable="Trend", main="Spatial trend of the array CGH", bar="v") ## End(Not run) ## Classification with spatial constraint of the spatial trend edgeNem <- nem(edgeTrend, variable="Trend") ## Not run: GLAD::arrayPlot(edgeNem, variable="ZoneNem", main="Spatial zones identified by nem", bar="v") ## End(Not run)
Normalize an object of type arrayCGH
using a list of criteria
specified as (temporary or permanent) flags. If a replicate identifier
(clone name) is provided, a single target value is computed for all the replicates.
The normalization coefficient is computed as a function, and is applied to all good quality spots of the array.
## S3 method for class 'arrayCGH' norm(arrayCGH, flag.list=NULL, var="LogRatio", printTime=FALSE, FUN=median, ...)
## S3 method for class 'arrayCGH' norm(arrayCGH, flag.list=NULL, var="LogRatio", printTime=FALSE, FUN=median, ...)
arrayCGH |
an object of type |
flag.list |
a list of objects of type flag |
var |
a variable name (from |
printTime |
boolean value; if |
FUN |
an aggregation function (e.g. mean, median) to compute a normalization coefficient; default is median |
... |
further arguments to be passed to FUN |
The two flag types are treated differently : - permanent flags detect poor quality spots, which are removed from further analysis - temporary flags detect good quality spots that would bias the normalization coefficient if they were not excluded from its computation, e.g. amplicons or sexual chromosomes. Thus they are not taken into account for the computation of the coefficient, but at the end of the analysis they are normalized as any good quality spots of the array.
The normalization coefficient is computed as a function (e.g. mean or median) of the target value (e.g. log-ratios); it is then applied to all good quality spots (including temporary flags), i.e. substracted from each target value.
If clone level information is available (i.e. if
arrayCGH$cloneValues
is not null), a normalized mean target
value and basic statistics (such as the number of replicates per
clone) are calculated for each clone.
an object of type arrayCGH
People interested in tools for array-CGH analysis can visit our web-page: http://bioinfo.curie.fr.
Pierre Neuvial, [email protected].
P. Neuvial, P. Hup?, I. Brito, S. Liva, E. Mani?, C. Brennetot, A. Aurias, F. Radvanyi, and E. Barillot. Spatial normalization of array-CGH data. BMC Bioinformatics, 7(1):264. May 2006.
data(spatial) data(flags) ### 'edge': local spatial bias ## define a list of flags to be applied flag.list1 <- list(spatial=local.spatial.flag, spot=spot.corr.flag, ref.snr=ref.snr.flag, dapi.snr=dapi.snr.flag, rep=rep.flag, unique=unique.flag) flag.list1$spatial$args <- alist(var="ScaledLogRatio", by.var=NULL, nk=5, prop=0.25, thr=0.15, beta=1, family="symmetric") flag.list1$spot$args <- alist(var="SpotFlag") flag.list1$spot$char <- "O" flag.list1$spot$label <- "Image analysis" ## normalize arrayCGH edge.norm <- norm(edge, flag.list=flag.list1, var="LogRatio", FUN=median, na.rm=TRUE) print(edge.norm$flags) ## spot-level flag summary (computed by flag.summary) ## aggregate arrayCGH without normalization edge.nonorm <- norm(edge, flag.list=NULL, var="LogRatio", FUN=median, na.rm=TRUE) ## sort genomic informations edge.norm <- sort(edge.norm, position.var="PosOrder") edge.nonorm <- sort(edge.nonorm, position.var="PosOrder") ## plot genomic profiles layout(matrix(c(1,2,4,5,3,3,6,6), 4,2),width=c(1, 4), height=c(6,1,6,1)) report.plot(edge.nonorm, chrLim="LimitChr", layout=FALSE, main="Pangenomic representation (before normalization)", zlim=c(-1,1), ylim=c(-3,1)) report.plot(edge.norm, chrLim="LimitChr", layout=FALSE, main="Pangenomic representation (after normalization)", zlim=c(-1,1), ylim=c(-3,1)) ### 'gradient': global array Trend ## define a list of flags to be applied flag.list2 <- list( spot=spot.flag, global.spatial=global.spatial.flag, SNR=SNR.flag, val.mark=val.mark.flag, position=position.flag, unique=unique.flag, amplicon=amplicon.flag, replicate=replicate.flag, chromosome=chromosome.flag) ## normalize arrayCGH gradient.norm <- norm(gradient, flag.list=flag.list2, var="LogRatio", FUN=median, na.rm=TRUE) ## aggregate arrayCGH without normalization gradient.nonorm <- norm(gradient, flag.list=NULL, var="LogRatio", FUN=median, na.rm=TRUE) ## sort genomic informations gradient.norm <- sort(gradient.norm) gradient.nonorm <- sort(gradient.nonorm) ## plot genomic profiles layout(matrix(c(1,2,4,5,3,3,6,6), 4,2),width=c(1, 4), height=c(6,1,6,1)) report.plot(gradient.nonorm, chrLim="LimitChr", layout=FALSE, main="Pangenomic representation (before normalization)", zlim=c(-2,2), ylim=c(-3,2)) report.plot(gradient.norm, chrLim="LimitChr", layout=FALSE, main="Pangenomic representation (after normalization)", zlim=c(-2,2), ylim=c(-3,2))
data(spatial) data(flags) ### 'edge': local spatial bias ## define a list of flags to be applied flag.list1 <- list(spatial=local.spatial.flag, spot=spot.corr.flag, ref.snr=ref.snr.flag, dapi.snr=dapi.snr.flag, rep=rep.flag, unique=unique.flag) flag.list1$spatial$args <- alist(var="ScaledLogRatio", by.var=NULL, nk=5, prop=0.25, thr=0.15, beta=1, family="symmetric") flag.list1$spot$args <- alist(var="SpotFlag") flag.list1$spot$char <- "O" flag.list1$spot$label <- "Image analysis" ## normalize arrayCGH edge.norm <- norm(edge, flag.list=flag.list1, var="LogRatio", FUN=median, na.rm=TRUE) print(edge.norm$flags) ## spot-level flag summary (computed by flag.summary) ## aggregate arrayCGH without normalization edge.nonorm <- norm(edge, flag.list=NULL, var="LogRatio", FUN=median, na.rm=TRUE) ## sort genomic informations edge.norm <- sort(edge.norm, position.var="PosOrder") edge.nonorm <- sort(edge.nonorm, position.var="PosOrder") ## plot genomic profiles layout(matrix(c(1,2,4,5,3,3,6,6), 4,2),width=c(1, 4), height=c(6,1,6,1)) report.plot(edge.nonorm, chrLim="LimitChr", layout=FALSE, main="Pangenomic representation (before normalization)", zlim=c(-1,1), ylim=c(-3,1)) report.plot(edge.norm, chrLim="LimitChr", layout=FALSE, main="Pangenomic representation (after normalization)", zlim=c(-1,1), ylim=c(-3,1)) ### 'gradient': global array Trend ## define a list of flags to be applied flag.list2 <- list( spot=spot.flag, global.spatial=global.spatial.flag, SNR=SNR.flag, val.mark=val.mark.flag, position=position.flag, unique=unique.flag, amplicon=amplicon.flag, replicate=replicate.flag, chromosome=chromosome.flag) ## normalize arrayCGH gradient.norm <- norm(gradient, flag.list=flag.list2, var="LogRatio", FUN=median, na.rm=TRUE) ## aggregate arrayCGH without normalization gradient.nonorm <- norm(gradient, flag.list=NULL, var="LogRatio", FUN=median, na.rm=TRUE) ## sort genomic informations gradient.norm <- sort(gradient.norm) gradient.nonorm <- sort(gradient.nonorm) ## plot genomic profiles layout(matrix(c(1,2,4,5,3,3,6,6), 4,2),width=c(1, 4), height=c(6,1,6,1)) report.plot(gradient.nonorm, chrLim="LimitChr", layout=FALSE, main="Pangenomic representation (before normalization)", zlim=c(-2,2), ylim=c(-3,2)) report.plot(gradient.norm, chrLim="LimitChr", layout=FALSE, main="Pangenomic representation (after normalization)", zlim=c(-2,2), ylim=c(-3,2))
qscore
object is a list which contains a function, a name, and
optionnally a label and arguments to be passed to the function.
to.qscore(FUN, name=NULL, args=NULL, label=NULL, dec=3)
to.qscore(FUN, name=NULL, args=NULL, label=NULL, dec=3)
FUN |
a R function returning a numeric value, with first argument
of type |
name |
a short character value for |
args |
a list of arguments to be passed to |
label |
a character value for |
dec |
an integer value giving the number of significant digits to keep (defaults to 3) |
An object of class qscore
.
People interested in tools for array-CGH analysis can visit our web-page: http://bioinfo.curie.fr.
Pierre Neuvial, [email protected].
qscore.arrayCGH
, qscore.summary.arrayCGH
Computes a quality score for a given arrayCGH.
qscore.arrayCGH(qscore, arrayCGH)
qscore.arrayCGH(qscore, arrayCGH)
qscore |
an object of type |
arrayCGH |
an object of type |
A numeric value.
People interested in tools for array-CGH analysis can visit our web-page: http://bioinfo.curie.fr.
Pierre Neuvial, [email protected].
data(qscores) data(spatial) ## compute a quality score for a couple of arrays: signal smoothness qscore.arrayCGH(smoothness.qscore, edge.norm) qscore.arrayCGH(smoothness.qscore, gradient.norm)
data(qscores) data(spatial) ## compute a quality score for a couple of arrays: signal smoothness qscore.arrayCGH(smoothness.qscore, edge.norm) qscore.arrayCGH(smoothness.qscore, gradient.norm)
Compute useful quality scores for the arrayCGH
and display them
in a convenient way
qscore.summary.arrayCGH(arrayCGH, qscore.list)
qscore.summary.arrayCGH(arrayCGH, qscore.list)
arrayCGH |
an object of type |
qscore.list |
a list of objects of type |
This function is used by the function html.report
for
the generation of an HMTL report of the normalization step.
It can also be used by itself.
A data.frame with 3 columns:
name |
qscore name |
label |
qscore label |
qscore |
quality qscore |
People interested in tools for array-CGH analysis can visit our web-page: http://bioinfo.curie.fr.
Pierre Neuvial, [email protected].
qscore
, qscore.summary
, html.report
data(qscores) data(spatial) ## define a list of qscores qscore.list <- list(clone=clone.qscore, pct.clone=pct.clone.qscore, pct.spot=pct.spot.qscore, pct.replicate=pct.replicate.qscore, smoothness=smoothness.qscore, dyn.x=dyn.x.qscore, dyn.y=dyn.y.qscore, var.replicate=var.replicate.qscore) ## compute quality scores for a couple of normalized arrays gradient.norm$quality <- qscore.summary.arrayCGH(gradient.norm, qscore.list) print(gradient.norm$quality[, 2:3]) qscore.list$dyn.x$args$test <- 23 qscore.list$dyn.y$args$test <- 24 edge.norm$quality <- qscore.summary.arrayCGH(edge.norm, qscore.list) print(edge.norm$quality[, 2:3])
data(qscores) data(spatial) ## define a list of qscores qscore.list <- list(clone=clone.qscore, pct.clone=pct.clone.qscore, pct.spot=pct.spot.qscore, pct.replicate=pct.replicate.qscore, smoothness=smoothness.qscore, dyn.x=dyn.x.qscore, dyn.y=dyn.y.qscore, var.replicate=var.replicate.qscore) ## compute quality scores for a couple of normalized arrays gradient.norm$quality <- qscore.summary.arrayCGH(gradient.norm, qscore.list) print(gradient.norm$quality[, 2:3]) qscore.list$dyn.x$args$test <- 23 qscore.list$dyn.y$args$test <- 24 edge.norm$quality <- qscore.summary.arrayCGH(edge.norm, qscore.list) print(edge.norm$quality[, 2:3])
This data set provides qscore
objects that can be
applied to normalized arrayCGH
objects in order to
evaluate data quality after normalization.
data(qscores)
data(qscores)
The following qscore
objects are provided:
clone.qscore |
number of clones | |
pct.clone.qscore |
percentage of clones | |
pct.spot.qscore |
percentage of spots | |
pct.spot.before.qscore |
percentage of spots before normalization | |
pct.replicate.qscore |
average percentage of replicates | |
smoothness.qscore |
signal smoothness | |
var.replicate.qscore |
||
dyn.x.qscore |
signal dynamics on X chromosome | |
dyn.y.qscore |
signal dynamics on Y chromosome | |
People interested in tools for array-CGH analysis can visit our web-page: http://bioinfo.curie.fr.
Pierre Neuvial, [email protected].
Institut Curie, [email protected].
spatial
, qscore.summary.arrayCGH
,
qscore
data(qscores) data(spatial) ## define a list of qscores qscore.list <- list(clone=clone.qscore, pct.clone=pct.clone.qscore, pct.spot=pct.spot.qscore, pct.replicate=pct.replicate.qscore, smoothness=smoothness.qscore, dyn.x=dyn.x.qscore, dyn.y=dyn.y.qscore, var.replicate=var.replicate.qscore) ## compute quality scores for a couple of normalized arrays gradient.norm$quality <- qscore.summary.arrayCGH(gradient.norm, qscore.list) print(gradient.norm$quality[, 2:3]) qscore.list$dyn.x$args$test <- 23 qscore.list$dyn.y$args$test <- 24 edge.norm$quality <- qscore.summary.arrayCGH(edge.norm, qscore.list) print(edge.norm$quality[, 2:3])
data(qscores) data(spatial) ## define a list of qscores qscore.list <- list(clone=clone.qscore, pct.clone=pct.clone.qscore, pct.spot=pct.spot.qscore, pct.replicate=pct.replicate.qscore, smoothness=smoothness.qscore, dyn.x=dyn.x.qscore, dyn.y=dyn.y.qscore, var.replicate=var.replicate.qscore) ## compute quality scores for a couple of normalized arrays gradient.norm$quality <- qscore.summary.arrayCGH(gradient.norm, qscore.list) print(gradient.norm$quality[, 2:3]) qscore.list$dyn.x$args$test <- 23 qscore.list$dyn.y$args$test <- 24 edge.norm$quality <- qscore.summary.arrayCGH(edge.norm, qscore.list) print(edge.norm$quality[, 2:3])
Displays an array image and a genomic representation of a normalized arrayCGH.
## S3 method for class 'arrayCGH' report.plot(arrayCGH, x="PosOrder", y=c("LogRatioNorm", "LogRatio"), chrLim=NULL, layout=TRUE, main=NULL, zlim=NULL, ...) ## Default S3 method: report.plot(spot.data, clone.data, design, x="PosOrder", y=c("LogRatioNorm", "LogRatio"), chrLim=NULL, layout=TRUE, main=NULL, zlim=NULL, ...)
## S3 method for class 'arrayCGH' report.plot(arrayCGH, x="PosOrder", y=c("LogRatioNorm", "LogRatio"), chrLim=NULL, layout=TRUE, main=NULL, zlim=NULL, ...) ## Default S3 method: report.plot(spot.data, clone.data, design, x="PosOrder", y=c("LogRatioNorm", "LogRatio"), chrLim=NULL, layout=TRUE, main=NULL, zlim=NULL, ...)
arrayCGH |
an object of type |
spot.data |
data.frame with spot-level information to be passed to arrayPlot. |
clone.data |
data.frame with clone-level information to be passed to genome.plot. |
design |
vector of length 4 with array design: number of blocks per column and per row, number of columns and rows per block. |
x |
a variable name from |
y |
a vector of one or two variable names to be plotted on the
array and along the genome. The first one is taken from
|
chrLim |
an optional variable name from arrayCGH$cloneValues giving the limits of each chromosome. |
layout |
if |
main |
title for the genomic profile. |
zlim |
numeric vector of length 2 to be passed to
|
... |
further arguments to be passed to |
This function successively calls arrayPlot
and genome.plot
.
People interested in tools for array-CGH analysis can visit our web-page: http://bioinfo.curie.fr.
Pierre Neuvial, [email protected].
genome.plot
, arrayPlot
, html.report
data(spatial) ### edge: local spatial bias ## aggregate arrayCGH without normalization for comparison with ## normalized array edge.nonorm <- norm(edge, flag.list=NULL, FUN=median, na.rm=TRUE) edge.nonorm <- sort(edge.nonorm, position.var="PosOrder") layout(matrix(c(1,2,4,5,3,3,6,6), 4,2),width=c(1, 4), height=c(6,1,6,1)) report.plot(edge.nonorm, chrLim="LimitChr", layout=FALSE, main="Pangenomic representation (before normalization)", zlim=c(-1,1), ylim=c(-3,1)) report.plot(edge.norm, chrLim="LimitChr", layout=FALSE, main="Pangenomic representation (after normalization)", zlim=c(-1,1), ylim=c(-3,1)) ### gradient: global array Trend ## aggregate arrayCGH without normalization for comparison with ## normalized array gradient.nonorm <- norm(gradient, flag.list=NULL, FUN=median, na.rm=TRUE) gradient.nonorm <- sort(gradient.nonorm) layout(matrix(c(1,2,4,5,3,3,6,6), 4,2),width=c(1, 4), height=c(6,1,6,1)) report.plot(gradient.nonorm, chrLim="LimitChr", layout=FALSE, main="Pangenomic representation (before normalization)", zlim=c(-2,2), ylim=c(-3,2)) report.plot(gradient.norm, chrLim="LimitChr", layout=FALSE, main="Pangenomic representation (after normalization)", zlim=c(-2,2), ylim=c(-3,2))
data(spatial) ### edge: local spatial bias ## aggregate arrayCGH without normalization for comparison with ## normalized array edge.nonorm <- norm(edge, flag.list=NULL, FUN=median, na.rm=TRUE) edge.nonorm <- sort(edge.nonorm, position.var="PosOrder") layout(matrix(c(1,2,4,5,3,3,6,6), 4,2),width=c(1, 4), height=c(6,1,6,1)) report.plot(edge.nonorm, chrLim="LimitChr", layout=FALSE, main="Pangenomic representation (before normalization)", zlim=c(-1,1), ylim=c(-3,1)) report.plot(edge.norm, chrLim="LimitChr", layout=FALSE, main="Pangenomic representation (after normalization)", zlim=c(-1,1), ylim=c(-3,1)) ### gradient: global array Trend ## aggregate arrayCGH without normalization for comparison with ## normalized array gradient.nonorm <- norm(gradient, flag.list=NULL, FUN=median, na.rm=TRUE) gradient.nonorm <- sort(gradient.nonorm) layout(matrix(c(1,2,4,5,3,3,6,6), 4,2),width=c(1, 4), height=c(6,1,6,1)) report.plot(gradient.nonorm, chrLim="LimitChr", layout=FALSE, main="Pangenomic representation (before normalization)", zlim=c(-2,2), ylim=c(-3,2)) report.plot(gradient.norm, chrLim="LimitChr", layout=FALSE, main="Pangenomic representation (after normalization)", zlim=c(-2,2), ylim=c(-3,2))
Sorts clone-level information of a normalized arrayCGH object.
## S3 method for class 'arrayCGH' sort(x, decreasing = FALSE, position.var="Position", chromosome.var="Chromosome", ...)
## S3 method for class 'arrayCGH' sort(x, decreasing = FALSE, position.var="Position", chromosome.var="Chromosome", ...)
x |
an object of type |
decreasing |
(for compatibility with |
position.var |
name of position variable. |
chromosome.var |
name of chromosome variable. |
... |
further arguments to be passed to |
People interested in tools for array-CGH analysis can visit our web-page: http://bioinfo.curie.fr.
Pierre Neuvial, [email protected].
data(spatial) ## sort a normalized array by clone position gradient.norm <- sort(gradient.norm) report.plot(gradient.norm, main="Genomic profile after normalization")
data(spatial) ## sort a normalized array by clone position gradient.norm <- sort(gradient.norm) report.plot(gradient.norm, main="Genomic profile after normalization")
This data set provides an example of array-CGH data with spatial
artifacts, consisting of including arrayCGH
objects before and after normalization
data(spatial)
data(spatial)
edge, gradientarrayCGH
objects before normalization:
arrayValues |
spot-level information | |
arrayDesign |
block design of the array | |
cloneValues |
additionnal clone-level data (chromosome, position) | |
edge.norm, gradient.normarrayCGH
objects after normalization
'edge' presents local spatial bias in the top-right edge corner, and
'gradient' presents global spatial trend. 'edge' and 'gradient' are
arrayCGH
objects before normalization. They have
been created respectively from spot and gpr files using
import
. 'edge.norm' and 'gradient.norm' are the
corresponding arrayCGH
objects after normalization
using norm.arrayCGH
.
flag
objects used for data normalization come from
flags
dataset.
People interested in tools for array-CGH analysis can visit our web-page: http://bioinfo.curie.fr.
Pierre Neuvial, [email protected].
Institut Curie, [email protected].
data(spatial) ## edge: example of array with local spatial effects layout(matrix(1:4, 2, 2), height=c(9,1)) GLAD::arrayPlot(edge, "LogRatio", main="Log-ratios before normalization", zlim=c(-1,1), bar="h", layout=FALSE, mediancenter=TRUE) GLAD::arrayPlot(edge.norm, "LogRatioNorm", main="Log-ratios after spatial normalization", zlim=c(-1,1), bar="h", layout=FALSE, mediancenter=TRUE) ## gradient: example of array with spatial gradient layout(matrix(1:4, 2, 2), height=c(9,1)) GLAD::arrayPlot(gradient, "LogRatio", main="Log-ratios before normalization", zlim=c(-2,2), bar="h", layout=FALSE) GLAD::arrayPlot(gradient.norm, "LogRatioNorm", main="Log-ratios after spatial normalization", zlim=c(-2,2), bar="h", layout=FALSE)
data(spatial) ## edge: example of array with local spatial effects layout(matrix(1:4, 2, 2), height=c(9,1)) GLAD::arrayPlot(edge, "LogRatio", main="Log-ratios before normalization", zlim=c(-1,1), bar="h", layout=FALSE, mediancenter=TRUE) GLAD::arrayPlot(edge.norm, "LogRatioNorm", main="Log-ratios after spatial normalization", zlim=c(-1,1), bar="h", layout=FALSE, mediancenter=TRUE) ## gradient: example of array with spatial gradient layout(matrix(1:4, 2, 2), height=c(9,1)) GLAD::arrayPlot(gradient, "LogRatio", main="Log-ratios before normalization", zlim=c(-2,2), bar="h", layout=FALSE) GLAD::arrayPlot(gradient.norm, "LogRatioNorm", main="Log-ratios after spatial normalization", zlim=c(-2,2), bar="h", layout=FALSE)
A flag
object is a list which contains essentially a function
(flag action) and a character, optionally arguments to be passed to the
function.
We make the distinction between two different flag types,
corresponding to two different purposes:
- permanent flags identify poor quality spots or clones and remove them from further
analysis (eg spots with low signal to noise ratio)
- temporary flags identify spots or clones that have not to be taken into account for
the computation of a (scaling) normalization coefficient (eg X chromosome in case of sex mismatch)
to.flag(FUN, char=NULL, args=NULL, type="perm.flag", label=NULL)
to.flag(FUN, char=NULL, args=NULL, type="perm.flag", label=NULL)
FUN |
a R function to be applied to an |
char |
a character value to identify flagged spots; defaults to NULL |
args |
a list of further arguments to be passed to |
type |
a character value defaulting to "perm.flag" which makes the distinction between permanent flags (type="perm.flag") and temporary flags (type="temp.flag") |
label |
a character value for flag labelling |
If flag$char
is null, flag$FUN
is supposed to return a
arrayCGH
object; if it is not null, flag$FUN
is supposed
to return a list of spots to be flagged with flag$char
.
An object of class flag
.
People interested in tools for array-CGH analysis can visit our web-page: http://bioinfo.curie.fr.
Pierre Neuvial, [email protected].
### creation of a permanent flag: ## flag spots with low signal to noise ratios SNR.FUN <- function(arrayCGH, snr.thr) which(arrayCGH$arrayValues$F2 < arrayCGH$arrayValues$B2+log(snr.thr, 2)) SNR.char <- "B" SNR.flag <- to.flag(SNR.FUN, SNR.char, args=alist(snr.thr=3)) ### creation of a permanent flag returning an arrayCGH object: ## correct log-ratios for spatial trend global.spatial.FUN <- function(arrayCGH, var) { Trend <- arrayTrend(arrayCGH, var, span=0.03, degree=1, iterations=3, family="symmetric") arrayCGH$arrayValues[[var]] <- Trend$arrayValues[[var]]-Trend$arrayValues$Trend arrayCGH } global.spatial.flag <- to.flag(global.spatial.FUN, args=alist(var="LogRatio")) ### creation of a temporary flag: ## exclude sexual chromosomes from signal scaling chromosome.FUN <- function(arrayCGH, var) which(!is.na(match(as.character(arrayCGH$arrayValues[[var]]), c("X", "Y")))) chromosome.char <- "X" chromosome.flag <- to.flag(chromosome.FUN, chromosome.char, type="temp.flag", args=alist(var="Chromosome")) data(spatial) SNR.flag$args$snr.thr <- 3 ## set SNR threshold gradient <- flag.arrayCGH(SNR.flag, gradient) ## apply SNR.flag to array CGH gradient <- flag.arrayCGH(global.spatial.flag, gradient) gradient <- flag.arrayCGH(chromosome.flag, gradient) summary.factor(gradient$arrayValues$Flag) ## permanent flags summary.factor(gradient$arrayValues$FlagT) ## temporary flags
### creation of a permanent flag: ## flag spots with low signal to noise ratios SNR.FUN <- function(arrayCGH, snr.thr) which(arrayCGH$arrayValues$F2 < arrayCGH$arrayValues$B2+log(snr.thr, 2)) SNR.char <- "B" SNR.flag <- to.flag(SNR.FUN, SNR.char, args=alist(snr.thr=3)) ### creation of a permanent flag returning an arrayCGH object: ## correct log-ratios for spatial trend global.spatial.FUN <- function(arrayCGH, var) { Trend <- arrayTrend(arrayCGH, var, span=0.03, degree=1, iterations=3, family="symmetric") arrayCGH$arrayValues[[var]] <- Trend$arrayValues[[var]]-Trend$arrayValues$Trend arrayCGH } global.spatial.flag <- to.flag(global.spatial.FUN, args=alist(var="LogRatio")) ### creation of a temporary flag: ## exclude sexual chromosomes from signal scaling chromosome.FUN <- function(arrayCGH, var) which(!is.na(match(as.character(arrayCGH$arrayValues[[var]]), c("X", "Y")))) chromosome.char <- "X" chromosome.flag <- to.flag(chromosome.FUN, chromosome.char, type="temp.flag", args=alist(var="Chromosome")) data(spatial) SNR.flag$args$snr.thr <- 3 ## set SNR threshold gradient <- flag.arrayCGH(SNR.flag, gradient) ## apply SNR.flag to array CGH gradient <- flag.arrayCGH(global.spatial.flag, gradient) gradient <- flag.arrayCGH(chromosome.flag, gradient) summary.factor(gradient$arrayValues$Flag) ## permanent flags summary.factor(gradient$arrayValues$FlagT) ## temporary flags