Title: | Fast treatment of MACSQuantify FACS data |
---|---|
Description: | Automatically process the metadata of MACSQuantify FACS sorter. It runs multiple modules: i) imports of raw file and graphical selection of duplicates in well plate, ii) computes statistics on data and iii) can compute combination index. |
Authors: | Raphaël Bonnet [aut, cre], Marielle Nebout [dtc],Giulia Biondani [dtc], Jean-François Peyron[aut,ths], Inserm [fnd] |
Maintainer: | Raphaël Bonnet <[email protected]> |
License: | Artistic-2.0 |
Version: | 1.21.0 |
Built: | 2024-12-19 04:23:16 UTC |
Source: | https://github.com/bioc/MACSQuantifyR |
Uses the informations stored in the statistic tables of the MACSQuant object to generate barplots for the specified conditions. Plots can also be saved in the form of a png file in the output_MQ directory.
barplot_data(MACSQuant,plt.col=NULL,plt.conditions=NULL, plt.flavour=NULL, plt.labels = NULL, plt.combo=FALSE,plt.3D.only = NULL,...)
barplot_data(MACSQuant,plt.col=NULL,plt.conditions=NULL, plt.flavour=NULL, plt.labels = NULL, plt.combo=FALSE,plt.3D.only = NULL,...)
MACSQuant |
object of class MACSQuant resulting of the function load_maxQuant(). Contains the original data table |
plt.col |
In case of manual run is used to define the bar colors. (must be the same for all conditions) |
plt.conditions |
user defined vector of conditions to plot (example: plt.conditions=c(1:9)) |
plt.flavour |
Which barplot to produce, cell count or percentage of fluorochrome (i.e: "counts","percent") |
plt.labels |
xlabels of the plot |
plt.combo |
Does the experiment involves multiple variables (i.e some condition are a drug combination screening) |
plt.3D.only |
Whether to plot 3D barplot alone |
... |
params for lattice cloud namely z and x for parameter screen default for z and x are c(-110,-70) and argument xlab and ylab |
returns a barplot of the data
drugs_R_image <- system.file("extdata", "drugs.RDS", package = "MACSQuantifyR") MACSQuant <- readRDS(drugs_R_image) flavour <- "counts" number_of_conditions <- slot(MACSQuant, "param.experiment")$number_of_conditions plt.col <- c(rep(2, number_of_conditions), 1) barplot_data(MACSQuant, plt.col = plt.col, plt.conditions = NULL, plt.flavour = flavour, plt.labels = NULL, plt.combo = FALSE)
drugs_R_image <- system.file("extdata", "drugs.RDS", package = "MACSQuantifyR") MACSQuant <- readRDS(drugs_R_image) flavour <- "counts" number_of_conditions <- slot(MACSQuant, "param.experiment")$number_of_conditions plt.col <- c(rep(2, number_of_conditions), 1) barplot_data(MACSQuant, plt.col = plt.col, plt.conditions = NULL, plt.flavour = flavour, plt.labels = NULL, plt.combo = FALSE)
This function allows the user to compute combination index on the drug combinations. This function also generates intermediary plots and tables.
combination_index(MACSQuant, ...)
combination_index(MACSQuant, ...)
MACSQuant |
object of class MACSQuant resulting of the function load_maxQuant(). Contains the original data table |
... |
params for lattice cloud namely z and x for parameter screen default for z and x are c(-110,-70) and argument xlab and ylab |
Several plots and combination index
Chou, T. C. (2006). Theoretical basis, experimental design, and computerized simulation of synergism and antagonism in drug combination studies. Pharmacological reviews, 58(3), 621-681.
filepath <- system.file("extdata", "drugs.Rdata", package = "MACSQuantifyR") load(filepath) combination_index(MACSQuant)
filepath <- system.file("extdata", "drugs.Rdata", package = "MACSQuantifyR") load(filepath) combination_index(MACSQuant)
Allows the user to generate a report at every steps of the analysis
Also generates a complete report with the graphics
generate_report(MACSQuant)
generate_report(MACSQuant)
MACSQuant |
object of class MACSQuant resulting of the function load_maxQuant(). Contains the original data table |
A formatted report
drugs_R_image <- system.file("extdata", "drugs.RDS", package = "MACSQuantifyR") MACSQuant <- readRDS(drugs_R_image) generate_report(MACSQuant)
drugs_R_image <- system.file("extdata", "drugs.RDS", package = "MACSQuantifyR") MACSQuant <- readRDS(drugs_R_image) generate_report(MACSQuant)
Load xls file from maxQuant 96-well-plate device
load_MACSQuant(filepath,sheet_name= NULL,MACSQuant.obj= NULL)
load_MACSQuant(filepath,sheet_name= NULL,MACSQuant.obj= NULL)
filepath |
path of the excel file |
sheet_name |
Name of the sheet to load (optional, first sheet is default) |
MACSQuant.obj |
object of class MACSQuant |
An object called MACSQuant of class MACSQuant containing variable my_data that corresponds to the data of the excel file in R
filepath <- system.file("extdata", "SingleDrugs.xlsx", package = "MACSQuantifyR") # load_MACSQuant(filepath)
filepath <- system.file("extdata", "SingleDrugs.xlsx", package = "MACSQuantifyR") # load_MACSQuant(filepath)
MACSQuant object contains all the data and the user parameters
my_data
Contains the raw data
my_data_sorted
Contains the sorted data (according to replicates order)
my_replicates_sorted
Contains the sorted matrix containing replicates names
experiment_name
Contains the experiment name given by the user
statistics
Contains the statistics for each condition
combination.index.df
data.frame that contains the outputs of the combination_index function
param.experiment
list that contains the parameters relative to the experiment (i.e, number of replicates, number of conditions...)
param.output
List that contains the parameters relative to the report generation and outputs (i.e, save intermediary results, generate full report..)
The user can create a new custom MACSQuant object This function is also used in internal code for MACSQuant initialization
#initialize empty MACSQuant object new_class_MQ(my_data=NULL,my_data_sorted=NULL,my_replicates_sorted=NULL, experiment_name=NULL,statistics=NULL,combination.index.df=NULL, number_of_replicates=NULL,number_of_conditions=NULL,doses=NULL, doses.alt=NULL,c_names=NULL, control=NULL,plt.title=NULL, plt.labels=NULL,plt.col=NULL,save.files=NULL,path=tempdir()) #initialize custom MACSQuant object new_class_MQ(my_data,my_data_sorted=NULL,my_replicates_sorted=NULL, experiment_name=NULL,statistics=NULL,combination.index.df=NULL, number_of_replicates=NULL,number_of_conditions=NULL, doses=NULL,doses.alt=NULL, c_names=NULL,control=NULL,plt.title=NULL, plt.labels=NULL,plt.col=NULL, save.files=NULL,path=tempdir())
#initialize empty MACSQuant object new_class_MQ(my_data=NULL,my_data_sorted=NULL,my_replicates_sorted=NULL, experiment_name=NULL,statistics=NULL,combination.index.df=NULL, number_of_replicates=NULL,number_of_conditions=NULL,doses=NULL, doses.alt=NULL,c_names=NULL, control=NULL,plt.title=NULL, plt.labels=NULL,plt.col=NULL,save.files=NULL,path=tempdir()) #initialize custom MACSQuant object new_class_MQ(my_data,my_data_sorted=NULL,my_replicates_sorted=NULL, experiment_name=NULL,statistics=NULL,combination.index.df=NULL, number_of_replicates=NULL,number_of_conditions=NULL, doses=NULL,doses.alt=NULL, c_names=NULL,control=NULL,plt.title=NULL, plt.labels=NULL,plt.col=NULL, save.files=NULL,path=tempdir())
my_data |
Contains the raw data |
my_data_sorted |
Contains the sorted data (according to replicates order) |
my_replicates_sorted |
Contains the sorted matrix containing replicates names |
experiment_name |
User defined experiment named. Used for the report generation |
statistics |
Contains the statistics for each condition |
combination.index.df |
data.frame that contains the outputs of the combination_index function |
number_of_replicates |
For each condition, the number of duplicates (must be the same for all conditions) |
number_of_conditions |
The number of conditions tested (eg: Drug 1 alone, Drug 2 alone) |
doses |
Numeric vector representing doses for each conditions |
doses.alt |
In case of interaction test second dose vector |
c_names |
Vector containing experiment names |
control |
logical: is there a control in this experiment (eg: Staurosporin) |
plt.title |
Title of the experiment to add to the barplot |
plt.labels |
legend labels for the bar plot |
plt.col |
color vector for the graphical representations |
save.files |
Used to save the image in the output folder |
path |
path of the experiment output folder (default '.') |
A formatted report file along with intermediates results
# initialize empty MACSQuant object new_class_MQ() # initialize custom MACSQuant object my_data <- data.frame(character(length = 10), character(length = 10), numeric(length = 10), numeric(length = 10)) names(my_data) <- c("Full path", "WID", "%-#", "Count/mL") new_class_MQ(my_data)
# initialize empty MACSQuant object new_class_MQ() # initialize custom MACSQuant object my_data <- data.frame(character(length = 10), character(length = 10), numeric(length = 10), numeric(length = 10)) names(my_data) <- c("Full path", "WID", "%-#", "Count/mL") new_class_MQ(my_data)
Loads user's data, prompt a graphical representation of a 96 well plate and let the user select where the duplicates of each condition were placed. Use for reordering excel file. Plate image with selection can also be saved in the form of a png file in the "specified_path/output_MQ" directory.
on_plate_selection(MACSQuant,number_of_replicates,number_of_conditions, control=FALSE,save.files=FALSE)
on_plate_selection(MACSQuant,number_of_replicates,number_of_conditions, control=FALSE,save.files=FALSE)
MACSQuant |
object of class MACSQuant resulting of the function load_maxQuant(). Contains the original data table |
number_of_replicates |
For each condition, the number of duplicates (must be the same for all conditions) |
number_of_conditions |
The number of conditions tested (eg: Drug 1 alone, Drug 2 alone) |
control |
Is there a control in this experiment (eg: Staurosporin) |
save.files |
Used to save the image in the output folder |
A formatted report file along with intermediates results
print("run manually, requires user input") # on_plate_selection(MACSQuant,3,5) # let you select 5 conditions of 3 replicates each
print("run manually, requires user input") # on_plate_selection(MACSQuant,3,5) # let you select 5 conditions of 3 replicates each
Loads user's data, prompt a graphical representation of a 96 well plate and let the user select where the duplicates of each condition were placed. Use for reordering excel file. Plate image with selection can also be saved in the form of a png file in the output_MQ directory.
Also generates a complete report with the graphics
pipeline(filepath,sheet_name=NULL,number_of_replicates,number_of_conditions, control=FALSE,save.files=TRUE,MACSQuant.obj=NULL)
pipeline(filepath,sheet_name=NULL,number_of_replicates,number_of_conditions, control=FALSE,save.files=TRUE,MACSQuant.obj=NULL)
filepath |
path of the excel file |
sheet_name |
Name of the sheet to load (optional, first sheet is default) |
number_of_replicates |
For each condition, the number of duplicates (must be the same for all conditions) |
number_of_conditions |
The number of conditions tested (eg: Drug 1 alone, Drug 2 alone) |
control |
Is there a control in this experiment (eg: Staurosporin) |
save.files |
Used to save the image in the output folder |
MACSQuant.obj |
object of class MACSQuant |
A formatted report file along with intermediates results
print("run manually, requires user input") filepath <- system.file("extdata", "SingleDrugs.xlsx", package = "MACSQuantifyR") # pipeline(filepath,3,5) # let you select 5 conditions of 3 replicates each
print("run manually, requires user input") filepath <- system.file("extdata", "SingleDrugs.xlsx", package = "MACSQuantifyR") # pipeline(filepath,3,5) # let you select 5 conditions of 3 replicates each
This function allows the user to access raw data table
rData(MACSQuant)
rData(MACSQuant)
MACSQuant |
object of class MACSQuant resulting of the function load_maxQuant(). Contains the original data table |
the raw data table
filepath <- system.file("extdata", "SingleDrugs.xlsx", package = "MACSQuantifyR") #MACSQuant = load_MACSQuant(filepath) #rData(MACSQuant)
filepath <- system.file("extdata", "SingleDrugs.xlsx", package = "MACSQuantifyR") #MACSQuant = load_MACSQuant(filepath) #rData(MACSQuant)
This function allows the user to set the output directory path
setPath(MACSQuant,path=NULL)
setPath(MACSQuant,path=NULL)
MACSQuant |
object of class MACSQuant resulting of the function load_maxQuant(). Contains the original data table |
path |
user defined path, default is tempd |
object of class MACSQuant with updated path
filepath <- system.file("extdata", "SingleDrugs.xlsx", package = "MACSQuantifyR") #MACSQuant = load_MACSQuant(filepath) user_path="." #MACSQuant = setPath(MACSQuant,path=user_path)
filepath <- system.file("extdata", "SingleDrugs.xlsx", package = "MACSQuantifyR") #MACSQuant = load_MACSQuant(filepath) user_path="." #MACSQuant = setPath(MACSQuant,path=user_path)
This function allows the user to access sorted data table
sorted(MACSQuant)
sorted(MACSQuant)
MACSQuant |
object of class MACSQuant resulting of the function load_maxQuant(). Contains the original data table |
the raw data table
filepath <- system.file("extdata", "SingleDrugs.xlsx", package = "MACSQuantifyR") #MACSQuant = load_MACSQuant(filepath) #sorted(MACSQuant)
filepath <- system.file("extdata", "SingleDrugs.xlsx", package = "MACSQuantifyR") #MACSQuant = load_MACSQuant(filepath) #sorted(MACSQuant)