Single-cell RNA sequencing has become a common approach to trace developmental processes of cells, however, using exogenous barcodes is more direct than predicting from expression profiles recently, based on that, as gene-editing technology matures, combining this technological method with exogenous barcodes can generate more complex dynamic information for single-cell. In this application note, we introduce an R package: LinTInd for reconstructing a tree from alleles generated by the genome-editing tool known as CRISPR for a moderate time period based on the order in which editing occurs, and for sc-RNA seq, ScarLin can also quantify the similarity between each cluster in three ways.
Via GitHub
devtools::install_github("mana-W/LinTInd")
Via Bioconductor
if (!requireNamespace("BiocManager", quietly = TRUE))
install.packages("BiocManager")
BiocManager::install("LinTInd")
The input for LinTInd consists three required files:
and an optional file:
data<-paste0(system.file("extdata",package = 'LinTInd'),"/CB_UMI")
fafile<-paste0(system.file("extdata",package = 'LinTInd'),"/V3.fasta")
cutsite<-paste0(system.file("extdata",package = 'LinTInd'),"/V3.cutSites")
celltype<-paste0(system.file("extdata",package = 'LinTInd'),"/celltype.tsv")
data<-read.table(data,sep="\t",header=TRUE)
ref<-ReadFasta(fafile)
cutsite<-read.table(cutsite,col.names = c("indx","start","end"))
celltype<-read.table(celltype,header=TRUE,stringsAsFactors=FALSE)
For the sequence file, only the column contain reads’ strings is requeired, the cell barcodes and UMIs are both optional.
## Read.ID
## 1 @A01045:289:HM7K3DRXX:2:2101:9896:1031
## 2 @A01045:289:HM7K3DRXX:2:2101:13367:1031
## 3 @A01045:289:HM7K3DRXX:2:2101:9959:1047
## Read.Seq
## 1 GAACGCGTAGGATAACATGGCCATCATCAAGGAGTTCTCATGCGCTTCAAGGTGCACATGGTTTATTGGAGCCGTACATGAACTGAGGTTAAGGACAGGATGTCCCAGGCGTAGGTAATTGGCCCCCTGCCCTTCGCCTGGGTTATAAGCTTCGGGTTTAAACGGGCCCTGGGGGTGGCATCCCTGTGACCCCTCCCCAGTGCCTCTCCTGGCCCTGGAAGTTGCCACTCCAGTGCCCACCAGCCTTGTC
## 2 GAACGCGTAGGATAACATGGCCATCATCAAGGAGTTCTCATGCGCTTCAAGGTGCACATGGTTTATTGGAGCCGTACATGAACTGAGGTTAAGGACAGGATGTCCCAGGCGTAGGTAATTGGCCCCCTGCCCTTCGCCTGGGTTATAAGCTTCGGGTTTAAACGGGCCCTGGGGGTGGCATCCCTGTGACCCCTCCCCAGTGCCTCTCCTGGCCCTGGAAGTTGCCACTCCAGTGCCCACCAGCCTTGTC
## 3 GAACGCGTAGGATAACATGGCCATCATCAAGGAGTTCTCATGCGCTTCAAGGTGCACATGGTTTATTGGAGCCGTACATGAACTGAGGTTAAGGACAGGATGTCCCAGGCGTAGGTAATTGGCCCCCTGCCCTTCGCCTGGGTTATAAGCTTCGGGTTTAAACGGGCCCTGGGGGTGGCATCCCTGTGACCCCTCCCCAGTGCCTCTCCTGGCCCTGGAAGTTGCCACTCCAGTGCCCACCAGCCTTGTC
## Cell.BC UMI
## 1 GAAGGGTAGCCTCAGC CTTCTCCCGA
## 2 ACCCTCACAAGACTGG TGTAATTTTT
## 3 GAAGGGTAGCCTCAGC CTTCTCCCGA
## $scarfull
## 333-letter DNAString object
## seq: GAACGCGTAGGATAACATGGCCATCATCAAGGAGTT...GGAAGTTGCCACTCCAGTGCCCACCAGCCTTGTCCT
## indx start end
## 1 0 39 267
## 2 1 1 23
## 3 2 28 50
## 4 3 55 77
## 5 4 82 104
## 6 5 109 131
## 7 6 136 158
## 8 7 163 185
## Cell.BC Cell.type
## 1 AAGCGAGTCTTCTGTA A
## 2 AATCGACTCGTAGTGT A
## 3 ACATGCAGTCCACACG A
In the first step, we shold use FindIndel()
to alignment
and find indels, and the function IndelForm()
will help us
to generate an array-form string for each read.
scarinfo<-FindIndel(data=data,scarfull=ref,scar=cutsite,indel.coverage="All",type="test",cln=1)
scarinfo<-IndelForm(scarinfo,cln=1)
Then for single-cell sequencing, we shold define a final-version of
array-form string for each cell use IndelIdents()
, there
are three method are provided :
For bulk sequencing, in this step, we will generate a “cell barcode” for each read.
After define the indels for each cell, we can use
IndelPlot()
to visualise them.
We can use the function TagProcess()
to extract indels
for cells/reads. The parameter Cells is optional.
And if the annotation of each cells are provided, we can also use
TagDist()
to calculate the relationship between each group
in three way:
The heatmap of this result will be saved as a pdf file.
## Using Cell.type as value column: use value.var to override.
## Aggregation function missing: defaulting to length
## A B C D E
## A 1.0000000 0.4925373 0.2794118 0.2985075 0.2058824
## B 0.4925373 1.0000000 0.5588235 0.6060606 0.4117647
## C 0.2794118 0.5588235 1.0000000 0.9047619 0.7500000
## D 0.2985075 0.6060606 0.9047619 1.0000000 0.6666667
## E 0.2058824 0.4117647 0.7500000 0.6666667 1.0000000
In the laste part, we can use BuildTree()
to Generate an
array generant tree.
## Using Cell.num as value column: use value.var to override.
Finally, we can use the function PlotTree()
to visualise
the tree created before.
## Using tags as id variables
## ℹ invalid tbl_tree object. Missing column: parent,node.
## ℹ invalid tbl_tree object. Missing column: parent,node.
## ℹ invalid tbl_tree object. Missing column: parent,node.
## ℹ invalid tbl_tree object. Missing column: parent,node.
## R version 4.4.1 (2024-06-14)
## Platform: x86_64-pc-linux-gnu
## Running under: Ubuntu 24.04.1 LTS
##
## Matrix products: default
## BLAS: /usr/lib/x86_64-linux-gnu/openblas-pthread/libblas.so.3
## LAPACK: /usr/lib/x86_64-linux-gnu/openblas-pthread/libopenblasp-r0.3.26.so; LAPACK version 3.12.0
##
## locale:
## [1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C
## [3] LC_TIME=en_US.UTF-8 LC_COLLATE=C
## [5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8
## [7] LC_PAPER=en_US.UTF-8 LC_NAME=C
## [9] LC_ADDRESS=C LC_TELEPHONE=C
## [11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C
##
## time zone: Etc/UTC
## tzcode source: system (glibc)
##
## attached base packages:
## [1] stats4 parallel stats graphics grDevices utils datasets
## [8] methods base
##
## other attached packages:
## [1] LinTInd_1.11.0 S4Vectors_0.43.2 BiocGenerics_0.53.0
## [4] ggplot2_3.5.1
##
## loaded via a namespace (and not attached):
## [1] tidyselect_1.2.1 dplyr_1.1.4 farver_2.1.2
## [4] Biostrings_2.75.0 fastmap_1.2.0 lazyeval_0.2.2
## [7] digest_0.6.37 lifecycle_1.0.4 pwalign_1.1.0
## [10] tidytree_0.4.6 magrittr_2.0.3 compiler_4.4.1
## [13] rlang_1.1.4 sass_0.4.9 tools_4.4.1
## [16] igraph_2.1.1 utf8_1.2.4 yaml_2.3.10
## [19] data.table_1.16.2 knitr_1.48 labeling_0.4.3
## [22] htmlwidgets_1.6.4 plyr_1.8.9 RColorBrewer_1.1-3
## [25] aplot_0.2.3 withr_3.0.2 purrr_1.0.2
## [28] sys_3.4.3 grid_4.4.1 fansi_1.0.6
## [31] colorspace_2.1-1 data.tree_1.1.0 scales_1.3.0
## [34] cli_3.6.3 rmarkdown_2.28 crayon_1.5.3
## [37] treeio_1.29.2 generics_0.1.3 rlist_0.4.6.2
## [40] stringdist_0.9.12 ggtree_3.13.2 httr_1.4.7
## [43] reshape2_1.4.4 ape_5.8 cachem_1.1.0
## [46] stringr_1.5.1 zlibbioc_1.51.2 ggplotify_0.1.2
## [49] XVector_0.45.0 yulab.utils_0.1.7 vctrs_0.6.5
## [52] jsonlite_1.8.9 gridGraphics_0.5-1 IRanges_2.39.2
## [55] patchwork_1.3.0 maketools_1.3.1 ggnewscale_0.5.0
## [58] tidyr_1.3.1 jquerylib_0.1.4 glue_1.8.0
## [61] cowplot_1.1.3 stringi_1.8.4 gtable_0.3.6
## [64] GenomeInfoDb_1.41.2 UCSC.utils_1.1.0 munsell_0.5.1
## [67] tibble_3.2.1 pillar_1.9.0 htmltools_0.5.8.1
## [70] GenomeInfoDbData_1.2.13 R6_2.5.1 networkD3_0.4
## [73] evaluate_1.0.1 lattice_0.22-6 highr_0.11
## [76] pheatmap_1.0.12 ggfun_0.1.7 bslib_0.8.0
## [79] Rcpp_1.0.13 nlme_3.1-166 xfun_0.48
## [82] fs_1.6.4 buildtools_1.0.0 pkgconfig_2.0.3