Title: | Visualize all edges within a KEGG pathway and overlay LINCS data |
---|---|
Description: | See what is going on 'under the hood' of KEGG pathways by explicitly re-creating the pathway maps from information obtained from KGML files. |
Authors: | Shana White |
Maintainer: | Shana White <[email protected]>, Mario Medvedovic <[email protected]> |
License: | GPL-3 |
Version: | 1.33.0 |
Built: | 2024-10-31 06:24:37 UTC |
Source: | https://github.com/bioc/KEGGlincs |
Add data column[s] to object created from function expand_KEGG_edges
add_edge_data(expanded_edges, KEGG_mappings, user_data, data_column_no = 3, map_type = "SYMBOL", only_mapped = TRUE)
add_edge_data(expanded_edges, KEGG_mappings, user_data, data_column_no = 3, map_type = "SYMBOL", only_mapped = TRUE)
expanded_edges |
The data frame object generated via the function expand_KEGG_edges |
KEGG_mappings |
KEGG_mappings The data.frame object generated by the function expand_KEGG_mappings |
user_data |
A data frame where in which the first two columns contain gene symbols representing an edge and any/all other column[s] contain corresponding edge data. |
data_column_no |
The column index for desired user data to be added |
map_type |
If the genes in your data set are left untranslated set to "NUMBER" (assuming numbers are gene accession numbers) |
only_mapped |
A logical indicator; if set to FALSE will return 'de-novo' edges that 'exist' in data but are not documented in KEGG |
A data frame object with detailed KEGG edge mappings annotated with user data
p53_KGML <- get_KGML('hsa04115') p53_KEGG_mappings <- expand_KEGG_mappings(p53_KGML) p53_edges <- expand_KEGG_edges(p53_KGML, p53_KEGG_mappings) p53_HA1E_data <- overlap_info(p53_KGML, p53_KEGG_mappings, 'HA1E', data_type = '100_bing', only_mapped = FALSE) p53_edges_HA1E <- add_edge_data(p53_edges, p53_KEGG_mappings, p53_HA1E_data, c(3, 10,12))
p53_KGML <- get_KGML('hsa04115') p53_KEGG_mappings <- expand_KEGG_mappings(p53_KGML) p53_edges <- expand_KEGG_edges(p53_KGML, p53_KEGG_mappings) p53_HA1E_data <- overlap_info(p53_KGML, p53_KEGG_mappings, 'HA1E', data_type = '100_bing', only_mapped = FALSE) p53_edges_HA1E <- add_edge_data(p53_edges, p53_KEGG_mappings, p53_HA1E_data, c(3, 10,12))
View the KEGG pathway in Cytoscape. With either the 'expanded edges' or 'stacked nodes' layout, users can visualize and interact with the graphs [strictly] as they are documented in the most recent KGML available from KEGG. This function is a modified version of the function send2cy(), which is part of the cyREST utility functions.
cyto_vis(graph_object, title = "Cytoscape Graph Window", edge_width_attribute = "summary_score", port.number = 1234)
cyto_vis(graph_object, title = "Cytoscape Graph Window", edge_width_attribute = "summary_score", port.number = 1234)
graph_object |
An igraph object such as the one generated by the
function |
title |
An optional title for the graph when it is in Cytoscape |
edge_width_attribute |
The attribute that will be used for edge width; if data is not added or the attribute is not part of the graphing information, the edge width will default to 1. |
port.number |
The port address for Cytoscape |
A dynamic map in Cytoscape automatically formatted for convenient viewing.
p53_KGML <- get_KGML("hsa04115") p53_KEGG_mappings <- expand_KEGG_mappings(p53_KGML, FALSE) nodes <- node_mapping_info(p53_KEGG_mappings) p53_edges <- expand_KEGG_edges(p53_KGML, p53_KEGG_mappings) edges <- edge_mapping_info(p53_edges) p53_graph_object <- get_graph_object(nodes, edges) ## Not run: cyto_vis(p53_graph_object, "Default p53 Graph [no data added]") #Workflow to visualize graph with data-dependent attributes: p53_KGML <- get_KGML("hsa04115") p53_KEGG_mappings <- expand_KEGG_mappings(p53_KGML) nodes <- node_mapping_info(p53_KEGG_mappings) p53_edges <- expand_KEGG_edges(p53_KGML, p53_KEGG_mappings) p53_HA1E_data <- overlap_info(p53_KGML, p53_KEGG_mappings, "HA1E", data_type = "100_bing") p53_edges_plus_data <- add_edge_data(p53_edges, p53_KEGG_mappings, p53_HA1E_data, c(3, 10,12), only_mapped = TRUE) edges <- edge_mapping_info(p53_edges_plus_data, data_added = TRUE) p53_plus_data_graph_object <- get_graph_object(nodes, edges) cyto_vis(p53_plus_data_graph_object, "p53 Graph: Mapped Edges + HA1E Data", edge_width_attribute = "UP") ## End(Not run)
p53_KGML <- get_KGML("hsa04115") p53_KEGG_mappings <- expand_KEGG_mappings(p53_KGML, FALSE) nodes <- node_mapping_info(p53_KEGG_mappings) p53_edges <- expand_KEGG_edges(p53_KGML, p53_KEGG_mappings) edges <- edge_mapping_info(p53_edges) p53_graph_object <- get_graph_object(nodes, edges) ## Not run: cyto_vis(p53_graph_object, "Default p53 Graph [no data added]") #Workflow to visualize graph with data-dependent attributes: p53_KGML <- get_KGML("hsa04115") p53_KEGG_mappings <- expand_KEGG_mappings(p53_KGML) nodes <- node_mapping_info(p53_KEGG_mappings) p53_edges <- expand_KEGG_edges(p53_KGML, p53_KEGG_mappings) p53_HA1E_data <- overlap_info(p53_KGML, p53_KEGG_mappings, "HA1E", data_type = "100_bing") p53_edges_plus_data <- add_edge_data(p53_edges, p53_KEGG_mappings, p53_HA1E_data, c(3, 10,12), only_mapped = TRUE) edges <- edge_mapping_info(p53_edges_plus_data, data_added = TRUE) p53_plus_data_graph_object <- get_graph_object(nodes, edges) cyto_vis(p53_plus_data_graph_object, "p53 Graph: Mapped Edges + HA1E Data", edge_width_attribute = "UP") ## End(Not run)
Modify the mapping information for desired look when graphed in Cytoscape
edge_mapping_info(expanded_edges, data_added = FALSE, significance_markup = FALSE, tidy_edge = TRUE)
edge_mapping_info(expanded_edges, data_added = FALSE, significance_markup = FALSE, tidy_edge = TRUE)
expanded_edges |
The data frame object generated via the function expand_KEGG_edges() OR has been modified by the function add_edge_data() |
data_added |
A logical indicator; must be set to TRUE if user data has been added (i.e. edges modified by function add_edge_data()) |
significance_markup |
A logical indicator; if set to TRUE will color edges based on direction and significance of correlation (as determined by user-data-analysis) |
tidy_edge |
A logical indicator; must be set to FALSE for expanded edges |
A data.frame object for edges that will be passed on to the function get_graph_object
p53_KGML <- get_KGML("hsa04115") p53_KEGG_mappings <- expand_KEGG_mappings(p53_KGML) #Default; no data added to edges: p53_edges <- expand_KEGG_edges(p53_KGML, p53_KEGG_mappings) p53_edge_mapping_info <- edge_mapping_info(p53_edges) #If data is added to edges as additional attribute[s]: p53_HA1E_data <- overlap_info(p53_KGML, p53_KEGG_mappings, "HA1E", data_type = "100_bing") p53_edges_HA1E_data_MAPPED <- add_edge_data(p53_edges, p53_KEGG_mappings, p53_HA1E_data, data_column_no = c(3, 10,12), only_mapped = TRUE) p53_edge_mapping_HA1E <- edge_mapping_info(p53_edges_HA1E_data_MAPPED, data_added = TRUE)
p53_KGML <- get_KGML("hsa04115") p53_KEGG_mappings <- expand_KEGG_mappings(p53_KGML) #Default; no data added to edges: p53_edges <- expand_KEGG_edges(p53_KGML, p53_KEGG_mappings) p53_edge_mapping_info <- edge_mapping_info(p53_edges) #If data is added to edges as additional attribute[s]: p53_HA1E_data <- overlap_info(p53_KGML, p53_KEGG_mappings, "HA1E", data_type = "100_bing") p53_edges_HA1E_data_MAPPED <- add_edge_data(p53_edges, p53_KEGG_mappings, p53_HA1E_data, data_column_no = c(3, 10,12), only_mapped = TRUE) p53_edge_mapping_HA1E <- edge_mapping_info(p53_edges_HA1E_data_MAPPED, data_added = TRUE)
Extract relationship information from KGML object and re-map based on normalized node information
expand_KEGG_edges(KGML_file, KEGG_mappings)
expand_KEGG_edges(KGML_file, KEGG_mappings)
KGML_file |
An object of formal class KEGGPathway |
KEGG_mappings |
The data.frame object generated by the function expand_KEGG_mappings |
A dataframe object with unique entry information for all edges documented in the KEGG pathway. Note that each row has a unique combination of values for (entry1, entry2, entry1symbol, entry2symbol).
p53_KGML <- get_KGML("hsa04115") p53_KEGG_mappings <- expand_KEGG_mappings(p53_KGML, FALSE) p53_edges <- expand_KEGG_edges(p53_KGML, p53_KEGG_mappings)
p53_KGML <- get_KGML("hsa04115") p53_KEGG_mappings <- expand_KEGG_mappings(p53_KGML, FALSE) p53_edges <- expand_KEGG_edges(p53_KGML, p53_KEGG_mappings)
Extract mapping information from KGML object and normalize mappings based on multi-valued name attribute
expand_KEGG_mappings(KGML_file, convert_KEGG_IDs = TRUE)
expand_KEGG_mappings(KGML_file, convert_KEGG_IDs = TRUE)
KGML_file |
An object of formal class KEGGPathway |
convert_KEGG_IDs |
A logical indicator; if set to FALSE will run faster however genes and compounds will remain labeled via KEGG codes (compounds) or accession numbers (genes). This option must be taken into account if data is being added. For example, the genes in 'KO_data' are identified by symbols, thus it is neccessary to retain the default option to convert IDs to symbols when planning to add edge data of this type. |
A dataframe object with unique entry information for all [node] objects documented in the KEGG pathway. Note that if mutiple objects (i.e. genes or compounds) have the same entryID, this indicates that they share the same node [location] in the pathway.
p53_KGML <- get_KGML("hsa04115") p53_KEGG_mappings <- expand_KEGG_mappings(p53_KGML, FALSE)
p53_KGML <- get_KGML("hsa04115") p53_KEGG_mappings <- expand_KEGG_mappings(p53_KGML, FALSE)
Generates an object that can be converted to a JSON file
and subsequently applied to the graph for the markup specified by this
package and the layout mirroring KEGG.
Intended for use within cyto_vis
generate_mappings(style_name, map_edge_width, edge_width_attribute, min_score, max_score)
generate_mappings(style_name, map_edge_width, edge_width_attribute, min_score, max_score)
style_name |
An argument to name style; when used inside
of |
map_edge_width |
A logical indicator; if FALSE no continuous mapping of edge width will be applied |
edge_width_attribute |
The attribute that will be used for edge width; if data is not added or the attribute is not part of the graphing information, the edge width will default to 1. |
min_score |
The minimum attribute value for the column used to map edge width |
max_score |
The maximum attribute value for the column used to map edge width |
A list that can be converted to a JSON file to apply desired style/layout in Cytoscape
style.name = "myKEGGstyle" mappings <- generate_mappings(style.name, FALSE)
style.name = "myKEGGstyle" mappings <- generate_mappings(style.name, FALSE)
Obtain a measure for strength and significance for the
relationship (i.e. an edge) based on the concordance/discordance of
UP-and-DOWN regulated genes shared by two different experimental
gene-knockouts
Intended for use within overlap_info
get_fisher_info(edges, method)
get_fisher_info(edges, method)
edges |
The set of eges to be analyzed; Although the intended use is for LINCS data overlaps, the function should work with any typical data object as long as it has columns labeled ("UP", "DOWN", "UK1_DK2", "DK1_UK2") that contain integer values. |
method |
The method to correct/adjust p-values for multiple testing. For available methods, type 'p.adjust.methods' into command promt and press enter. |
The input edge data.frame object with additional columns containing the results of the applied statistical test
ex.data <- data.frame("UP" = c(70,6), "DOWN" = c(8,20), "UK1_DK2" = c(4,47), "DK1_UK2" = c(3, 28)) overlaps <- get_fisher_info(ex.data, method = "BH")
ex.data <- data.frame("UP" = c(70,6), "DOWN" = c(8,20), "UK1_DK2" = c(4,47), "DK1_UK2" = c(3, 28)) overlaps <- get_fisher_info(ex.data, method = "BH")
Obtain a graph object in the form of an igraph with KEGG-specific graphical information
get_graph_object(node_mapping_info, expanded_edges, layered_nodes = FALSE)
get_graph_object(node_mapping_info, expanded_edges, layered_nodes = FALSE)
node_mapping_info |
The data.frame object generated by the function node_mapping_info() |
expanded_edges |
The data.frame object generated by the function edge_mapping_info() |
layered_nodes |
A logical indicator; if set to TRUE will create a graph with 'stacked' nodes that the user can manipulate when multiple nodes are mapped to one location |
A list object with the node and edge information from the graph required for mapping.
p53_KGML <- get_KGML("hsa04115") p53_KEGG_mappings <- expand_KEGG_mappings(p53_KGML) p53_node_mapping_info <- node_mapping_info(p53_KEGG_mappings) p53_edge_mapping_info <- expand_KEGG_edges(p53_KGML, p53_KEGG_mappings) #Default graph object will have 'expanded edges': expanded_edges_graph_object <- get_graph_object(p53_node_mapping_info, p53_edge_mapping_info) #Graph with layered nodes: layered_nodes_graph_object <- get_graph_object(p53_node_mapping_info, p53_edge_mapping_info, layered_nodes = TRUE)
p53_KGML <- get_KGML("hsa04115") p53_KEGG_mappings <- expand_KEGG_mappings(p53_KGML) p53_node_mapping_info <- node_mapping_info(p53_KEGG_mappings) p53_edge_mapping_info <- expand_KEGG_edges(p53_KGML, p53_KEGG_mappings) #Default graph object will have 'expanded edges': expanded_edges_graph_object <- get_graph_object(p53_node_mapping_info, p53_edge_mapping_info) #Graph with layered nodes: layered_nodes_graph_object <- get_graph_object(p53_node_mapping_info, p53_edge_mapping_info, layered_nodes = TRUE)
Download and parse KGML file
get_KGML(pathwayid, get_if_no_edges = FALSE)
get_KGML(pathwayid, get_if_no_edges = FALSE)
pathwayid |
A KEGG pathway ID of the form "hsa12345" (only human pathways currently) |
get_if_no_edges |
A logical indicator; if pathway has no edges returns null value if set to TRUE |
an object of Formal class KEGGPathway
mtor_KGML <- get_KGML("hsa04150") # Some pathways contain only node information; since the purpose of this # package is to explore pathways in an edge-focused manner, the default # options return a warning message instead of a parsed KGML file if the # input pathway has no edges. ribosome_KGML <- get_KGML("hsa03020") ribosome_KGML <- get_KGML("hsa03020", get_if_no_edges = TRUE)
mtor_KGML <- get_KGML("hsa04150") # Some pathways contain only node information; since the purpose of this # package is to explore pathways in an edge-focused manner, the default # options return a warning message instead of a parsed KGML file if the # input pathway has no edges. ribosome_KGML <- get_KGML("hsa03020") ribosome_KGML <- get_KGML("hsa03020", get_if_no_edges = TRUE)
Combines all other package functions for one-step pathway visualization
KEGG_lincs(pathwayid, cell_line = NA, refine_by_cell_line = NA, add_L1000_edge_data = TRUE, significance_markup = TRUE, data_type = "100_full", pert_time = 96, only_mapped = TRUE, layered_nodes = FALSE, graph_title = "default", get_data = FALSE, convert_KEGG_IDs = TRUE, tidy_edge = FALSE)
KEGG_lincs(pathwayid, cell_line = NA, refine_by_cell_line = NA, add_L1000_edge_data = TRUE, significance_markup = TRUE, data_type = "100_full", pert_time = 96, only_mapped = TRUE, layered_nodes = FALSE, graph_title = "default", get_data = FALSE, convert_KEGG_IDs = TRUE, tidy_edge = FALSE)
pathwayid |
A KEGG pathway ID of the form "hsa12345" (only human pathways currently) |
cell_line |
If left as NA will generate a pathway map without data-dependent attributes (such as edge width). To use in combination with LINCS data, choose from the set of cell lines: (A375,A549,ASC,HA1E,HCC515,HEK293T,HEKTE,HEPG2,HT29,MCF7,NCIH716,NPC,PC3, SHSY5Y,SKL,SW480,VCAP) |
refine_by_cell_line |
A logical indicator |
add_L1000_edge_data |
A logical indicator |
significance_markup |
A logical indicator; if set to TRUE will color edges based on direction and significance of correlation (as determined by user-data-analysis) |
data_type |
Choose from data types: (100_full, 100_bing, 50_lm) |
pert_time |
Choose from (6,24,48,96,120,144,168) |
only_mapped |
A logical indicator; if set to FALSE will return 'de-novo' edges that 'exist' in data but are not documented in KEGG |
layered_nodes |
A logical indicator; if set to TRUE will create a graph with 'stacked' nodes that the user can manipulate when multiple nodes are mapped to one location |
graph_title |
An optional user-specified graph title |
get_data |
A logical indicator; if set to true, will return the 'expanded' edge information for the specified pathway |
convert_KEGG_IDs |
A logical indicator; if set to TRUE KEGG compounds will remain labeled via KEGG codes (do not need KEGGREST) |
tidy_edge |
A logical indicator; must be set to FALSE for expanded edges |
A dynamic map in Cytoscape automatically formatted for convenient viewing and, if idicated by user, a data.frame object with detailed information for 'expanded' KEGG edges
## Not run: #Default KEGG pathway with colored edges representing type of relationship: KEGG_lincs("hsa04115", convert_KEGG_IDs = FALSE) #KEGG pathway with edge width and color based on observed experimental data: KEGG_lincs("hsa04115", "HA1E") #Have edge information data.frame to be output to the global environment: p53_edge_info <- KEGG_lincs("hsa04115", graph_title = "p53" convert_KEGG_IDs = FALSE, get_data = TRUE) ## End(Not run)
## Not run: #Default KEGG pathway with colored edges representing type of relationship: KEGG_lincs("hsa04115", convert_KEGG_IDs = FALSE) #KEGG pathway with edge width and color based on observed experimental data: KEGG_lincs("hsa04115", "HA1E") #Have edge information data.frame to be output to the global environment: p53_edge_info <- KEGG_lincs("hsa04115", graph_title = "p53" convert_KEGG_IDs = FALSE, get_data = TRUE) ## End(Not run)
For a specific pathway entity(gene), search KEGG databases to see if it has any other documented relationships in KEGG. expand_KEGG_edges
keggerize_edges(entry_accession, KGML, KEGG_mappings, edges)
keggerize_edges(entry_accession, KGML, KEGG_mappings, edges)
entry_accession |
The Accession # of the pathway entity to 'keggerize' |
KGML |
The KGML file of the current pathway |
KEGG_mappings |
KEGG mappings for the current pathway |
edges |
The expanded edges for the current pathway |
A modified expanded edges data frame with additional rows for new entries
## Not run: KGML <- get_KGML("hsa04150") KEGG_mappings <- expand_KEGG_mappings(KGML) edges <- expand_KEGG_edges(KGML, KEGG_mappings) entry_accession <- "2475" mtor_plus_mtor <- keggerize_edges(entry_accession = entry_accession, KGML = KGML,KEGG_mappings = KEGG_mappings, edges = edges) ## End(Not run)
## Not run: KGML <- get_KGML("hsa04150") KEGG_mappings <- expand_KEGG_mappings(KGML) edges <- expand_KEGG_edges(KGML, KEGG_mappings) entry_accession <- "2475" mtor_plus_mtor <- keggerize_edges(entry_accession = entry_accession, KGML = KGML,KEGG_mappings = KEGG_mappings, edges = edges) ## End(Not run)
KEGGlincs: an R package designed to explore the edges in KEGG pathways
Combines all other package functions for one-step cell line comparison
KL_compare(pathwayid, cell_line1 = NA, cell_line2 = NA, refine_by_cell_line = TRUE, data_type = "100_full", pert_time = 96, only_mapped = TRUE, get_data = FALSE, convert_KEGG_IDs = TRUE, graph_title = "default", tidy_edge = TRUE, layered_nodes = FALSE)
KL_compare(pathwayid, cell_line1 = NA, cell_line2 = NA, refine_by_cell_line = TRUE, data_type = "100_full", pert_time = 96, only_mapped = TRUE, get_data = FALSE, convert_KEGG_IDs = TRUE, graph_title = "default", tidy_edge = TRUE, layered_nodes = FALSE)
pathwayid |
A KEGG pathway ID of the form "hsa12345" (only human pathways currently) |
cell_line1 |
Choose from the set of cell lines: (A375,A549,ASC,HA1E,HCC515,HEK293T,HEKTE,HEPG2,HT29,MCF7,NCIH716,NPC,PC3, SHSY5Y,SKL,SW480,VCAP) |
cell_line2 |
A cell line such that cell_line1 != cell_line2 |
refine_by_cell_line |
A logical indicator |
data_type |
Choose from data types: (100_full, 100_bing, 50_lm) |
pert_time |
Choose from (6,24,48,96,120,144,168) |
only_mapped |
A logical indicator; if set to FALSE will return 'de-novo' edges that 'exist' in data but are not documented in KEGG |
get_data |
A logical indicator; if set to true, will return the 'expanded' edge information for the specified pathway |
convert_KEGG_IDs |
A logical indicator; if set to TRUE KEGG compounds will remain labeled via KEGG codes (do not need KEGGREST) |
graph_title |
An optional user-specified graph title |
tidy_edge |
A logical indicator; must be set to FALSE for expanded edges |
layered_nodes |
A logical indicator; if set to TRUE will create a graph with 'stacked' nodes that the user can manipulate when multiple nodes are mapped to one location |
A dynamic map in Cytoscape automatically formatted for convenient viewing and, if idicated by user, a data.frame object with detailed information for 'expanded' KEGG edges
## Not run: # Compare p53 pathway between cell lines A375 and A549: KL_compare("hsa04115", "A375", "A549") ## End(Not run)
## Not run: # Compare p53 pathway between cell lines A375 and A549: KL_compare("hsa04115", "A375", "A549") ## End(Not run)
Modify the mapping information for desired look when graphed in Cytoscape
node_mapping_info(KEGG_mappings)
node_mapping_info(KEGG_mappings)
KEGG_mappings |
The data.frame object generated by the function expand_KEGG_mappings() |
A data.frame object for nodes that will be passed on to the function get_graph_object
p53_KGML <- get_KGML("hsa04115") p53_KEGG_mappings <- expand_KEGG_mappings(p53_KGML, FALSE) p53_node_mapping_info <- node_mapping_info(p53_KEGG_mappings)
p53_KGML <- get_KGML("hsa04115") p53_KEGG_mappings <- expand_KEGG_mappings(p53_KGML, FALSE) p53_node_mapping_info <- node_mapping_info(p53_KEGG_mappings)
Get overlap information for pairs of gene knock-outs from LINCS data
overlap_info(KGML_file, KEGG_mappings, cell_type, data_type = "100_full", pert_time = 96, only_mapped = TRUE, affy_based = FALSE, keep_counts_only = TRUE, add_fisher_information = TRUE, p.adjust.method = "BH")
overlap_info(KGML_file, KEGG_mappings, cell_type, data_type = "100_full", pert_time = 96, only_mapped = TRUE, affy_based = FALSE, keep_counts_only = TRUE, add_fisher_information = TRUE, p.adjust.method = "BH")
KGML_file |
An object of formal class KEGGPathway |
KEGG_mappings |
The data.frame object generated by the function expand_KEGG_mappings |
cell_type |
Choose from the set of cell lines: (A375,A549,ASC,HA1E,HCC515,HEK293T,HEKTE,HEPG2,HT29,MCF7,NCIH716,NPC,PC3, SHSY5Y,SKL,SW480,VCAP) |
data_type |
Choose from data types: (100_full, 100_bing, 50_lm) |
pert_time |
Choose from (6,24,48,96,120,144,168) |
only_mapped |
A logical indicator; if set to FALSE will return 'de-novo' edges that 'exist' in data but are not documented in KEGG |
affy_based |
A logical indicator; if set to TRUE will return lists/counts based on probeID instead of gene symbol. |
keep_counts_only |
A logical indicator; if set to FALSE will return data frame with lists [of gene symbols or probe ids] as well as counts |
add_fisher_information |
A logical indicator; by default the relationships are analyzed for strength of correlation via Fisher's Exact Test |
p.adjust.method |
For available methods, type 'p.adjust.methods' into command promt and press enter. |
A data frame where each row corresponds to information for pairs of experimental gene knock-outs from LINCS data (found in selected pathway).
p53_KGML <- get_KGML("hsa04115") p53_KEGG_mappings <- expand_KEGG_mappings(p53_KGML) p53_edges <- expand_KEGG_edges(p53_KGML, p53_KEGG_mappings) summary <- path_genes_by_cell_type(p53_KEGG_mappings) p53_HA1E_data <- overlap_info(p53_KGML, p53_KEGG_mappings, "HA1E", data_type = "100_bing", only_mapped = FALSE)
p53_KGML <- get_KGML("hsa04115") p53_KEGG_mappings <- expand_KEGG_mappings(p53_KGML) p53_edges <- expand_KEGG_edges(p53_KGML, p53_KEGG_mappings) summary <- path_genes_by_cell_type(p53_KEGG_mappings) p53_HA1E_data <- overlap_info(p53_KGML, p53_KEGG_mappings, "HA1E", data_type = "100_bing", only_mapped = FALSE)
Check quantity of data across cell lines available from LINCS corresponding to the pathway of interest
path_genes_by_cell_type(KEGG_mappings, pert_time = 96, get_KOs = FALSE, generate_plot = TRUE)
path_genes_by_cell_type(KEGG_mappings, pert_time = 96, get_KOs = FALSE, generate_plot = TRUE)
KEGG_mappings |
KEGG_mappings The data.frame object generated by the function expand_KEGG_mappings |
pert_time |
Choose from (6,24,48,96,120,144,168) |
get_KOs |
Logical indicator to have data frame returned |
generate_plot |
Logical indicator to generate histogram |
A plot depicting percentage of pathway genes knocked-out by cell line and a data frame object listing the genes [by cell line]
p53_KGML <- get_KGML("hsa04115") p53_KEGG_mappings <- expand_KEGG_mappings(p53_KGML) path_genes_by_cell_type(p53_KEGG_mappings)
p53_KGML <- get_KGML("hsa04115") p53_KEGG_mappings <- expand_KEGG_mappings(p53_KGML) path_genes_by_cell_type(p53_KEGG_mappings)
Reduce the KEGG pathway by only including genes that are expressed within a given cell type
refine_mappings(KEGG_mappings, cell_line)
refine_mappings(KEGG_mappings, cell_line)
KEGG_mappings |
The data.frame object generated by the function expand_KEGG_mappings |
cell_line |
Choose from the set of cell lines with baseline data; cell-lines may or may not have corresponding KO data |
A dataframe object with reduced set of pathway mappings to be passed on to other functions
p53_KGML <- get_KGML("hsa04115") p53_KEGG_mappings <- expand_KEGG_mappings(p53_KGML) MCF7_p53_mappings <- refine_mappings(p53_KEGG_mappings, "MCF7")
p53_KGML <- get_KGML("hsa04115") p53_KEGG_mappings <- expand_KEGG_mappings(p53_KGML) MCF7_p53_mappings <- refine_mappings(p53_KEGG_mappings, "MCF7")
Combine edges that share nodes and have other commonalities
tidy_edge(edges, edge_id, data_added = FALSE, by_significance = FALSE, by_number = TRUE)
tidy_edge(edges, edge_id, data_added = FALSE, by_significance = FALSE, by_number = TRUE)
edges |
The edge dataframe |
edge_id |
The numeric value for the edge_id |
data_added |
A logical indicator; set to TRUE if data is added |
by_significance |
A logical indicator; option if data is added |
by_number |
A logical indicator; gives rough estimate of edge amount |
A data frame that has had the given edge condensed for viewing
## Not run: if (tidy_edge == TRUE) { edge_IDs <- seq(min(expanded_edges$edgeID), max(expanded_edges$edgeID)) for (i in edge_IDs){ if(data_added == TRUE){ expanded_edges <- tidy_edge(edges = expanded_edges, edge_id = edge_IDs[i], data_added = TRUE, by_significance = TRUE) } if(data_added == FALSE){ expanded_edges <- tidy_edge(edges = expanded_edges, edge_id = edge_IDs[i], data_added = FALSE) } } } ## End(Not run)
## Not run: if (tidy_edge == TRUE) { edge_IDs <- seq(min(expanded_edges$edgeID), max(expanded_edges$edgeID)) for (i in edge_IDs){ if(data_added == TRUE){ expanded_edges <- tidy_edge(edges = expanded_edges, edge_id = edge_IDs[i], data_added = TRUE, by_significance = TRUE) } if(data_added == FALSE){ expanded_edges <- tidy_edge(edges = expanded_edges, edge_id = edge_IDs[i], data_added = FALSE) } } } ## End(Not run)
A subset of the R utility functions available from/defined by cyREST. The function mapAttributes is called from within toCytoscape which, in turn, is called from within cyto_vis.
toCytoscape(igraphobj) mapAttributes(attr.names, all.attr, i)
toCytoscape(igraphobj) mapAttributes(attr.names, all.attr, i)
igraphobj |
A graph object compatible for use with the package igraph |
attr.names |
Attribute names of an igraph object |
all.attr |
The attribute value if an igraph object |
i |
The index for a given igraph object |
A JSON object to be sent to Cytoscape