In this documents the following subjects have been covered:
The IntEREst, i.e. Intron Exon Retention Estimator (Oghabian
et al. (2018)), facilitates
estimation and comparison of splicing efficiency of transcripts across
several samples. In particular, It can estimate the intron-retention
levels or the exon-exon junction levels across the transcripts. Similar
to the Intron retention analysis used by Niemelä et al. (2014), our method estimates the Intron-mapping
read levels by counting the number of RNAseq reads that have been mapped
to the Intron-exon junctions of the genes, additionally it can estimate
the exon-exon junction levels by counting the reads that have been
mapped to the exons or by counting reads that span the introns. It is
also possible to limit the analysis to reads that are mapped to the
intron-exon or exon-exon junctions only and filter the ones that fully
map to the introns/exons (See the junctionReadsOnly
parameter in the interest()
and
interest.sequential()
functions). However, by default this
limitation is not taken into account, i.e. the reads that are
fully mapped to the introns or exons are also considered. The package
accepts standard BAM files as input and produces tab separated text
files together with SummarizedExperiment
objects as
results. To improve the performance and running time, the processing of
each single BAM file can be divided to smaller processes and distributed
and run on several computing cores. Using IntEREst functions the results
can also be plotted and statistically analyzed to screen the
distribution of the intron retention levels, and compare the retention
levels of U12 type introns to the U2 type across the studied samples.
Note that although we mainly use this package to compare the retention
of U12-type introns to the U2 type, comparisons for other sub-classes of
introns (defined by the user) can also be performed, however the
functions u12NbIndex()
, u12Index()
,
u12Boxplot()
, u12BoxplotNb()
,
u12DensityPlot()
and u12DensityPlotIntron()
in
IntEREst are specifically used for U12-type introns. A diagram of the
running pipeline is shown in figure 1.
referencePrepare()
function. The resulted reference data
frame includes coordinates of introns and exons of the genes; They can
be extracted from various sources i.e. UCSC, biomaRt or a user defined
file (e.g. GFF3/GTF). The exons with overlapping genomic coordinates can
be collapsed (if collapseExons
parameter is set as
TRUE
) to avoid assigning reads mapping to any alternatively
skipped exons to their overlapping introns. An example of the process is
shown in figure 2.
Here we build a reference data frame from a manually built GFF3
file that includes exonic coordinates of the gene RHBDD3.
# Load library quietly
suppressMessages(library("IntEREst"))
# Selecting rows related to RHBDD3 gene
tmpGen<-u12[u12[,"gene_name"]=="RHBDD3",]
# Extracting exons
tmpEx<-tmpGen[tmpGen[,"int_ex"]=="exon",]
# Building GFF3 file
exonDat<- cbind(tmpEx[,3], ".",
tmpEx[,c(7,4,5)], ".", tmpEx[,6], ".",paste("ID=exon",
tmpEx[,11], "; Parent=ENST00000413811", sep="") )
trDat<- c(tmpEx[1,3], ".", "mRNA", as.numeric(min(tmpEx[,4])),
as.numeric(max(tmpEx[,5])), ".", tmpEx[1,6], ".",
"ID=ENST00000413811")
outDir<- file.path(tempdir(),"tmpFolder")
dir.create(outDir)
outDir<- normalizePath(outDir)
gff3File<-paste(outDir, "gffFile.gff", sep="/")
cat("##gff-version 3\n",file=gff3File, append=FALSE)
cat(paste(paste(trDat, collapse="\t"),"\n", sep=""),
file=gff3File, append=TRUE)
write.table(exonDat, gff3File,
row.names=FALSE, col.names=FALSE,
sep='\t', quote=FALSE, append=TRUE)
# Extracting U12 introns info from 'u12' data
u12Int<-u12[u12$int_ex=="intron"&u12$int_type=="U12",]
# Building reference
#Since it is based on one gene only (that does not feature alternative splicing
#events) there is no difference if the collapseExons is set as TRUE or FALSE
testRef<- referencePrepare (sourceBuild="file",
filePath=gff3File, u12IntronsChr=u12Int[,"chr"],
u12IntronsBeg=u12Int[,"begin"],
u12IntronsEnd=u12Int[,"end"], collapseExons=TRUE,
fileFormat="gff3", annotateGeneIds=FALSE)
## Import genomic features from the file as a GRanges object ... OK
## Prepare the 'metadata' data frame ... OK
## Make the TxDb object ... OK
## chr begin end strand int_ex int_ex_num collapsed_transcripts_id
## 1 chr22 29655841 29656226 - exon 1 1
## 2 chr22 29656227 29656314 - intron 2 1
## 3 chr22 29656315 29656602 - exon 3 1
## 4 chr22 29656603 29656690 - intron 4 1
## 5 chr22 29656691 29656853 - exon 5 1
## 6 chr22 29656854 29659823 - intron 6 1
## collapsed_transcripts int_type
## 1 ENST00000413811 <NA>
## 2 ENST00000413811 U2
## 3 ENST00000413811 <NA>
## 4 ENST00000413811 U2
## 5 ENST00000413811 <NA>
## 6 ENST00000413811 U2
It is possible to annotate the U12 type introns in a reference using
the annotateU12
function. U12-type introns (also known as
minor type introns) are detected and spliced by the U12 splicing
machinery as opposed to the majority of the introns (known as major type
or U2 type) which are spliced by the U2 spliceosome. U12-type introns
also feature evolutionary conserved splice sites which are distinguished
from the splice sites of U2 type introns hence they can be detected by
mapping a position weigh matrix (PWM) to their splice sites and
measuring their match score based on the PWM. The following scripts
re-annotates introns of the genes RHBDD2 and YBX2.
# Improting genome
BSgenome.Hsapiens.UCSC.hg19 <-
BSgenome.Hsapiens.UCSC.hg19::BSgenome.Hsapiens.UCSC.hg19
#Index of the subset of rows
ind<- u12$gene_name %in% c("RHBDD2", "YBX2")
# Annotate U12 introns with strong U12 donor site, branch point
# and acceptor site from the u12 data in the package
annoU12<-
annotateU12(pwmU12U2=list(pwmU12db[[1]][,11:17],pwmU12db[[2]],
pwmU12db[[3]][,38:40],pwmU12db[[4]][,11:17],
pwmU12db[[5]][,38:40]),
pwmSsIndex=list(indexDonU12=1, indexBpU12=1, indexAccU12=3,
indexDonU2=1, indexAccU2=3),
referenceChr=u12[ind,'chr'],
referenceBegin=u12[ind,'begin'],
referenceEnd=u12[ind,'end'],
referenceIntronExon=u12[ind,"int_ex"],
intronExon="intron",
matchWindowRelativeUpstreamPos=c(NA,-29,NA,NA,NA),
matchWindowRelativeDownstreamPos=c(NA,-9,NA,NA,NA),
minMatchScore=c(rep(paste(80,"%",sep=""),2), "40%",
paste(80,"%",sep=""), "40%"),
refGenome=BSgenome.Hsapiens.UCSC.hg19,
setNaAs="U2",
annotateU12Subtype=TRUE)
##
## U12 U2
## 2 10
# How many U12 and U2 type introns with strong U12 donor sites,
# acceptor sites (and branch points for U12-type) are there?
table(annoU12[,1])
##
## U12 U2
## 2 10
The raw counts and normalized intron retention, intron spanning and
exon-exon junction levels can be estimated using any of the two RNAseq
read summarization functions, interest()
and
interest.sequential()
. The interest()
function
is more robust since it distributes the reads in the .bam file over
several computing cores and analyze the distributed data simultaneously.
Note that regions in the genome with repetitive sequence elements may
bias the mapping of the read sequences and the retention analysis. If
you wish to exclude these regions from the analysis you can use the
getRepeatTable()
function, however We did not find
repetitive DNA elements in particular biasing our results therefore we
do not routinely use this function. As for instance, if you wish to
exclude the coordinates in the genome housing Alu elements, you can run
the reads summarization functions with the
repeatsTableToFilter= getRepeatTable(repFamilyFil= "Alu")
parameter setting. Also, to only consider the reads that map to
intron-exon or exon-exon junctions set
junctionReadsOnly= TRUE
, however we recommend setting
junctionReadsOnly= FLASE
when measuring the intron
retention levels (i.e. method=IntRet
) and setting
junctionReadsOnly= TRUE
when measuring the exon-exon
junction levels. The
junctionReadsOnly' parameter does NOT apply to the intron-spanning levels estimation mode (i.e.
method=IntSpan`).
The interest()
and interest.sequential()
read summarization functions write output text files, additionally they
can return a summarizedExperiment
object for every sample
they analyze. As shown in the following test script we, however usually
prevent the individual runs to return any objects (by setting the
returnObj=FALSE
); instead, after running the analysis for
all samples we generate a single summarizedExperiment
object that includes results of all analyzed samples. To build such
object from the output text files the readInterestResults()
function can be used. In the following scripts a bam file from a single
MDS sample with mutated ZRSR2 is used which includes all the reads
mapped to the gene RHBDD3 only. We run 3 analysis that results to the
number of reads mapping to the introns of the gene RHBDD3, number of
reads spanning the introns of the gene RHBDD3 and the number of junction
reads mapping to the exons of gene RHBDD3. eventually a
SummarizedExperiment
object is built for each of the 3
analysis that includes the read counts together with the coordinates and
annotations of the introns and exons. The same analysis can be run on
multiple .bam files to obtain SummarizedExperiment
objects
that include results for all analyzed .bam files.
# Creating temp directory to store the results
outDir<- file.path(tempdir(),"interestFolder")
dir.create(outDir)
outDir<- normalizePath(outDir)
# Loading suitable bam file
bamF <- system.file("extdata", "small_test_SRR1691637_ZRSR2Mut_RHBDD3.bam",
package="IntEREst", mustWork=TRUE)
# Choosing reference for the gene RHBDD3
ref<-u12[u12[,"gene_name"]=="RHBDD3",]
# Intron retention analysis
# Reads mapping to inner introns are considered, hence
# junctionReadsOnly is FALSE
testInterest<- interest(
bamFileYieldSize=10000,
junctionReadsOnly=FALSE,
bamFile=bamF,
isPaired=TRUE,
isPairedDuplicate=NA,
isSingleReadDuplicate=NA,
reference=ref,
referenceGeneNames=ref[,"ens_gene_id"],
referenceIntronExon=ref[,"int_ex"],
repeatsTableToFilter=c(),
outFile=paste(outDir,
"intRetRes.tsv", sep="/"),
logFile=paste(outDir,
"log.txt", sep="/"),
method="IntRet",
returnObj=FALSE,
scaleLength= TRUE,
scaleFragment= TRUE,
strandSpecific="unstranded"
)
## InERESt: Running bamPreprocess. Detailed log info are written in: /tmp/RtmpWKGTyH/interestFolder/log.txt
## Log info: Running interest in Parallel mode.
## InERESt: Running interestAnalyse.
## InERESt:interestAnalyse: Begins ...
## start SRR1691633.22391522
## end SRR1691633.22391522 15
## BETWEEN SINGLE AND PAIRED N1
## BETWEEN SINGLE AND PAIRED N2
## BETWEEN SINGLE AND PAIRED N3
## Singlestart SRR1691633.10002641
## Singleend SRR1691633.10002641 15
## BETWEEN SINGLE AND PAIRED N4
## InERESt:interestAnalyse: Read counting ends. Running time: 0.6921756 secs
## InERESt: Running interestSummarise.
## IntERESt:interestSummarise: Begins ...
## IntERESt:interestSummarise: Normalizing intron retention read levels.
## InERESt: run ends. Full running time: 0.6958926 secs
testIntRetObj<- readInterestResults(
resultFiles= paste(outDir,
"intRetRes.tsv", sep="/"),
sampleNames="small_test_SRR1691637_ZRSR2Mut_RHBDD3",
sampleAnnotation=data.frame(
type="ZRSR2mut",
test_ctrl="test"),
commonColumns=1:ncol(ref), freqCol=ncol(ref)+1,
scaledRetentionCol=ncol(ref)+2, scaleLength=TRUE, scaleFragment=TRUE,
reScale=TRUE, geneIdCol="ens_gene_id")
##
## Reading file 1 / 1 : /tmp/RtmpWKGTyH/interestFolder/intRetRes.tsv
# Intron Spanning analysis
# Reads mapping to inner introns are considered, hence
# junctionReadsOnly is FALSE
testInterest<- interest(
bamFileYieldSize=10000,
junctionReadsOnly=FALSE,
bamFile=bamF,
isPaired=TRUE,
isPairedDuplicate=FALSE,
isSingleReadDuplicate=NA,
reference=ref,
referenceGeneNames=ref[,"ens_gene_id"],
referenceIntronExon=ref[,"int_ex"],
repeatsTableToFilter=c(),
outFile=paste(outDir,
"intSpanRes.tsv", sep="/"),
logFile=paste(outDir,
"log.txt", sep="/"),
method="IntSpan",
returnObj=FALSE,
scaleLength= TRUE,
scaleFragment= TRUE,
strandSpecific="unstranded"
)
## InERESt: Running bamPreprocess. Detailed log info are written in: /tmp/RtmpWKGTyH/interestFolder/log.txt
## Log info: Running interest in Parallel mode.
## InERESt: Running interestAnalyse.
## InERESt:interestAnalyse: Begins ...
## start SRR1691633.22391522
## end SRR1691633.22391522 15
## BETWEEN SINGLE AND PAIRED N1
## BETWEEN SINGLE AND PAIRED N2
## BETWEEN SINGLE AND PAIRED N3
## Singlestart SRR1691633.10002641
## Singleend SRR1691633.10002641 15
## BETWEEN SINGLE AND PAIRED N4
## InERESt:interestAnalyse: Read counting ends. Running time: 0.5100658 secs
## InERESt: Running interestSummarise.
## IntERESt:interestSummarise: Begins ...
## IntERESt:interestSummarise: Normalizing intron retention read levels.
## InERESt: run ends. Full running time: 0.5122788 secs
testIntSpanObj<- readInterestResults(
resultFiles= paste(outDir,
"intSpanRes.tsv", sep="/"),
sampleNames="small_test_SRR1691637_ZRSR2Mut_RHBDD3",
sampleAnnotation=data.frame(
type="ZRSR2mut",
test_ctrl="test"),
commonColumns=1:ncol(ref), freqCol=ncol(ref)+1,
scaledRetentionCol=ncol(ref)+2, scaleLength=TRUE, scaleFragment=TRUE,
reScale=TRUE, geneIdCol="ens_gene_id")
##
## Reading file 1 / 1 : /tmp/RtmpWKGTyH/interestFolder/intSpanRes.tsv
# Exon-exon junction analysis
# Reads mapping to inner exons are NOT considered, hence
# junctionReadsOnly is TRUE
testInterest<- interest(
bamFileYieldSize=10000,
junctionReadsOnly=TRUE,
bamFile=bamF,
isPaired=TRUE,
isPairedDuplicate=FALSE,
isSingleReadDuplicate=NA,
reference=ref,
referenceGeneNames=ref[,"ens_gene_id"],
referenceIntronExon=ref[,"int_ex"],
repeatsTableToFilter=c(),
outFile=paste(outDir,
"exExRes.tsv", sep="/"),
logFile=paste(outDir,
"log.txt", sep="/"),
method="ExEx",
returnObj=FALSE,
scaleLength= TRUE,
scaleFragment= TRUE,
strandSpecific="unstranded"
)
## InERESt: Running bamPreprocess. Detailed log info are written in: /tmp/RtmpWKGTyH/interestFolder/log.txt
## Log info: Running interest in Parallel mode.
## InERESt: Running interestAnalyse.
## InERESt:interestAnalyse: Begins ...
## start SRR1691633.22391522
## end SRR1691633.22391522 15
## BETWEEN SINGLE AND PAIRED N1
## BETWEEN SINGLE AND PAIRED N2
## BETWEEN SINGLE AND PAIRED N3
## Singlestart SRR1691633.10002641
## Singleend SRR1691633.10002641 15
## BETWEEN SINGLE AND PAIRED N4
## InERESt:interestAnalyse: Read counting ends. Running time: 0.5943685 secs
## InERESt: Running interestSummarise.
## IntERESt:interestSummarise: Begins ...
## IntERESt:interestSummarise: Normalizing exon-exon junction read levels.
## InERESt: run ends. Full running time: 0.5966592 secs
testExExObj<- readInterestResults(
resultFiles= paste(outDir,
"exExRes.tsv", sep="/"),
sampleNames="small_test_SRR1691637_ZRSR2Mut_RHBDD3",
sampleAnnotation=data.frame(
type="ZRSR2mut",
test_ctrl="test"),
commonColumns=1:ncol(ref), freqCol=ncol(ref)+1,
scaledRetentionCol=ncol(ref)+2, scaleLength=TRUE, scaleFragment=TRUE,
reScale=TRUE, geneIdCol="ens_gene_id")
##
## Reading file 1 / 1 : /tmp/RtmpWKGTyH/interestFolder/exExRes.tsv
## class: SummarizedExperiment
## dim: 15 1
## metadata(2): scaleFragment scaleLength
## assays(2): counts scaledRetention
## rownames: NULL
## rowData names(16): id int_ex_id ... int_type int_subtype
## colnames(1): small_test_SRR1691637_ZRSR2Mut_RHBDD3
## colData names(3): resultFiles type test_ctrl
## class: SummarizedExperiment
## dim: 15 1
## metadata(2): scaleFragment scaleLength
## assays(2): counts scaledRetention
## rownames: NULL
## rowData names(16): id int_ex_id ... int_type int_subtype
## colnames(1): small_test_SRR1691637_ZRSR2Mut_RHBDD3
## colData names(3): resultFiles type test_ctrl
## class: SummarizedExperiment
## dim: 15 1
## metadata(2): scaleFragment scaleLength
## assays(2): counts scaledRetention
## rownames: NULL
## rowData names(16): id int_ex_id ... int_type int_subtype
## colnames(1): small_test_SRR1691637_ZRSR2Mut_RHBDD3
## colData names(3): resultFiles type test_ctrl
## small_test_SRR1691637_ZRSR2Mut_RHBDD3
## [1,] 0
## [2,] 11
## [3,] 0
## [4,] 11
## [5,] 0
## [6,] 180
## small_test_SRR1691637_ZRSR2Mut_RHBDD3
## [1,] 0
## [2,] 39
## [3,] 0
## [4,] 25
## [5,] 0
## [6,] 5
## small_test_SRR1691637_ZRSR2Mut_RHBDD3
## [1,] 39
## [2,] 0
## [3,] 64
## [4,] 0
## [5,] 23
## [6,] 0
As a demo we ran the IntEREst pipeline on 16 .bam files that each includes reads mapped to U12 genes (i.e. genes with at least one U12-type intron) located in chromosome 22. These bam files were results of mapping RNAseq data from bone-marrow samples published by Madan et al. (2015) to the Human genome (hg19). The studied samples were extracted from 16 individuals; out of which 8 were diagnosed with Myelodysplastic syndrome (MDS) and featured ZRSR2 mutation, 4 were diagnosed with MDS but lacked the mutation (referred to as ZRSR2 wild-type MDS samples) and 4 were healthy individuals.
The data is accessible through GEO with the accession number GSE63816
and the scripts that we ran to map the RNAseq data, modify the bam
files, extract the reads mapped to U12 genes in chr22 and build
mdsChr22Obj
, mdsChr22ExObj
and
mdsChr22RefIntRetSpObj
objects are available in the
scripts
folder of the IntEREst
package (See
the readme.txt
file in the folder for more information).
You can get its full path using this script in R:
system.file("scripts","readme.txt", package="IntEREst")
.
The mdsChr22Obj
object is a
summarizedExperiment
object that includes information
regarding levels of intron-mapping reads in the U12 genes located on the
Chromosome 22, across all the 16 MDS samples. The
mdsChr22ExObj
object contain the levels of exon-exon
junction mapping reads and the mdsChr22RefIntRetSpObj
include the levels of intron-spanning reads. Each object include two
assays: counts and scaledRetention. Both can be accessed using functions
with the same names: counts()
and
scaledRetention()
. The former (counts) returns a data frame
which includes the read counts of each intron/exon in each sample, and
the latter (scaledRetention) returns a data frame with similar
dimensions that includes the FPKM normalized read counts. The result
objects also include intron/exon and sample annotations that can be
retrieved using rowData()
and colData()
functions.
## class: SummarizedExperiment
## dim: 819 16
## metadata(2): scaleFragment scaleLength
## assays(2): counts scaledRetention
## rownames: NULL
## rowData names(10): chr begin ... collapsed_gene_id intron_type
## colnames(16): SRR1691633 SRR1691634 ... SRR1691647 SRR1691648
## colData names(3): resultFiles type test_ctrl
## class: SummarizedExperiment
## dim: 494 16
## metadata(2): scaleFragment scaleLength
## assays(2): counts scaledRetention
## rownames: NULL
## rowData names(5): chr begin end transcripts_id int_ex
## colnames(16): SRR1691633 SRR1691634 ... SRR1691647 SRR1691648
## colData names(3): resultFiles type test_ctrl
## SRR1691633 SRR1691634 SRR1691635 SRR1691636 SRR1691637 SRR1691638
## [1,] 0 0 0 0 0 0
## [2,] 1 2 1 1 1 1
## [3,] 0 0 0 0 0 0
## [4,] 21 35 45 44 22 21
## [5,] 0 0 0 0 0 0
## [6,] 63 98 128 86 67 98
## SRR1691639 SRR1691640 SRR1691641 SRR1691642 SRR1691643 SRR1691644
## [1,] 0 0 0 0 0 0
## [2,] 0 2 1 3 2 2
## [3,] 0 0 0 0 0 0
## [4,] 27 20 89 40 28 30
## [5,] 0 0 0 0 0 0
## [6,] 84 33 161 90 24 49
## SRR1691645 SRR1691646 SRR1691647 SRR1691648
## [1,] 0 0 0 0
## [2,] 3 1 6 1
## [3,] 0 0 0 0
## [4,] 14 14 71 14
## [5,] 0 0 0 0
## [6,] 35 33 112 37
## SRR1691633 SRR1691634 SRR1691635 SRR1691636 SRR1691637 SRR1691638
## [1,] 0.000 0.000 0.000 0.000 0.00 0.000
## [2,] 4675.344 9547.815 2617.253 2708.442 7832.08 3481.506
## [3,] 0.000 0.000 0.000 0.000 0.00 0.000
## [4,] 8125.426 13827.871 9747.011 9862.463 14259.79 6050.618
## [5,] 0.000 0.000 0.000 0.000 0.00 0.000
## [6,] 30339.572 48189.833 34507.300 23992.376 54051.44 35143.788
## SRR1691639 SRR1691640 SRR1691641 SRR1691642 SRR1691643 SRR1691644
## [1,] 0.000 0.00 0.000 0.00 0.00 0.00
## [2,] 0.000 18404.00 3353.724 18382.35 25100.40 19113.15
## [3,] 0.000 0.00 0.000 0.00 0.00 0.00
## [4,] 8336.627 15230.90 24701.912 20283.98 29081.84 23726.67
## [5,] 0.000 0.00 0.000 0.00 0.00 0.00
## [6,] 32281.073 31278.91 55617.122 56803.84 31025.39 48234.04
## SRR1691645 SRR1691646 SRR1691647 SRR1691648
## [1,] 0.00 0.00 0.00 0.00
## [2,] 37202.38 15318.63 36507.01 22353.36
## [3,] 0.00 0.00 0.00 0.00
## [4,] 14367.82 17748.48 35751.69 25899.07
## [5,] 0.00 0.00 0.00 0.00
## [6,] 44706.72 52070.18 70193.73 85192.21
## DataFrame with 6 rows and 10 columns
## chr begin end strand int_ex int_ex_num
## <character> <integer> <integer> <character> <character> <integer>
## 1 chr22 17618410 17619247 * exon 1
## 2 chr22 17619248 17619439 * intron 2
## 3 chr22 17619440 17619628 * exon 3
## 4 chr22 17619629 17621948 * intron 4
## 5 chr22 17621949 17622123 * exon 5
## 6 chr22 17622124 17623987 * intron 6
## collapsed_transcripts_id collapsed_transcripts collapsed_gene_id intron_type
## <integer> <character> <character> <factor>
## 1 21037 uc002zmi.4,uc011agh... 100130717,27440 NA
## 2 21037 uc002zmi.4,uc011agh... 100130717,27440 U2
## 3 21037 uc002zmi.4,uc011agh... 100130717,27440 NA
## 4 21037 uc002zmi.4,uc011agh... 100130717,27440 U2
## 5 21037 uc002zmi.4,uc011agh... 100130717,27440 NA
## 6 21037 uc002zmi.4,uc011agh... 100130717,27440 U2
## DataFrame with 6 rows and 3 columns
## resultFiles type test_ctrl
## <character> <factor> <factor>
## SRR1691633 ./SRR1691633_ZRSR2Mu.. ZRSR2mut test
## SRR1691634 ./SRR1691634_ZRSR2Mu.. ZRSR2mut test
## SRR1691635 ./SRR1691635_ZRSR2Mu.. ZRSR2mut test
## SRR1691636 ./SRR1691636_ZRSR2Mu.. ZRSR2mut test
## SRR1691637 ./SRR1691637_ZRSR2Mu.. ZRSR2mut test
## SRR1691638 ./SRR1691638_ZRSR2Mu.. ZRSR2mut test
It is possible to plot()
the object to check the
distribution of the intron retention levels. The following scripts plot
the average retention of all introns across the 3 sample types: ZRSR2
mutated MDS, ZRSR2 wild type MDS and healthy. The
lowerPlot=TRUE
and upperPlot=TRUE
parameter
settings ensures that both, the upper and lower triangle of the grid are
plotted.
# Retention of all introns
plot(mdsChr22Obj, logScaleBase=exp(1), pch=20, loessLwd=1.2,
summary="mean", col="black", sampleAnnoCol="type",
lowerPlot=TRUE, upperPlot=TRUE)
The following script plots the average retention of the U12 introns
across the 3 sample types: ZRSR2 mutated MDS, ZRSR2 MDS wild type and
healthy. By default the upper triangle of the grid is plotted only
(lowerPlot=FALSE
).
#Retention of U12 introns
plot(mdsChr22Obj, logScaleBase=exp(1), pch=20, plotLoess=FALSE,
summary="mean", col="black", sampleAnnoCol="type",
subsetRows=u12Index(mdsChr22Obj, intTypeCol="intron_type"))
IntEREst also provides various tools to compare the retention levels
of the introns or exon junction levels across various samples.
Initially, we extract the significantly higher and lower retained
introns by using exactTestInterest()
function which employs
the exactTest()
function from the edgeR package,
i.e. an exact test for differences between two groups of
negative-binomial counts. Note that exactTestInterest()
makes comparison between a pair of sample types only (e.g. test vs
ctrl).
## DataFrame with 16 rows and 3 columns
## resultFiles type test_ctrl
## <character> <factor> <factor>
## SRR1691633 ./SRR1691633_ZRSR2Mu.. ZRSR2mut test
## SRR1691634 ./SRR1691634_ZRSR2Mu.. ZRSR2mut test
## SRR1691635 ./SRR1691635_ZRSR2Mu.. ZRSR2mut test
## SRR1691636 ./SRR1691636_ZRSR2Mu.. ZRSR2mut test
## SRR1691637 ./SRR1691637_ZRSR2Mu.. ZRSR2mut test
## ... ... ... ...
## SRR1691644 ./SRR1691644_WT/inte.. ZRSR2wt ctrl
## SRR1691645 ./SRR1691645_Normal/.. HEALTHY ctrl
## SRR1691646 ./SRR1691646_Normal/.. HEALTHY ctrl
## SRR1691647 ./SRR1691647_Normal/.. HEALTHY ctrl
## SRR1691648 ./SRR1691648_Normal/.. HEALTHY ctrl
# Run exact test
test<- exactTestInterest(mdsChr22Obj,
sampleAnnoCol="test_ctrl", sampleAnnotation=c("ctrl","test"),
geneIdCol= "collapsed_transcripts_id", silent=TRUE, disp="common")
# Number of stabilized introns (in Chr 22)
sInt<- length(which(test$table[,"PValue"]<0.05
& test$table[,"logFC"]>0 &
rowData(mdsChr22Obj)[,"int_ex"]=="intron"))
print(sInt)
## [1] 16
# Number of stabilized (significantly retained) U12 type introns
numStU12Int<- length(which(test$table[,"PValue"]<0.05 &
test$table[,"logFC"]>0 &
rowData(mdsChr22Obj)[,"intron_type"]=="U12" &
!is.na(rowData(mdsChr22Obj)[,"intron_type"])))
# Number of U12 introns
numU12Int<-
length(which(rowData(mdsChr22Obj)[,"intron_type"]=="U12" &
!is.na(rowData(mdsChr22Obj)[,"intron_type"])))
# Fraction(%) of stabilized (significantly retained) U12 introns
perStU12Int<- numStU12Int/numU12Int*100
print(perStU12Int)
## [1] 50
# Number of stabilized U2 type introns
numStU2Int<- length(which(test$table[,"PValue"]<0.05 &
test$table[,"logFC"]>0 &
rowData(mdsChr22Obj)[,"intron_type"]=="U2" &
!is.na(rowData(mdsChr22Obj)[,"intron_type"])))
# Number of U2 introns
numU2Int<-
length(which(rowData(mdsChr22Obj)[,"intron_type"]=="U2" &
!is.na(rowData(mdsChr22Obj)[,"intron_type"])))
# Fraction(%) of stabilized U2 introns
perStU2Int<- numStU2Int/numU2Int*100
print(perStU2Int)
## [1] 1.827676
As shown in the previous analysis ~50% of U12-type introns (of
genes on Chr22) are significantly more retained (i.e. stabilized) in the
ZRSR2 mutated samples comparing to the other samples, whereas same
comparison shows that only ~1% of the U2-type introns are significantly
more retained. For more complex experiments such as comparing samples
based on a user defined design matrix other differential expression
analysis functions from edgeR
package, e.g. Linear Model
(GLM) functions, have also been implemented in IntEREst;
glmInterest()
performs GLM likelihood ratio test,
qlfInterest()
runs quasi likelihood F-test, and
treatInterest()
runs fold-change threshold test on the
retention levels of the introns/exons. DESeq2 and DEXSeq based functions
(deseqInterest()
and DEXSeqIntEREst()
) are
also available in the package. Using the QLF edgeR
based
method the following commands can be used to extract the data for
introns/exons that their retention levels vary significantly across all
sample types: ZRSR2 mutation, ZRSR2 wild type, and healthy.
## [1] ZRSR2mut ZRSR2mut ZRSR2mut ZRSR2mut ZRSR2mut ZRSR2mut ZRSR2mut ZRSR2mut
## [9] ZRSR2wt ZRSR2wt ZRSR2wt ZRSR2wt HEALTHY HEALTHY HEALTHY HEALTHY
## Levels: HEALTHY ZRSR2mut ZRSR2wt
# Test retention levels' differentiation across 3 types samples
qlfRes<- qlfInterest(x=mdsChr22Obj,
design=model.matrix(~group), silent=TRUE,
disp="tagwiseInitTrended", coef=2:3, contrast=NULL,
poisson.bound=TRUE)
# Extract index of the introns with significant retention changes
ind= which(qlfRes$table$PValue< 0.05)
# Extract introns with significant retention level changes
variedIntrons= rowData(mdsChr22Obj)[ind,]
#Show first 5 rows and columns of the result table
print(variedIntrons[1:5,1:5])
## DataFrame with 5 rows and 5 columns
## chr begin end strand int_ex
## <character> <integer> <integer> <character> <character>
## 1 chr22 17626008 17629337 * intron
## 2 chr22 17629451 17630431 * intron
## 3 chr22 17630636 17640015 * intron
## 4 chr22 19467741 19468475 + intron
## 5 chr22 19493005 19494908 + intron
Next, to better illustrate the differences in the retention levels of
different types of introns across the studied samples, we first use the
bopxplot()
method to illustrate the retention levels of all
U12-type and U2-type introns in various sample types, and then we use
the u12BoxplotNb()
function to compare the retention of the
U12 introns to their up- and down-stream U2-type introns.
# boxplot U12 and U2-type introns
par(mar=c(7,4,2,1))
u12Boxplot(mdsChr22Obj, sampleAnnoCol="type",
intExCol="int_ex", intTypeCol="intron_type", intronExon="intron",
col=rep(c("orange", "yellow"),3) , lasNames=3,
outline=FALSE, ylab="FPKM", cex.axis=0.8)
# boxplot U12-type intron and its up/downstream U2-type introns
par(mar=c(2,4,1,1))
u12BoxplotNb(mdsChr22Obj, sampleAnnoCol="type", lasNames=1,
intExCol="int_ex", intTypeCol="intron_type", intronExon="intron",
boxplotNames=c(), outline=FALSE, plotLegend=TRUE,
geneIdCol="collapsed_transcripts_id", xLegend="topleft",
col=c("pink", "lightblue", "lightyellow"), ylim=c(0,1e+06),
ylab="FPKM", cex.axis=0.8)
The boxplot clearly shows the increase retention of U12-type introns comparing to all the U2 introns (figure 5) and in particular comparing to the U2-type introns located on the up- or down-stream of the U12-type introns (figure 6). It is also clear that the elevated level of intron retention with U12-type introns is exacerbated in the ZRSR2 mutated samples comparing to the other studied samples. In order to better illustrate the stabilization of the transcripts with U12-type introns comparing to the ones that lack U12-type introns, we plot the density of the log fold-change of the retention (ZRSR2 mutated v.s. other samples) of U12-type introns and compare it to the log fold-change values for randomly selected U2-type introns, and U2-type introns up- or down-stream the U12-type introns.
u12DensityPlotIntron(mdsChr22Obj,
type= c("U12", "U2Up", "U2Dn", "U2UpDn", "U2Rand"),
fcType= "edgeR", sampleAnnoCol="test_ctrl",
sampleAnnotation=c("ctrl","test"), intExCol="int_ex",
intTypeCol="intron_type", strandCol= "strand",
geneIdCol= "collapsed_transcripts_id", naUnstrand=FALSE, col=c(2,3,4,5,6),
lty=c(1,2,3,4,5), lwd=1, plotLegend=TRUE, cexLegend=0.7,
xLegend="topright", yLegend=NULL, legend=c(), randomSeed=10,
ylim=c(0,0.6), xlab=expression("log"[2]*" fold change FPKM"))
# estimate log fold-change of introns
# by comparing test samples vs ctrl
# and don't show warnings !
lfcRes<- lfc(mdsChr22Obj, fcType= "edgeR",
sampleAnnoCol="test_ctrl",sampleAnnotation=c("ctrl","test"))
# Build the order vector
ord<- rep(1,length(lfcRes))
ord[u12Index(mdsChr22Obj, intTypeCol="intron_type")]=2
# Median of log fold change of U2 introns (ZRSR2 mut. vs ctrl)
median(lfcRes[ord==1])
## [1] 0
## [1] 1.008306
As shown in figure 7 (and computed after the plot),
when comparing the ZRSR2 mutated samples vs the other samples, for all
U2-type introns the most frequent log fold-change (median) is ~0 whereas
this value for the U12-type introns is noticeably higher (~1.01). It is
also possible to run a statistical test to see if the log fold-changes
of U12-type introns (ZRSR2 mutated samples vs other samples) are
significantly higher than the log fold-changes of U2-type introns. For
this purpose we use the jonckheere.test()
function,
i.e. Jonckheere-Terpstra ordered alternative hypothesis test, from the
Clinfun package.
# Run Jockheere Terpstra's trend test
library(clinfun)
jtRes<- jonckheere.test(lfcRes, ord, alternative = "increasing",
nperm=1000)
jtRes
##
## Jonckheere-Terpstra test
##
## data:
## JT = 11209, p-value = 0.001
## alternative hypothesis: increasing
The result of the Jonckheere-Terpstra test with 1000 permutation runs shows that when comparing the samples that lack the ZRSR2 mutation to the the ZRSR2 mutated samples, the null hypothesis that the log fold-changes of the retentions of U12-type and U2-type introns are equally distributed was rejected with p-value 0.001, while the alternative being that the values in the U12-type introns are higher compared to the U2-type.
After building the reference as described in the test scripts above, we recommend running interest()
(or interest.sequential()
) twice: once on the reference
with uncollapsed exons and with method="IntSpan"
setting
(whcih results to the intron-spanning object). and subsequently on the
reference with collapsed exons and with method="IntRet"
parameter setting. Next, use
applyOverlap(query, subject, type="within", replaceValues=TRUE, FUN=sum)
to map the reference with collpased exon to the reference with
uncollapsed exon and sum the read-count levels accordingly (whcih
results to the intron-mapping object). cbind the 2 objects and continue
as the exmple shown below to detect the significantly differential
retained introns.
mdsChr22RefIntRetSpObj<- cbind(mdsChr22Obj, mdsChr22IntSpObj)
mdsChr22RefIntRetSpObj<- addAnnotation(x=mdsChr22RefIntRetSpObj,
sampleAnnotationType="intronExon",
sampleAnnotation=c(rep("intron",16), rep("exon",16))
)
library(BiocParallel)
mdsChr22RefIntRetSpIntFilObj<-
mdsChr22RefIntRetSpObj[rowData(mdsChr22RefIntRetSpObj)$int_ex=="intron",]
# Differential IR analysis run
ddsChr22Diff<- deseqInterest(mdsChr22RefIntRetSpIntFilObj,
design=~test_ctrl+test_ctrl:intronExon,
sizeFactor=rep(1,nrow(colData(mdsChr22RefIntRetSpIntFilObj))),
contrast=list("test_ctrltest.intronExonintron",
"test_ctrlctrl.intronExonintron"),
bpparam = SnowParam(workers=20))
## Warning in DESeqDataSet(se, design = design, ignoreRank): some variables in
## design formula are characters, converting to factors
##
## Result names that can be used for contrasts are:
## Intercept test_ctrl_test_vs_ctrl test_ctrlctrl.intronExonintron test_ctrltest.intronExonintron
# See the number of significantly more retained U12 and U2 introns
pThreshold<- 0.01
mdsChr22UpIntInd<- which(ddsChr22Diff$padj< pThreshold & ddsChr22Diff$padj>0)
table(rowData(mdsChr22RefIntRetSpIntFilObj)$intron_type[mdsChr22UpIntInd])
##
## U12 U12/U2 U2
## 9 0 14
# See the fraction of significantly more retained U12 and U2 introns
100*table(rowData(mdsChr22RefIntRetSpIntFilObj)$intron_type[mdsChr22UpIntInd])/
table(rowData(mdsChr22RefIntRetSpIntFilObj)$intron_type)
##
## U12 U12/U2 U2
## 50.000000 3.655352
Note that the two SummarizedExperiment
objects mentioned
above (i.e. mdsChr22Obj
and mdsChr22ExObj
)
were the results of running interest() in “IntRet” and “IntSpan” modes
on the exon-collapsed reference. As the names suggest these two objects
are limited to the U12 intron containing genes on chr22. The described
pipeline, analyzes the variation of the intron mapping reads relative to
the variation of the intron spanning reads across the studied conditions
whilst excluding the reads that map to exons that overlap the studying
intronic regions.