ISAnalytics is an R package developed to analyze gene therapy vector insertion sites data identified from genomics next generation sequencing reads for clonal tracking studies.
In this vignette we will explain how to properly setup the workflow and the first steps of data import and data cleaning.
This section demonstrates how to properly setup your workflow with
ISAnalytics
using the “dynamic vars” system.
From ISAnalytics 1.5.4
onwards, a new system here
referred to as “dynamic vars” has been implemented to improve the
flexibility of the package, by allowing multiple input formats based on
user needs rather than enforcing hard-coded names and structures. In
this way, users that do not follow the standard name conventions used by
the package have to put minimal effort into making their inputs
compliant to the package requirements.
There are 5 main categories of inputs you can customize:
The general approach is based on the specification of predefined tags and their associated information in the form of simple data frames with a standard structure, namely:
names | types | transform | flag | tag |
---|---|---|---|---|
<name of the column> |
<type> |
<a lambda or NULL> |
<flag> |
<tag> |
where
names
contains the name of the column as a
charactertypes
contains the type of the column. Type should be
expressed as a string and should be in one of the allowed types
char
for character (strings)int
for integerslogi
for logical values (TRUE / FALSE)numeric
for numeric valuesfactor
for factorsdate
for generic date format - note that functions that
need to read and parse files will try to guess the format and parsing
may failISAnalytics::date_formats()
to view the
accepted formatstransform
: a purrr-style lambda that is applied
immediately after importing. This is useful to operate simple
transformations like removing unwanted characters or rounding to a
certain precision. Please note that these lambdas need to be functions
that accept a vector as input and only operate a transformation,
aka they output a vector of the same length as the input. For more
complicated applications that may require the value of other columns,
appropriate functions should be manually applied post-import.flag
: as of now, it should be set either to
required
or optional
- some functions
internally check for only required tags presence and if those are
missing from inputs they fail, signaling failure to the usertag
: a specific tag expressed as a string - see Section
@ref(tags)For each category of dynamic vars there are 3 functions:
Setters will take in input the new variables, validate and eventually change the lookup table. If validation fails an error will be thrown instead, inviting the user to review the inputs. Moreover, if some of the critical tags for the category are missing, a warning appears, with a list of the missing ones.
Let’s take a look at some examples.
On package loading, all lookup tables are set to default values. For example, for mandatory IS vars we have:
mandatory_IS_vars(TRUE)
#> # A tibble: 3 × 5
#> names types transform flag tag
#> <chr> <chr> <list> <chr> <chr>
#> 1 chr char <NULL> required chromosome
#> 2 integration_locus int <NULL> required locus
#> 3 strand char <NULL> required is_strand
Let’s suppose our matrices follow a different standard, and integration events are characterized by 5 fields, like so (the example contains random data):
chrom | position | strand | gap | junction |
---|---|---|---|---|
“chr1” | 342543 | “+” | 100 | 50 |
… | … | … | … | … |
To make this work with ISAnalytics functions, we need to compile the lookup table like this:
new_mand_vars <- tibble::tribble(
~names, ~types, ~transform, ~flag, ~tag,
"chrom", "char", ~ stringr::str_replace_all(.x, "chr", ""), "required",
"chromosome",
"position", "int", NULL, "required", "locus",
"strand", "char", NULL, "required", "is_strand",
"gap", "int", NULL, "required", NA_character_,
"junction", "int", NULL, "required", NA_character_
)
Notice that we have specified a transformation for the “chromosome” tag: in this case we would like to have only the number of the chromosome without the prefix “chr” - this lambda will get executed immediately after import.
To set the new variables simply do:
set_mandatory_IS_vars(new_mand_vars)
#> Mandatory IS vars successfully changed
mandatory_IS_vars(TRUE)
#> # A tibble: 5 × 5
#> names types transform flag tag
#> <chr> <chr> <list> <chr> <chr>
#> 1 chrom char <formula> required chromosome
#> 2 position int <NULL> required locus
#> 3 strand char <NULL> required is_strand
#> 4 gap int <NULL> required <NA>
#> 5 junction int <NULL> required <NA>
If you don’t specify a critical tag, a warning message is displayed:
new_mand_vars[1, ]$tag <- NA_character_
set_mandatory_IS_vars(new_mand_vars)
#> Warning: Warning: important tags missing
#> ℹ Some tags are required for proper execution of some functions. If these tags are not provided, execution of dependent functions might fail. Review your inputs carefully.
#> ℹ Missing tags: chromosome
#> ℹ To see where these are involved type `inspect_tags(c('chromosome'))`
#> Mandatory IS vars successfully changed
mandatory_IS_vars(TRUE)
#> # A tibble: 5 × 5
#> names types transform flag tag
#> <chr> <chr> <list> <chr> <chr>
#> 1 chrom char <formula> required <NA>
#> 2 position int <NULL> required locus
#> 3 strand char <NULL> required is_strand
#> 4 gap int <NULL> required <NA>
#> 5 junction int <NULL> required <NA>
If you change your mind and want to go back to defaults:
reset_mandatory_IS_vars()
#> Mandatory IS vars reset to default
mandatory_IS_vars(TRUE)
#> # A tibble: 3 × 5
#> names types transform flag tag
#> <chr> <chr> <list> <chr> <chr>
#> 1 chr char <NULL> required chromosome
#> 2 integration_locus int <NULL> required locus
#> 3 strand char <NULL> required is_strand
The principle is the same for annotation IS vars, association file columns and VISPA2 stats specs. Here is a summary of the functions for each:
mandatory_IS_vars()
,
set_mandatory_IS_vars()
,
reset_mandatory_IS_vars()
annotation_IS_vars()
,
set_annotation_IS_vars()
,
reset_annotation_IS_vars()
association_file_columns()
,
set_af_columns_def()
,
reset_af_columns_def()
iss_stats_specs()
,
set_iss_stats_specs()
,
reset_iss_stats_specs
Matrix files suffixes work slightly different:
matrix_file_suffixes()
#> # A tibble: 10 × 3
#> quantification matrix_type file_suffix
#> <chr> <chr> <chr>
#> 1 seqCount annotated seqCount_matrix.no0.annotated.tsv.gz
#> 2 seqCount not_annotated seqCount_matrix.tsv.gz
#> 3 fragmentEstimate annotated fragmentEstimate_matrix.no0.annotated.tsv.gz
#> 4 fragmentEstimate not_annotated fragmentEstimate_matrix.tsv.gz
#> 5 barcodeCount annotated barcodeCount_matrix.no0.annotated.tsv.gz
#> 6 barcodeCount not_annotated barcodeCount_matrix.tsv.gz
#> 7 cellCount annotated cellCount_matrix.no0.annotated.tsv.gz
#> 8 cellCount not_annotated cellCount_matrix.tsv.gz
#> 9 ShsCount annotated ShsCount_matrix.no0.annotated.tsv.gz
#> 10 ShsCount not_annotated ShsCount_matrix.tsv.gz
To change this lookup table use the function
set_matrix_file_suffixes()
: the function will ask to
specify a suffix for each quantification and for both annotated and not
annotated versions. These suffixes are used in the automated matrix
import function when scanning the file system.
To reset all lookup tables to their default configurations you can
also use the function reset_dyn_vars_config()
, which
reverts all changes.
No, if you frequently have to work with a non-standard settings
profile, you can use the functions export_ISA_settings()
and import_ISA_settings()
: these functions allow the
import/export of setting profiles in *.json format.
Once you set your variables for the first time through the procedure described before, simply call the export function and all will be saved to a json file, which can then be imported for the next workflow.
From ISAnalytics 1.7.4
, functions that make use of
parallel workers or process long tasks report progress via the functions
offered by progressr.
To enable progress bars for all functions in ISAnalytics do
before calling other functions. For customizing the appearance of the
progress bar please refer to progressr
documentation.
ISAnalytics
import functions
familyIn this section we’re going to explain more in detail how functions of the import family should be used, the most common workflows to follow and more.
The vast majority of the functions included in this package is designed to work in combination with VISPA2 pipeline (Giulio Spinozzi Andrea Calabria, 2017). If you don’t know what it is, we strongly recommend you to take a look at these links:
VISPA2 produces a standard file system structure starting from a folder you specify as your workbench or root. The structure always follows this schema:
Most of the functions implemented expect a standard file system structure as the one described above.
We call an “integration matrix” a tabular structure characterized by:
mandatory_IS_vars()
. By default they’re set to
chr
, integration_locus
and
strand
annotation_IS_vars()
. By default they’re set to
GeneName
and GeneStrand
#> # A tibble: 3 × 8
#> chr integration_locus strand GeneName GeneStrand exp1 exp2 exp3
#> <chr> <dbl> <chr> <chr> <chr> <dbl> <dbl> <dbl>
#> 1 1 12324 + NFATC3 + 4553 5345 NA
#> 2 6 657532 + LOC100507487 + 76 545 5
#> 3 7 657532 + EDIL3 - NA 56 NA
The package uses a more compact form of these matrices, limiting the amount of NA values and optimizing time and memory consumption. For more info on this take a look at: Tidy data
While integration matrices contain the actual data, we also need
associated sample metadata to perform the vast majority of the analyses.
ISAnalytics
expects the metadata to be contained in a so
called “association file”, which is a simple tabular file.
To generate a blank association file you can use the function
generate_blank_association_file
. You can also view the
standard column names with association_file_columns()
.
To import metadata we use import_association_file()
.
This function is not only responsible for reading the file into the R
environment as a data frame, but it is capable to perform a file system
alignment operation, that is, for each project and pool contained in the
file, it scans the file system starting from the provided root to check
if the corresponding folders (contained in the appropriate column) can
be found. Remember that to work properly, this operation expects a
standard folder structure, such as the one provided by VISPA2. This
function also produces an interactive HTML report.
fs_path <- generate_default_folder_structure()
withr::with_options(list(ISAnalytics.reports = FALSE), code = {
af <- import_association_file(fs_path$af, root = fs_path$root)
})
#> *** Association file import summary ***
#> ℹ For detailed report please set option 'ISAnalytics.reports' to TRUE
#> Parsing problems detected: FALSE
#> Date parsing problems: FALSE
#> Column problems detected: FALSE
#> NAs found in important columns: FALSE
#> File system alignment: no problems detected
#> # A tibble: 6 × 74
#> ProjectID FUSIONID PoolID TagSequence SubjectID VectorType VectorID
#> <chr> <chr> <chr> <chr> <chr> <chr> <chr>
#> 1 PJ01 ET#382.46 POOL01 LTR75LC38 PT001 lenti GLOBE
#> 2 PJ01 ET#381.40 POOL01 LTR53LC32 PT001 lenti GLOBE
#> 3 PJ01 ET#381.9 POOL01 LTR83LC66 PT001 lenti GLOBE
#> 4 PJ01 ET#381.71 POOL01 LTR27LC94 PT001 lenti GLOBE
#> 5 PJ01 ET#381.2 POOL01 LTR69LC52 PT001 lenti GLOBE
#> 6 PJ01 ET#382.28 POOL01 LTR37LC2 PT001 lenti GLOBE
#> # ℹ 67 more variables: ExperimentID <chr>, Tissue <chr>, TimePoint <chr>,
#> # DNAFragmentation <chr>, PCRMethod <chr>, TagIDextended <chr>,
#> # Keywords <chr>, CellMarker <chr>, TagID <chr>, NGSProvider <chr>,
#> # NGSTechnology <chr>, ConverrtedFilesDir <chr>, ConverrtedFilesName <chr>,
#> # SourceFileFolder <chr>, SourceFileNameR1 <chr>, SourceFileNameR2 <chr>,
#> # DNAnumber <chr>, ReplicateNumber <int>, DNAextractionDate <date>,
#> # DNAngUsed <dbl>, LinearPCRID <chr>, LinearPCRDate <date>, …
You can change several arguments in the function call to modify the behavior of the function.
root
NULL
if you only want to import the
association file without file system alignment. Beware that some of the
automated import functionalities won’t work!proj_folder
(by default
PathToFolderProjectID
) in the file should contain
relative file paths, so if for example your root is set
to “/home” and your project folder in the association file is set to
“/PJ01”, the function will check that the directory exists under
“/home/PJ01”PathToFolderProjectID
column and set root
= “”dates_format
: a string that is useful for properly
parsing dates from tabular formatsseparator
: the column separator used in the file.
Defaults to “\t”, other valid separators are “,” (comma), “;”
(semi-colon)filter_for
: you can set this argument to a
named list of filters, where names are column names.
For example list(ProjectID = "PJ01")
will return only those
rows whose attribute “ProjectID” equals “PJ01”import_iss
: either TRUE
or
FALSE
. If set to TRUE
, performs an internal
call to import_Vispa2_stats()
(see next section), and
appends the imported files to metadataconvert_tp
: either TRUE
or
FALSE
. Converts the column containing the time point
expressed in days in months and years (with custom logic).report_path
NULL
to avoid the production of a report...
: additional named arguments to pass to
import_Vispa2_stats()
if you chose to import VISPA2
statsFor further details view the dedicated function documentation.
NOTE: the function supports files in various formats as long
as the correct separator is provided. It also accepts files in
*.xlsx
and *.xls
formats but we do not
recommend using these since the report won’t include a detailed summary
of potential parsing problems.
The interactive report includes useful information such as
import_iss
was
TRUE
)VISPA2 automatically produces summary files for each pool holding
information that can be useful for other analyses downstream, so it is
recommended to import them in the first steps of the workflow. To do
that, you can use import_VISPA2_stats
:
vispa_stats <- import_Vispa2_stats(
association_file = af,
join_with_af = FALSE,
report_path = NULL
)
#> # A tibble: 6 × 14
#> POOL TAG RUN_NAME PHIX_MAPPING PLASMID_MAPPED_BYPOOL BARCODE_MUX
#> <chr> <chr> <chr> <dbl> <dbl> <dbl>
#> 1 POOL01-1 LTR75LC38 PJ01|POOL01… 43586699 2256176 645026
#> 2 POOL01-1 LTR53LC32 PJ01|POOL01… 43586699 2256176 652208
#> 3 POOL01-1 LTR83LC66 PJ01|POOL01… 43586699 2256176 451519
#> 4 POOL01-1 LTR27LC94 PJ01|POOL01… 43586699 2256176 426500
#> 5 POOL01-1 LTR69LC52 PJ01|POOL01… 43586699 2256176 18300
#> 6 POOL01-1 LTR37LC2 PJ01|POOL01… 43586699 2256176 729327
#> # ℹ 8 more variables: LTR_IDENTIFIED <dbl>, TRIMMING_FINAL_LTRLC <dbl>,
#> # LV_MAPPED <dbl>, BWA_MAPPED_OVERALL <dbl>, ISS_MAPPED_OVERALL <dbl>,
#> # RAW_READS <lgl>, QUALITY_PASSED <lgl>, ISS_MAPPED_PP <lgl>
The function requires as input the imported and file system aligned
association file and it will scan the iss
folder for files
that match some known prefixes (defaults are already provided but you
can change them as you see fit). You can either choose to join the
imported data frames with the association file in input and obtain a
single data frame or keep it as it is, just set the parameter
join_with_af
accordingly. At the end of the process an HTML
report is produced, signaling potential problems.
You can directly call this function when you import the association
file by setting the import_iss
argument of
import_association_file
to TRUE
.
If you want to import a single integration matrix you can do so by
using the import_single_Vispa2Matrix()
function. This
function reads the file and converts it into a tidy structure: several
different formats can be read, since you can specify the column
separator.
matrix_path <- fs::path(
fs_path$root,
"PJ01",
"quantification",
"POOL01-1",
"PJ01_POOL01-1_seqCount_matrix.no0.annotated.tsv.gz"
)
matrix <- import_single_Vispa2Matrix(matrix_path)
#> # A tibble: 802 × 7
#> chr integration_locus strand GeneName GeneStrand CompleteAmplificatio…¹
#> <chr> <int> <chr> <chr> <chr> <chr>
#> 1 16 68164148 + NFATC3 + PJ01_POOL01_LTR75LC38…
#> 2 4 129390130 + LOC100507487 + PJ01_POOL01_LTR75LC38…
#> 3 5 84009671 - EDIL3 - PJ01_POOL01_LTR75LC38…
#> 4 12 54635693 - CBX5 - PJ01_POOL01_LTR75LC38…
#> 5 2 181930711 + UBE2E3 + PJ01_POOL01_LTR75LC38…
#> 6 20 35920986 + MANBAL + PJ01_POOL01_LTR75LC38…
#> 7 22 26900625 + TFIP11 - PJ01_POOL01_LTR75LC38…
#> 8 3 106580075 + LINC00882 - PJ01_POOL01_LTR75LC38…
#> 9 1 16186297 - SPEN + PJ01_POOL01_LTR75LC38…
#> 10 17 61712419 + MAP3K3 + PJ01_POOL01_LTR75LC38…
#> # ℹ 792 more rows
#> # ℹ abbreviated name: ¹CompleteAmplificationID
#> # ℹ 1 more variable: Value <int>
For details on usage and arguments view the dedicated function documentation.
Integration matrices import can be automated when when the
association file is imported with the file system alignment option.
ISAnalytics
provides a function,
import_parallel_Vispa2Matrices()
, that allows to do just
that in a fast and efficient way.
Let’s see how the behavior of the function changes when we change arguments.
association_file
argumentYou can supply a data frame object, imported via
import_association_file()
(see Section @ref(metadata)) or a
string (the path to the association file on disk). In the first scenario
it is necessary to perform file system alignment, since the function
scans the folders contained in the column Path_quant
, while
in the second case you should also provide as additional
named argument (to ...
) an appropriate
root
: the function will internally call
import_association_file()
, if you don’t have specific needs
we recommend doing the 2 steps separately and provide the association
file as a data frame.
quantification_type
argumentFor each pool there may be multiple available quantification types,
that is, different matrices containing the same samples and same genomic
features but a different quantification. A typical workflow contemplates
seqCount
and fragmentEstimate
, all the
supported quantification types can be viewed with
quantification_types()
.
matrix_type
argumentAs we mentioned in Section @ref(notation), annotation columns are
optional and may not be included in some matrices. This argument allows
you to specify the function to look for only a specific type of matrix,
either annotated
or not_annotated
.
File suffixes for matrices are specified via
matrix_file_suffixes()
.
workers
argumentSets the number of parallel workers to set up. This highly depends on the hardware configuration of your machine.
multi_quant_matrix
argumentWhen importing more than one quantification at once, it can be very
handy to have all data in a single data frame rather than two. If set to
TRUE
the function will internally call
comparison_matrix()
and produce a single data frames that
has a dedicated column for each quantification. For example, for the
matrices we’ve imported before:
#> # A tibble: 6 × 8
#> chr integration_locus strand GeneName GeneStrand CompleteAmplificationID
#> <chr> <int> <chr> <chr> <chr> <chr>
#> 1 16 68164148 + NFATC3 + PJ01_POOL01_LTR75LC38_…
#> 2 4 129390130 + LOC100507487 + PJ01_POOL01_LTR75LC38_…
#> 3 5 84009671 - EDIL3 - PJ01_POOL01_LTR75LC38_…
#> 4 12 54635693 - CBX5 - PJ01_POOL01_LTR75LC38_…
#> 5 2 181930711 + UBE2E3 + PJ01_POOL01_LTR75LC38_…
#> 6 20 35920986 + MANBAL + PJ01_POOL01_LTR75LC38_…
#> # ℹ 2 more variables: fragmentEstimate <dbl>, seqCount <int>
report_path
argumentAs other import functions, also
import_parallel_Vispa2Matrices()
produces an interactive
report, use this argument to set the appropriate path were the report
should be saved.
mode
argumentSince ISAnalytics 1.8.3
this argument can only be set to
AUTO
.
What do you want to import?
In a fully automated mode, the function will try to import everything
that is contained in the input association file. This means that if you
need to import only a specific set of projects/pools, you will need to
filter the association file accordingly prior calling the function (you
can easily do that via the filter_for
argument as explained
in Section @ref(metadata)).
How to deal with duplicates?
When scanning folders for files that match a given pattern (in our case
the function looks for matrices that match the quantification type and
the matrix type), it is very possible that the same folder contains
multiple files for the same quantification. Of course this is not
recommended, we suggest to move the duplicated files in a sub directory
or remove them if they’re not necessary, but in case this happens, you
need to set two other arguments (described in the next sub sections) to
“help” the function discriminate between duplicates. Please note that if
such discrimination is not possible no files are imported.
patterns
argumentProviding a set of patterns (interpreted as regular expressions) helps the function to choose between duplicated files if any are found. If you’re confident your folders don’t contain any duplicates feel free to ignore this argument.
matching_opt
argumentThis argument is relevant only if patterns
isn’t
NULL
. Tells the function how to match the given patterns if
multiple are supplied: ALL
means keep only those files
whose name matches all the given patterns, ANY
means keep
only those files whose name matches any of the given patterns and
OPTIONAL
expresses a preference, try to find files that
contain the patterns and if you don’t find any return whatever you
find.
...
argumentAdditional named arguments to supply to
comparison_matrix()
and
import_single_Vispa2_matrix
Earlier versions of the package featured two separated functions,
import_parallel_Vispa2Matrices_auto()
and
import_parallel_Vispa2Matrices_interactive()
. Those
functions are now officially deprecated (since
ISAnalytics 1.3.3
) and will be defunct on the next release
cycle.
This section goes more in detail on some data cleaning and pre-processing operations you can perform with this package.
ISAnalytics offers several different functions for cleaning and pre-processing your data.
compute_near_integrations()
outlier_filter()
remove_collisions()
purity_filter()
aggregate_values_by_key()
,
aggregate_metadata()
In this section we illustrate the functions dedicated to collision removal.
We’re not going into too much detail here, but we’re going to explain in a very simple way what a “collision” is and how the function in this package deals with them.
We say that an integration (aka a unique combination of
mandatory_IS_vars()
) is a collision if this
combination is shared between different independent samples: an
independent sample is a unique combination of metadata fields specified
by the user. The reason behind this is that it’s highly improbable to
observe the very same integration in two different independent samples
and this phenomenon might be an indicator of some kind of contamination
in the sequencing phase or in PCR phase, for this reason we might want
to exclude such contamination from our analysis.
ISAnalytics
provides a function that processes the imported
data for the removal or reassignment of these “problematic”
integrations, remove_collisions()
.
The processing is done using the sequence count value, so the corresponding matrix is needed for this operation.
The remove_collisions()
function follows several logical
steps to decide whether an integration is a collision and if it is it
decides whether to re-assign it or remove it entirely based on different
criteria.
The function uses the information stored in the association file to assess which independent samples are present and counts the number of independent samples for each integration: those who have a count > 1 are considered collisions.
chr | integration_locus | strand | seqCount | CompleteAmplificationID | SubjectID | ProjectID |
---|---|---|---|---|---|---|
1 | 123454 | + | 653 | SAMPLE1 | SUBJ01 | PJ01 |
1 | 123454 | + | 456 | SAMPLE2 | SUBJ02 | PJ01 |
Once the collisions are identified, the function follows 3 steps where it tries to re-assign the combination to a single independent sample. The criteria are:
reads_ratio
), the default value is 10.If none of the criteria were sufficient to make a decision, the integration is simply removed from the matrix.
data("integration_matrices", package = "ISAnalytics")
data("association_file", package = "ISAnalytics")
## Multi quantification matrix
no_coll <- remove_collisions(
x = integration_matrices,
association_file = association_file,
report_path = NULL
)
#> Identifying collisions...
#> Processing collisions...
#> Finished!
## Matrix list
separated <- separate_quant_matrices(integration_matrices)
no_coll_list <- remove_collisions(
x = separated,
association_file = association_file,
report_path = NULL
)
#> Identifying collisions...
#> Processing collisions...
#> Finished!
## Only sequence count
no_coll_single <- remove_collisions(
x = separated$seqCount,
association_file = association_file,
quant_cols = c(seqCount = "Value"),
report_path = NULL
)
#> Identifying collisions...
#> Processing collisions...
#> Finished!
Important notes on the association file:
The function accepts different inputs, namely:
quantification_types()
If the option ISAnalytics.reports
is active, an
interactive report in HTML format will be produced at the specified
path.
If you’ve given as input the standalone sequence count matrix to
remove_collisions()
, to realign other matrices you have to
call the function realign_after_collisions()
, passing as
input the processed sequence count matrix and the named list of other
matrices to realign. NOTE: the names in the list must be
quantification types.
In this section we’re going to explain in detail how to use functions of the aggregate family, namely:
aggregate_metadata()
aggregate_values_by_key()
We refer to information contained in the association file as
“metadata”: sometimes it’s useful to obtain collective information based
on a certain group of variables we’re interested in. The function
aggregate_metadata()
does just that: according to the
grouping variables, meaning the names of the columns in the association
file to perform a group_by
operation with,it creates a
summary. You can fully customize the summary by providing a “function
table” that tells the function which operation should be applied to
which column and what name to give to the output column. A default is
already supplied:
#> # A tibble: 15 × 4
#> Column Function Args Output_colname
#> <chr> <list> <lgl> <chr>
#> 1 FusionPrimerPCRDate <formula> NA {.col}_min
#> 2 LinearPCRDate <formula> NA {.col}_min
#> 3 VCN <formula> NA {.col}_avg
#> 4 ng DNA corrected <formula> NA {.col}_avg
#> 5 Kapa <formula> NA {.col}_avg
#> 6 ng DNA corrected <formula> NA {.col}_sum
#> 7 ulForPool <formula> NA {.col}_sum
#> 8 BARCODE_MUX <formula> NA {.col}_sum
#> 9 TRIMMING_FINAL_LTRLC <formula> NA {.col}_sum
#> 10 LV_MAPPED <formula> NA {.col}_sum
#> 11 BWA_MAPPED_OVERALL <formula> NA {.col}_sum
#> 12 ISS_MAPPED_OVERALL <formula> NA {.col}_sum
#> 13 PCRMethod <formula> NA {.col}
#> 14 NGSTechnology <formula> NA {.col}
#> 15 DNAnumber <formula> NA {.col}
You can either provide purrr-style lambdas (as given in the example
above), or simply specify the name of the function and additional
parameters as a list in a separated column. If you choose to provide
your own table you should maintain the column names for the function to
work properly. For more details on this take a look at the function
documentation ?default_meta_agg
.
import_assocition_file()
. If you need more information on
import function please view the vignette “How to use import functions”:
vignette("how_to_import_functions", package="ISAnalytics")
.data("association_file", package = "ISAnalytics")
aggregated_meta <- aggregate_metadata(association_file = association_file)
#> # A tibble: 20 × 19
#> SubjectID CellMarker Tissue TimePoint FusionPrimerPCRDate_min
#> <chr> <chr> <chr> <chr> <date>
#> 1 PT001 MNC BM 0030 2016-11-03
#> 2 PT001 MNC BM 0060 2016-11-03
#> 3 PT001 MNC BM 0090 2016-11-03
#> 4 PT001 MNC BM 0180 2016-11-03
#> 5 PT001 MNC BM 0360 2017-04-21
#> 6 PT001 MNC PB 0030 2016-11-03
#> 7 PT001 MNC PB 0060 2016-11-03
#> 8 PT001 MNC PB 0090 2016-11-03
#> 9 PT001 MNC PB 0180 2016-11-03
#> 10 PT001 MNC PB 0360 2017-04-21
#> 11 PT002 MNC BM 0030 2017-04-21
#> 12 PT002 MNC BM 0060 2017-05-05
#> 13 PT002 MNC BM 0090 2017-05-05
#> 14 PT002 MNC BM 0180 2017-05-16
#> 15 PT002 MNC BM 0360 2018-03-12
#> 16 PT002 MNC PB 0030 2017-04-21
#> 17 PT002 MNC PB 0060 2017-05-05
#> 18 PT002 MNC PB 0090 2017-05-05
#> 19 PT002 MNC PB 0180 2017-05-05
#> 20 PT002 MNC PB 0360 2018-03-12
#> # ℹ 14 more variables: LinearPCRDate_min <date>, VCN_avg <dbl>,
#> # `ng DNA corrected_avg` <dbl>, Kapa_avg <dbl>, `ng DNA corrected_sum` <dbl>,
#> # ulForPool_sum <dbl>, BARCODE_MUX_sum <int>, TRIMMING_FINAL_LTRLC_sum <int>,
#> # LV_MAPPED_sum <int>, BWA_MAPPED_OVERALL_sum <int>,
#> # ISS_MAPPED_OVERALL_sum <int>, PCRMethod <chr>, NGSTechnology <chr>,
#> # DNAnumber <chr>
ISAnalytics
contains useful functions to aggregate the
values contained in your imported matrices based on a key, aka a single
column or a combination of columns contained in the association file
that are related to the samples.
import_parallel_Vispa2Matrices()
data("integration_matrices", package = "ISAnalytics")
data("association_file", package = "ISAnalytics")
aggreg <- aggregate_values_by_key(
x = integration_matrices,
association_file = association_file,
value_cols = c("seqCount", "fragmentEstimate")
)
#> # A tibble: 1,074 × 11
#> chr integration_locus strand GeneName GeneStrand SubjectID CellMarker
#> <chr> <dbl> <chr> <chr> <chr> <chr> <chr>
#> 1 1 8464757 - RERE - PT001 MNC
#> 2 1 8464757 - RERE - PT001 MNC
#> 3 1 8607357 + RERE - PT001 MNC
#> 4 1 8607357 + RERE - PT001 MNC
#> 5 1 8607357 + RERE - PT001 MNC
#> 6 1 8607362 - RERE - PT001 MNC
#> 7 1 8850362 + RERE - PT002 MNC
#> 8 1 11339120 + UBIAD1 + PT001 MNC
#> 9 1 11339120 + UBIAD1 + PT001 MNC
#> 10 1 11339120 + UBIAD1 + PT001 MNC
#> Tissue TimePoint seqCount_sum fragmentEstimate_sum
#> <chr> <chr> <dbl> <dbl>
#> 1 BM 0030 542 3.01
#> 2 BM 0060 1 1.00
#> 3 BM 0060 1 1.00
#> 4 BM 0180 1096 5.01
#> 5 BM 0360 330 34.1
#> 6 BM 0180 1702 4.01
#> 7 BM 0360 562 3.01
#> 8 BM 0060 1605 8.03
#> 9 PB 0060 1 1.00
#> 10 PB 0180 1 1.00
#> # ℹ 1,064 more rows
The function aggregate_values_by_key
can perform the
aggregation both on the list of matrices and a single matrix.
The function has several different parameters that have default values that can be changed according to user preference.
key
valuec("SubjectID", "CellMarker", "Tissue", "TimePoint")
(same
default key as the aggregate_metadata
function).agg1 <- aggregate_values_by_key(
x = integration_matrices,
association_file = association_file,
key = c("SubjectID", "ProjectID"),
value_cols = c("seqCount", "fragmentEstimate")
)
#> # A tibble: 577 × 9
#> chr integration_locus strand GeneName GeneStrand SubjectID ProjectID
#> <chr> <dbl> <chr> <chr> <chr> <chr> <chr>
#> 1 1 8464757 - RERE - PT001 PJ01
#> 2 1 8607357 + RERE - PT001 PJ01
#> 3 1 8607362 - RERE - PT001 PJ01
#> 4 1 8850362 + RERE - PT002 PJ01
#> 5 1 11339120 + UBIAD1 + PT001 PJ01
#> 6 1 12341466 - VPS13D + PT002 PJ01
#> 7 1 14034054 - PRDM2 + PT002 PJ01
#> 8 1 16186297 - SPEN + PT001 PJ01
#> 9 1 16602483 + FBXO42 - PT001 PJ01
#> 10 1 16602483 + FBXO42 - PT002 PJ01
#> seqCount_sum fragmentEstimate_sum
#> <dbl> <dbl>
#> 1 543 4.01
#> 2 1427 40.1
#> 3 1702 4.01
#> 4 562 3.01
#> 5 1607 10.0
#> 6 1843 8.05
#> 7 1938 3.01
#> 8 3494 16.1
#> 9 2947 9.04
#> 10 30 2.00
#> # ℹ 567 more rows
lambda
valuelambda
parameter indicates the function(s) to be
applied to the values for aggregation. lambda
must be a
named list of either functions or purrr-style lambdas: if you would like
to specify additional parameters to the function the second option is
recommended. The only important note on functions is that they should
perform some kind of aggregation on numeric values: this means in
practical terms they need to accept a vector of numeric/integer values
as input and produce a SINGLE value as output. Valid options for this
purpose might be: sum
, mean
,
median
, min
, max
and so on.agg2 <- aggregate_values_by_key(
x = integration_matrices,
association_file = association_file,
key = "SubjectID",
lambda = list(mean = ~ mean(.x, na.rm = TRUE)),
value_cols = c("seqCount", "fragmentEstimate")
)
#> # A tibble: 577 × 8
#> chr integration_locus strand GeneName GeneStrand SubjectID seqCount_mean
#> <chr> <dbl> <chr> <chr> <chr> <chr> <dbl>
#> 1 1 8464757 - RERE - PT001 272.
#> 2 1 8607357 + RERE - PT001 285.
#> 3 1 8607362 - RERE - PT001 851
#> 4 1 8850362 + RERE - PT002 562
#> 5 1 11339120 + UBIAD1 + PT001 321.
#> 6 1 12341466 - VPS13D + PT002 1843
#> 7 1 14034054 - PRDM2 + PT002 1938
#> 8 1 16186297 - SPEN + PT001 699.
#> 9 1 16602483 + FBXO42 - PT001 982.
#> 10 1 16602483 + FBXO42 - PT002 30
#> fragmentEstimate_mean
#> <dbl>
#> 1 2.01
#> 2 8.02
#> 3 2.01
#> 4 3.01
#> 5 2.01
#> 6 8.05
#> 7 3.01
#> 8 3.22
#> 9 3.01
#> 10 2.00
#> # ℹ 567 more rows
Note that, when specifying purrr-style lambdas (formulas), the first
parameter needs to be set to .x
, other parameters can be
set as usual.
You can also use in lambda
functions that produce data
frames or lists. In this case all variables from the produced data frame
will be included in the final data frame. For example:
agg3 <- aggregate_values_by_key(
x = integration_matrices,
association_file = association_file,
key = "SubjectID",
lambda = list(describe = ~ list(psych::describe(.x))),
value_cols = c("seqCount", "fragmentEstimate")
)
#> # A tibble: 577 × 8
#> chr integration_locus strand GeneName GeneStrand SubjectID
#> <chr> <dbl> <chr> <chr> <chr> <chr>
#> 1 1 8464757 - RERE - PT001
#> 2 1 8607357 + RERE - PT001
#> 3 1 8607362 - RERE - PT001
#> 4 1 8850362 + RERE - PT002
#> 5 1 11339120 + UBIAD1 + PT001
#> 6 1 12341466 - VPS13D + PT002
#> 7 1 14034054 - PRDM2 + PT002
#> 8 1 16186297 - SPEN + PT001
#> 9 1 16602483 + FBXO42 - PT001
#> 10 1 16602483 + FBXO42 - PT002
#> seqCount_describe fragmentEstimate_describe
#> <list> <list>
#> 1 <psych [1 × 13]> <psych [1 × 13]>
#> 2 <psych [1 × 13]> <psych [1 × 13]>
#> 3 <psych [1 × 13]> <psych [1 × 13]>
#> 4 <psych [1 × 13]> <psych [1 × 13]>
#> 5 <psych [1 × 13]> <psych [1 × 13]>
#> 6 <psych [1 × 13]> <psych [1 × 13]>
#> 7 <psych [1 × 13]> <psych [1 × 13]>
#> 8 <psych [1 × 13]> <psych [1 × 13]>
#> 9 <psych [1 × 13]> <psych [1 × 13]>
#> 10 <psych [1 × 13]> <psych [1 × 13]>
#> # ℹ 567 more rows
value_cols
valuevalue_cols
parameter tells the function on which
numeric columns of x the functions should be applied. Note that every
function contained in lambda
will be applied to every
column in value_cols
: resulting columns will be named as
“original name_function applied”.agg4 <- aggregate_values_by_key(
x = integration_matrices,
association_file = association_file,
key = "SubjectID",
lambda = list(sum = sum, mean = mean),
value_cols = c("seqCount", "fragmentEstimate")
)
#> # A tibble: 577 × 10
#> chr integration_locus strand GeneName GeneStrand SubjectID seqCount_sum
#> <chr> <dbl> <chr> <chr> <chr> <chr> <dbl>
#> 1 1 8464757 - RERE - PT001 543
#> 2 1 8607357 + RERE - PT001 1427
#> 3 1 8607362 - RERE - PT001 1702
#> 4 1 8850362 + RERE - PT002 562
#> 5 1 11339120 + UBIAD1 + PT001 1607
#> 6 1 12341466 - VPS13D + PT002 1843
#> 7 1 14034054 - PRDM2 + PT002 1938
#> 8 1 16186297 - SPEN + PT001 3494
#> 9 1 16602483 + FBXO42 - PT001 2947
#> 10 1 16602483 + FBXO42 - PT002 30
#> seqCount_mean fragmentEstimate_sum fragmentEstimate_mean
#> <dbl> <dbl> <dbl>
#> 1 272. 4.01 2.01
#> 2 285. 40.1 8.02
#> 3 851 4.01 2.01
#> 4 562 3.01 3.01
#> 5 321. 10.0 2.01
#> 6 1843 8.05 8.05
#> 7 1938 3.01 3.01
#> 8 699. 16.1 3.22
#> 9 982. 9.04 3.01
#> 10 30 2.00 2.00
#> # ℹ 567 more rows
group
valuegroup
parameter should contain all other variables to
include in the grouping besides key
. By default this
contains
c("chr", "integration_locus","strand", "GeneName", "GeneStrand")
.
You can change this grouping as you see fit, if you don’t want to add
any other variable to the key, just set it to NULL
.agg5 <- aggregate_values_by_key(
x = integration_matrices,
association_file = association_file,
key = "SubjectID",
lambda = list(sum = sum, mean = mean),
group = c(mandatory_IS_vars()),
value_cols = c("seqCount", "fragmentEstimate")
)
#> # A tibble: 577 × 8
#> chr integration_locus strand SubjectID seqCount_sum seqCount_mean
#> <chr> <dbl> <chr> <chr> <dbl> <dbl>
#> 1 1 8464757 - PT001 543 272.
#> 2 1 8607357 + PT001 1427 285.
#> 3 1 8607362 - PT001 1702 851
#> 4 1 8850362 + PT002 562 562
#> 5 1 11339120 + PT001 1607 321.
#> 6 1 12341466 - PT002 1843 1843
#> 7 1 14034054 - PT002 1938 1938
#> 8 1 16186297 - PT001 3494 699.
#> 9 1 16602483 + PT001 2947 982.
#> 10 1 16602483 + PT002 30 30
#> fragmentEstimate_sum fragmentEstimate_mean
#> <dbl> <dbl>
#> 1 4.01 2.01
#> 2 40.1 8.02
#> 3 4.01 2.01
#> 4 3.01 3.01
#> 5 10.0 2.01
#> 6 8.05 8.05
#> 7 3.01 3.01
#> 8 16.1 3.22
#> 9 9.04 3.01
#> 10 2.00 2.00
#> # ℹ 567 more rows
R
session information.
#> ─ Session info ───────────────────────────────────────────────────────────────────────────────────────────────────────
#> setting value
#> version R version 4.4.2 (2024-10-31)
#> os Ubuntu 24.04.1 LTS
#> system x86_64, linux-gnu
#> ui X11
#> language (EN)
#> collate C
#> ctype en_US.UTF-8
#> tz Etc/UTC
#> date 2024-11-18
#> pandoc 3.2.1 @ /usr/local/bin/ (via rmarkdown)
#>
#> ─ Packages ───────────────────────────────────────────────────────────────────────────────────────────────────────────
#> package * version date (UTC) lib source
#> backports 1.5.0 2024-05-23 [2] RSPM (R 4.4.0)
#> bibtex 0.5.1 2023-01-26 [2] RSPM (R 4.4.0)
#> BiocManager 1.30.25 2024-08-28 [2] RSPM (R 4.4.0)
#> BiocParallel 1.41.0 2024-10-30 [2] https://bioc.r-universe.dev (R 4.4.1)
#> BiocStyle * 2.35.0 2024-10-30 [2] https://bioc.r-universe.dev (R 4.4.1)
#> bit 4.5.0 2024-09-20 [2] RSPM (R 4.4.0)
#> bit64 4.5.2 2024-09-22 [2] RSPM (R 4.4.0)
#> bslib 0.8.0 2024-07-29 [2] RSPM (R 4.4.0)
#> buildtools 1.0.0 2024-11-11 [3] local (/pkg)
#> cachem 1.1.0 2024-05-16 [2] RSPM (R 4.4.0)
#> cellranger 1.1.0 2016-07-27 [2] RSPM (R 4.4.0)
#> class 7.3-22 2023-05-03 [2] RSPM (R 4.4.0)
#> classInt 0.4-10 2023-09-05 [2] RSPM (R 4.4.0)
#> cli 3.6.3 2024-06-21 [2] RSPM (R 4.4.0)
#> cluster 2.1.6 2023-12-01 [2] RSPM (R 4.4.0)
#> codetools 0.2-20 2024-03-31 [2] RSPM (R 4.4.0)
#> colorspace 2.1-1 2024-07-26 [2] RSPM (R 4.4.0)
#> crayon 1.5.3 2024-06-20 [2] RSPM (R 4.4.0)
#> crosstalk 1.2.1 2023-11-23 [2] RSPM (R 4.4.0)
#> data.table 1.16.2 2024-10-10 [2] RSPM (R 4.4.0)
#> datamods 1.5.3 2024-10-02 [2] RSPM (R 4.4.0)
#> digest 0.6.37 2024-08-19 [2] RSPM (R 4.4.0)
#> doFuture 1.0.1 2023-12-20 [2] RSPM (R 4.4.0)
#> dplyr 1.1.4 2023-11-17 [2] RSPM (R 4.4.0)
#> DT * 0.33 2024-04-04 [2] RSPM (R 4.4.0)
#> e1071 1.7-16 2024-09-16 [2] RSPM (R 4.4.0)
#> eulerr 7.0.2 2024-03-28 [2] RSPM (R 4.4.0)
#> evaluate 1.0.1 2024-10-10 [2] RSPM (R 4.4.0)
#> fansi 1.0.6 2023-12-08 [2] RSPM (R 4.4.0)
#> farver 2.1.2 2024-05-13 [2] RSPM (R 4.4.0)
#> fastmap 1.2.0 2024-05-15 [2] RSPM (R 4.4.0)
#> foreach 1.5.2 2022-02-02 [2] RSPM (R 4.4.0)
#> fs 1.6.5 2024-10-30 [2] RSPM (R 4.4.0)
#> future 1.34.0 2024-07-29 [2] RSPM (R 4.4.0)
#> future.apply 1.11.3 2024-10-27 [2] RSPM (R 4.4.0)
#> generics 0.1.3 2022-07-05 [2] RSPM (R 4.4.0)
#> ggplot2 3.5.1 2024-04-23 [2] RSPM (R 4.4.0)
#> globals 0.16.3 2024-03-08 [2] RSPM (R 4.4.0)
#> glue 1.8.0 2024-09-30 [2] RSPM (R 4.4.0)
#> gtable 0.3.6 2024-10-25 [2] RSPM (R 4.4.0)
#> gtools 3.9.5 2023-11-20 [2] RSPM (R 4.4.0)
#> hms 1.1.3 2023-03-21 [2] RSPM (R 4.4.0)
#> htmltools 0.5.8.1 2024-04-04 [2] RSPM (R 4.4.0)
#> htmlwidgets 1.6.4 2023-12-06 [2] RSPM (R 4.4.0)
#> httpuv 1.6.15 2024-03-26 [2] RSPM (R 4.4.0)
#> httr 1.4.7 2023-08-15 [2] RSPM (R 4.4.0)
#> ISAnalytics * 1.17.0 2024-11-18 [1] https://bioc.r-universe.dev (R 4.4.2)
#> iterators 1.0.14 2022-02-05 [2] RSPM (R 4.4.0)
#> jquerylib 0.1.4 2021-04-26 [2] RSPM (R 4.4.0)
#> jsonlite 1.8.9 2024-09-20 [2] RSPM (R 4.4.0)
#> KernSmooth 2.23-24 2024-05-17 [2] RSPM (R 4.4.0)
#> knitr 1.49 2024-11-08 [2] RSPM (R 4.4.0)
#> labeling 0.4.3 2023-08-29 [2] RSPM (R 4.4.0)
#> later 1.3.2 2023-12-06 [2] RSPM (R 4.4.0)
#> lattice 0.22-6 2024-03-20 [2] RSPM (R 4.4.0)
#> lifecycle 1.0.4 2023-11-07 [2] RSPM (R 4.4.0)
#> listenv 0.9.1 2024-01-29 [2] RSPM (R 4.4.0)
#> lubridate 1.9.3 2023-09-27 [2] RSPM (R 4.4.0)
#> magrittr 2.0.3 2022-03-30 [2] RSPM (R 4.4.0)
#> maketools 1.3.1 2024-10-04 [3] RSPM (R 4.4.0)
#> MASS 7.3-61 2024-06-13 [2] RSPM (R 4.4.0)
#> Matrix 1.7-1 2024-10-18 [2] RSPM (R 4.4.0)
#> mgcv 1.9-1 2023-12-21 [2] RSPM (R 4.4.0)
#> mime 0.12 2021-09-28 [2] RSPM (R 4.4.0)
#> mnormt 2.1.1 2022-09-26 [2] RSPM (R 4.4.0)
#> munsell 0.5.1 2024-04-01 [2] RSPM (R 4.4.0)
#> nlme 3.1-166 2024-08-14 [2] RSPM (R 4.4.0)
#> parallelly 1.39.0 2024-11-07 [2] RSPM (R 4.4.0)
#> permute 0.9-7 2022-01-27 [2] RSPM (R 4.4.0)
#> phosphoricons 0.2.1 2024-04-08 [2] RSPM (R 4.4.0)
#> pillar 1.9.0 2023-03-22 [2] RSPM (R 4.4.0)
#> pkgconfig 2.0.3 2019-09-22 [2] RSPM (R 4.4.0)
#> plyr 1.8.9 2023-10-02 [2] RSPM (R 4.4.0)
#> polyclip 1.10-7 2024-07-23 [2] RSPM (R 4.4.0)
#> polylabelr 0.2.0 2020-04-19 [2] RSPM (R 4.4.0)
#> progressr 0.15.0 2024-10-29 [2] RSPM (R 4.4.0)
#> promises 1.3.0 2024-04-05 [2] RSPM (R 4.4.0)
#> proxy 0.4-27 2022-06-09 [2] RSPM (R 4.4.0)
#> psych 2.4.6.26 2024-06-27 [2] RSPM (R 4.4.0)
#> purrr 1.0.2 2023-08-10 [2] RSPM (R 4.4.0)
#> R.methodsS3 1.8.2 2022-06-13 [2] RSPM (R 4.4.0)
#> R.oo 1.27.0 2024-11-01 [2] RSPM (R 4.4.0)
#> R.utils 2.12.3 2023-11-18 [2] RSPM (R 4.4.0)
#> R6 2.5.1 2021-08-19 [2] RSPM (R 4.4.0)
#> Rcpp 1.0.13-1 2024-11-02 [2] RSPM (R 4.4.0)
#> reactable 0.4.4 2023-03-12 [2] RSPM (R 4.4.0)
#> readr 2.1.5 2024-01-10 [2] RSPM (R 4.4.0)
#> readxl 1.4.3 2023-07-06 [2] RSPM (R 4.4.0)
#> RefManageR * 1.4.0 2022-09-30 [2] RSPM (R 4.4.0)
#> rio 1.2.3 2024-09-25 [2] RSPM (R 4.4.0)
#> rlang 1.1.4 2024-06-04 [2] RSPM (R 4.4.0)
#> rmarkdown 2.29 2024-11-04 [2] RSPM (R 4.4.0)
#> sass 0.4.9 2024-03-15 [2] RSPM (R 4.4.0)
#> scales 1.3.0 2023-11-28 [2] RSPM (R 4.4.0)
#> sessioninfo * 1.2.2 2021-12-06 [2] RSPM (R 4.4.0)
#> shiny 1.9.1 2024-08-01 [2] RSPM (R 4.4.0)
#> shinybusy 0.3.3 2024-03-09 [2] RSPM (R 4.4.0)
#> shinyWidgets 0.8.7 2024-09-23 [2] RSPM (R 4.4.0)
#> stringi 1.8.4 2024-05-06 [2] RSPM (R 4.4.0)
#> stringr 1.5.1 2023-11-14 [2] RSPM (R 4.4.0)
#> sys 3.4.3 2024-10-04 [2] RSPM (R 4.4.0)
#> tibble 3.2.1 2023-03-20 [2] RSPM (R 4.4.0)
#> tidyr 1.3.1 2024-01-24 [2] RSPM (R 4.4.0)
#> tidyselect 1.2.1 2024-03-11 [2] RSPM (R 4.4.0)
#> timechange 0.3.0 2024-01-18 [2] RSPM (R 4.4.0)
#> toastui 0.3.4 2024-09-18 [2] RSPM (R 4.4.0)
#> tzdb 0.4.0 2023-05-12 [2] RSPM (R 4.4.0)
#> utf8 1.2.4 2023-10-22 [2] RSPM (R 4.4.0)
#> vctrs 0.6.5 2023-12-01 [2] RSPM (R 4.4.0)
#> vegan 2.6-8 2024-08-28 [2] RSPM (R 4.4.0)
#> vroom 1.6.5 2023-12-05 [2] RSPM (R 4.4.0)
#> withr 3.0.2 2024-10-28 [2] RSPM (R 4.4.0)
#> writexl 1.5.1 2024-10-04 [2] RSPM (R 4.4.0)
#> xfun 0.49 2024-10-31 [2] RSPM (R 4.4.0)
#> xml2 1.3.6 2023-12-04 [2] RSPM (R 4.4.0)
#> xtable 1.8-4 2019-04-21 [2] RSPM (R 4.4.0)
#> yaml 2.3.10 2024-07-26 [2] RSPM (R 4.4.0)
#>
#> [1] /tmp/Rtmp26O5SP/Rinst1c9924c966c0
#> [2] /github/workspace/pkglib
#> [3] /usr/local/lib/R/site-library
#> [4] /usr/lib/R/site-library
#> [5] /usr/lib/R/library
#>
#> ──────────────────────────────────────────────────────────────────────────────────────────────────────────────────────
This vignette was generated using BiocStyle (Oleś, 2024) with knitr (Xie, 2024) and rmarkdown (Allaire, Xie, Dervieux, McPherson, Luraschi, Ushey, Atkins, Wickham, Cheng, Chang, and Iannone, 2024) running behind the scenes.
Citations made with RefManageR (McLean, 2017).
[1] J. Allaire, Y. Xie, C. Dervieux, et al. rmarkdown: Dynamic Documents for R. R package version 2.29. 2024. URL: https://github.com/rstudio/rmarkdown.
[2] S. B. Giulio Spinozzi Andrea Calabria. “VISPA2: a scalable pipeline for high-throughput identification and annotation of vector integration sites”. In: BMC Bioinformatics (Nov. 25, 2017). DOI: 10.1186/s12859-017-1937-9.
[3] M. W. McLean. “RefManageR: Import and Manage BibTeX and BibLaTeX References in R”. In: The Journal of Open Source Software (2017). DOI: 10.21105/joss.00338.
[4] A. Oleś. BiocStyle: Standard styles for vignettes and other Bioconductor documents. R package version 2.35.0. 2024. URL: https://github.com/Bioconductor/BiocStyle.
[5] Y. Xie. knitr: A General-Purpose Package for Dynamic Report Generation in R. R package version 1.49. 2024. URL: https://yihui.org/knitr/.