Title: | Set of 3D genomic interaction analysis tools |
---|---|
Description: | This package provides a set of functions useful in the analysis of 3D genomic interactions. It includes the import of standard HiC data formats into R and HiC normalisation procedures. The main objective of this package is to improve the visualization and quantification of the analysis of HiC contacts through aggregation. The package allows to import 1D genomics data, such as peaks from ATACSeq, ChIPSeq, to create potential couples between features of interest under user-defined parameters such as distance between pairs of features of interest. It allows then the extraction of contact values from the HiC data for these couples and to perform Aggregated Peak Analysis (APA) for visualization, but also to compare normalized contact values between conditions. Overall the package allows to integrate 1D genomics data with 3D genomics data, providing an easy access to HiC contact values. |
Authors: | Robel Tesfaye [aut, ctb] , David Depierre [aut], Naomi Schickele [ctb], Nicolas Chanard [aut], Refka Askri [ctb], Stéphane Schaak [aut, ctb], Pascal Martin [ctb], Olivier Cuvier [cre, ctb] |
Maintainer: | Olivier Cuvier <[email protected]> |
License: | MIT + file LICENSE |
Version: | 1.3.0 |
Built: | 2024-12-25 05:47:29 UTC |
Source: | https://github.com/bioc/HicAggR |
Aggregates all the matrices of a list (or two lists in case of differential aggregation) into a single matrix. This function allows to apply different aggregation (average, sum, ...), and differential (subtraction, ratio, ...) functions.
Aggregation( ctrlMatrices = NULL, matrices = NULL, aggFun = "mean", diffFun = "substraction", scaleCorrection = FALSE, correctionArea = NULL, statCompare = FALSE )
Aggregation( ctrlMatrices = NULL, matrices = NULL, aggFun = "mean", diffFun = "substraction", scaleCorrection = FALSE, correctionArea = NULL, statCompare = FALSE )
ctrlMatrices |
<listmatrix>: The matrices list to aggregate as control. |
matrices |
<listmatrix>: The matrices list to aggregate. |
aggFun |
: The function used to aggregate each pixel in matrix. If the parameter is a character so:
|
diffFun |
: The function used to compute differential. If the parameter is character so:
|
scaleCorrection |
: Whether a correction should be done on the median value take in ane noising area. (Default TRUE) |
correctionArea |
: Nested list of indice that define a noising area fore correction. List must contain in first an element "i" (row indices) then an element called "j" (columns indices). If NULL automatically take in upper left part of aggregated matrices. (Default NULL) |
statCompare |
: Whether a t.test must be apply to each pixel of the differential aggregated matrix. |
Aggregation
A matrix
# Data data(Beaf32_Peaks.gnr) data(HiC_Ctrl.cmx_lst) data(HiC_HS.cmx_lst) # Index Beaf32 Beaf32_Index.gnr <- IndexFeatures( gRangeList = list(Beaf = Beaf32_Peaks.gnr), chromSizes = data.frame(seqnames = c("2L", "2R"), seqlengths = c(23513712, 25286936)), binSize = 100000 ) # Beaf32 <-> Beaf32 Pairing Beaf_Beaf.gni <- SearchPairs(indexAnchor = Beaf32_Index.gnr) # subset 2000 first for exemple Beaf_Beaf.gni <- Beaf_Beaf.gni[seq_len(2000)] # Matrices extractions center on Beaf32 <-> Beaf32 point interaction interactions_Ctrl.mtx_lst <- ExtractSubmatrix( genomicFeature = Beaf_Beaf.gni, hicLst = HiC_Ctrl.cmx_lst, referencePoint = "pf" ) interactions_HS.mtx_lst <- ExtractSubmatrix( genomicFeature = Beaf_Beaf.gni, hicLst = HiC_HS.cmx_lst, referencePoint = "pf" ) interactions_Ctrl.mtx_lst <- PrepareMtxList( matrices = interactions_Ctrl.mtx_lst ) # Aggregate matrices in one matrix aggreg.mtx <- Aggregation(interactions_Ctrl.mtx_lst) interactions_HS.mtx_lst <- PrepareMtxList( matrices = interactions_HS.mtx_lst ) # Differential Aggregation aggregDiff.mtx <- Aggregation( ctrlMatrices = interactions_Ctrl.mtx_lst, matrices = interactions_HS.mtx_lst )
# Data data(Beaf32_Peaks.gnr) data(HiC_Ctrl.cmx_lst) data(HiC_HS.cmx_lst) # Index Beaf32 Beaf32_Index.gnr <- IndexFeatures( gRangeList = list(Beaf = Beaf32_Peaks.gnr), chromSizes = data.frame(seqnames = c("2L", "2R"), seqlengths = c(23513712, 25286936)), binSize = 100000 ) # Beaf32 <-> Beaf32 Pairing Beaf_Beaf.gni <- SearchPairs(indexAnchor = Beaf32_Index.gnr) # subset 2000 first for exemple Beaf_Beaf.gni <- Beaf_Beaf.gni[seq_len(2000)] # Matrices extractions center on Beaf32 <-> Beaf32 point interaction interactions_Ctrl.mtx_lst <- ExtractSubmatrix( genomicFeature = Beaf_Beaf.gni, hicLst = HiC_Ctrl.cmx_lst, referencePoint = "pf" ) interactions_HS.mtx_lst <- ExtractSubmatrix( genomicFeature = Beaf_Beaf.gni, hicLst = HiC_HS.cmx_lst, referencePoint = "pf" ) interactions_Ctrl.mtx_lst <- PrepareMtxList( matrices = interactions_Ctrl.mtx_lst ) # Aggregate matrices in one matrix aggreg.mtx <- Aggregation(interactions_Ctrl.mtx_lst) interactions_HS.mtx_lst <- PrepareMtxList( matrices = interactions_HS.mtx_lst ) # Differential Aggregation aggregDiff.mtx <- Aggregation( ctrlMatrices = interactions_Ctrl.mtx_lst, matrices = interactions_HS.mtx_lst )
Apply a matrix-balancing normalization method to a list of contacts matrix.
BalanceHiC( hicLst, method = "ICE", interactionType = NULL, maxIter = 50, qtlTh = 0.15, cores = 1, verbose = FALSE )
BalanceHiC( hicLst, method = "ICE", interactionType = NULL, maxIter = 50, qtlTh = 0.15, cores = 1, verbose = FALSE )
hicLst |
<ListContactMatrix>: The HiC maps list. |
method |
: The kind of normalization method. One of "ICE", "VC" or "VC_SQRT" (Default "ICE") |
interactionType |
: "cis", "trans", c("cis", "trans"), "all". If NULL normalization is apply on cis contactMatrix then trans contactMatrix (equivalent to c("cis", "trans")). If is "all", normalization is apply on all contactMatrix at once. (Default NULL) |
maxIter |
: The maximum iteration number. |
qtlTh |
: The quantile threshold below which the bins will be ignored. (Default 0.15) |
cores |
: Number of cores to be used. (Default 1) |
verbose |
: If TRUE show the progression in console. (Default FALSE) |
BalanceHiC
A matrices list.
data(HiC_Ctrl.cmx_lst) HiC_Ctrl_ICE.cmx_lst <- BalanceHiC(HiC_Ctrl.cmx_lst, interactionType = "cis", method = "ICE" ) HiC_Ctrl_VC.cmx_lst <- BalanceHiC(HiC_Ctrl.cmx_lst, interactionType = c("cis", "trans"), method = "VC" ) HiC_Ctrl_VC_SQRT.cmx_lst <- BalanceHiC(HiC_Ctrl.cmx_lst, interactionType = "all", method = "VC_SQRT" )
data(HiC_Ctrl.cmx_lst) HiC_Ctrl_ICE.cmx_lst <- BalanceHiC(HiC_Ctrl.cmx_lst, interactionType = "cis", method = "ICE" ) HiC_Ctrl_VC.cmx_lst <- BalanceHiC(HiC_Ctrl.cmx_lst, interactionType = c("cis", "trans"), method = "VC" ) HiC_Ctrl_VC_SQRT.cmx_lst <- BalanceHiC(HiC_Ctrl.cmx_lst, interactionType = "all", method = "VC_SQRT" )
Drosophila Melanogaster Beaf32 peaks on 2L and 2R chromosomes.
data(Beaf32_Peaks.gnr)
data(Beaf32_Peaks.gnr)
An object of class GRanges.
data(Beaf32_Peaks.gnr) Beaf32_Peaks.gnr
data(Beaf32_Peaks.gnr) Beaf32_Peaks.gnr
Bin a GRanges and apply a summary method (e.g: 'mean', 'median', 'sum', 'max, 'min' ...) to a chosen numerical variable of ranges in the same bin.
BinGRanges( gRange = NULL, chromSizes = NULL, binSize = NULL, method = "mean", metadataColName = NULL, na.rm = TRUE, cores = 1, reduceRanges = TRUE, verbose = FALSE )
BinGRanges( gRange = NULL, chromSizes = NULL, binSize = NULL, method = "mean", metadataColName = NULL, na.rm = TRUE, cores = 1, reduceRanges = TRUE, verbose = FALSE )
gRange |
: A GRanges to bin. |
chromSizes |
<data.frame>: A data.frame where first colum corresponds to the chromosomes names, and the second column corresponds to the chromosomes lengths in base pairs. |
binSize |
: Width of the bins. |
method |
: Name of a summary method as 'mean', 'median', 'sum', 'max, 'min'. (Default 'mean') |
metadataColName |
: A character vector that specify the metadata columns of GRanges on which to apply the summary method. |
na.rm |
: A logical value indicating
whether |
cores |
: The number of cores. (Default 1) |
reduceRanges |
: Whether duplicated Bins must
be reduced with the summary method ( |
verbose |
: If TRUE, show the progression in console. (Default FALSE) |
BinGRanges
A binned GRanges.
GRange.gnr <- GenomicRanges::GRanges( seqnames = S4Vectors::Rle(c("chr1", "chr2"), c(3, 1)), ranges = IRanges::IRanges( start = c(1, 201, 251, 1), end = c(200, 250, 330, 100), names = letters[seq_len(4)] ), strand = S4Vectors::Rle(BiocGenerics::strand(c("*")), 4), score = c(50, NA, 100, 30) ) GRange.gnr BinGRanges( gRange = GRange.gnr, chromSizes = data.frame(c("chr1", "chr2"), c(350, 100)), binSize = 100, method = "mean", metadataColName = "score", na.rm = TRUE )
GRange.gnr <- GenomicRanges::GRanges( seqnames = S4Vectors::Rle(c("chr1", "chr2"), c(3, 1)), ranges = IRanges::IRanges( start = c(1, 201, 251, 1), end = c(200, 250, 330, 100), names = letters[seq_len(4)] ), strand = S4Vectors::Rle(BiocGenerics::strand(c("*")), 4), score = c(50, NA, 100, 30) ) GRange.gnr BinGRanges( gRange = GRange.gnr, chromSizes = data.frame(c("chr1", "chr2"), c(350, 100)), binSize = 100, method = "mean", metadataColName = "score", na.rm = TRUE )
Computes z.test for each target couple over background couples.
CompareToBackground( hicList = NULL, matrices = NULL, indexAnchor = NULL, indexBait = NULL, genomicConstraint = NULL, secondaryConst.var = NULL, chromSizes = NULL, n_background = NULL, areaFun = "center", operationFun = "mean", bg_type = NULL, cores = 1, verbose = FALSE, p_adj_method = "BH", ... )
CompareToBackground( hicList = NULL, matrices = NULL, indexAnchor = NULL, indexBait = NULL, genomicConstraint = NULL, secondaryConst.var = NULL, chromSizes = NULL, n_background = NULL, areaFun = "center", operationFun = "mean", bg_type = NULL, cores = 1, verbose = FALSE, p_adj_method = "BH", ... )
hicList |
<ListContactMatrix>: The HiC maps list. |
matrices |
<listmatrix>: The matrices list. |
indexAnchor |
: A first indexed GRanges object
used as pairs anchor (must be indexed using |
indexBait |
: A second indexed GRanges object
used as pairs bait (must be indexed using |
genomicConstraint |
: GRanges object of
constraint regions. If |
secondaryConst.var |
: A string defining
column name containing compartment information in the
metadata of anchor and bait |
chromSizes |
<data.frame>: A data.frame containing chromosomes names and lengths in base pairs. |
n_background |
: Number of background
couples to keep. We recommend to use |
areaFun |
: A character or function that allows to extract an area from each matrix that composes the matrices list (Default "center"). Look at GetQuantif for more info. |
operationFun |
: A character or function specifying the operation applied to the selected area. (Default "mean"). Look at GetQuantif for more info. |
bg_type |
: Type of background couples to generate. Possible choices: "random_anchors", "inter_TAD", "inter_compartment", NULL (Defaults to "random_anchors"). More information in details... |
cores |
: Number of cores used. (Default 1) |
verbose |
details on progress? (Default: FALSE) |
p_adj_method |
method used
to adjust p.values. More from |
... |
arguments to pass to PrepareMtxList, inorder to treat background matrices. |
Types of background couples possible:
"random_anchors": picks random bins as anchors and forms couples with bait bins. If genomicConstraint is supplied, only intra-TAD random-bait couples are kept. Else intra-TAD random-bait couples within a distance constraint corresponding to the minimal and maximal distances of target couples.
"inter_TAD": If target couples were formed using TAD information
with non NULL
genomicConstraint argument, then inter-TAD anchor-bait couples are used
as background.
Distance constraint applied correspond to the minimal distance of target
couples and
maximal width of supplied TADs.
"inter_compartment": If secondaryConst.var
is not
NULL
and both indexAnchor and indexBait objects contain the
provided variable name, then background couples are formed between anchors
and baits located in different compartments.
"NULL": If NULL
, random_anchors
are set by default.
Notes on the comparison between bg and target couples: We noticed that o/e values tend to be skewed towards very long distance interactions. As a result, long distance background couples tend to influence strongly mean and sd, resulting in more long distance target couples being significant. So rather than computing z.score over all background couples, we've chosen to fit a polynomial with 2 degrees on the log(counts) vs distance data of the background couples. Z.scores are then computed per target couple by comparing residuals of the target counts as predicted by the model and the residuals of the background couples.
returns a object with the z.test output for each
target couple, values for the target couples and values for the
background couples.
h5_path <- system.file("extdata", "Control_HIC_10k_2L.h5", package = "HicAggR", mustWork = TRUE ) binSize=10000 data(Beaf32_Peaks.gnr) data(TADs_Domains.gnr) hicLst <- ImportHiC( file = h5_path, hicResolution = binSize, chromSizes = data.frame(seqnames = c("2L"), seqlengths = c(23513712)), chrom_1 = c("2L") ) hicLst <- BalanceHiC(hicLst) hicLst <- OverExpectedHiC(hicLst) # Index Beaf32 Beaf32_Index.gnr <- IndexFeatures( gRangeList = list(Beaf = Beaf32_Peaks.gnr), chromSizes = data.frame(seqnames = c("2L"), seqlengths = c(23513712)), genomicConstraint = TADs_Domains.gnr, binSize = binSize ) Beaf_Beaf.gni <- SearchPairs(indexAnchor = Beaf32_Index.gnr) interactions_Ctrl.mtx_lst <- ExtractSubmatrix( genomicFeature = Beaf_Beaf.gni, hicLst = hicLst, referencePoint = "pf" ) interactions_Ctrl.mtx_lst <- PrepareMtxList( matrices = interactions_Ctrl.mtx_lst ) output_bgInterTAD = CompareToBackground(hicList = hicLst, matrices = interactions_Ctrl.mtx_lst, indexAnchor = Beaf32_Index.gnr, indexBait = Beaf32_Index.gnr, genomicConstraint = TADs_Domains.gnr, chromSizes = data.frame(seqnames = c("2L"), seqlengths = c(23513712)), bg_type="inter_TAD" )
h5_path <- system.file("extdata", "Control_HIC_10k_2L.h5", package = "HicAggR", mustWork = TRUE ) binSize=10000 data(Beaf32_Peaks.gnr) data(TADs_Domains.gnr) hicLst <- ImportHiC( file = h5_path, hicResolution = binSize, chromSizes = data.frame(seqnames = c("2L"), seqlengths = c(23513712)), chrom_1 = c("2L") ) hicLst <- BalanceHiC(hicLst) hicLst <- OverExpectedHiC(hicLst) # Index Beaf32 Beaf32_Index.gnr <- IndexFeatures( gRangeList = list(Beaf = Beaf32_Peaks.gnr), chromSizes = data.frame(seqnames = c("2L"), seqlengths = c(23513712)), genomicConstraint = TADs_Domains.gnr, binSize = binSize ) Beaf_Beaf.gni <- SearchPairs(indexAnchor = Beaf32_Index.gnr) interactions_Ctrl.mtx_lst <- ExtractSubmatrix( genomicFeature = Beaf_Beaf.gni, hicLst = hicLst, referencePoint = "pf" ) interactions_Ctrl.mtx_lst <- PrepareMtxList( matrices = interactions_Ctrl.mtx_lst ) output_bgInterTAD = CompareToBackground(hicList = hicLst, matrices = interactions_Ctrl.mtx_lst, indexAnchor = Beaf32_Index.gnr, indexBait = Beaf32_Index.gnr, genomicConstraint = TADs_Domains.gnr, chromSizes = data.frame(seqnames = c("2L"), seqlengths = c(23513712)), bg_type="inter_TAD" )
Cut a mega contactMatrix (joint from multiple chromosomic maps) into a list of contactMatrix.
CutHiC(megaHic, verbose = FALSE)
CutHiC(megaHic, verbose = FALSE)
megaHic |
: The HiC megamap. |
verbose |
: If TRUE, show the progression in console. (Default FALSE) |
CutHiC
A matrices list.
data(HiC_Ctrl.cmx_lst) Mega_Ctrl.cmx <- JoinHiC(HiC_Ctrl.cmx_lst) CutHiC(Mega_Ctrl.cmx)
data(HiC_Ctrl.cmx_lst) Mega_Ctrl.cmx <- JoinHiC(HiC_Ctrl.cmx_lst) CutHiC(Mega_Ctrl.cmx)
Extract matrices in the HiC maps list around genomic features.
ExtractSubmatrix( genomicFeature = NULL, hicLst = NULL, referencePoint = "pf", hicResolution = NULL, matriceDim = 21, shift = 1, remove_duplicates = TRUE, cores = 1, verbose = FALSE )
ExtractSubmatrix( genomicFeature = NULL, hicLst = NULL, referencePoint = "pf", hicResolution = NULL, matriceDim = 21, shift = 1, remove_duplicates = TRUE, cores = 1, verbose = FALSE )
genomicFeature |
<GRanges or PairsGRanges or GInteractions>: The genomic coordinates on which compute the extraction of HiC submatrix. |
hicLst |
<ListContactMatrix>: The HiC maps list. |
referencePoint |
: Type of extracted submatrices. "rf" for "region feature" to extract triangle-shaped matrices around regions or "pf" for "point feature" to extract square-shaped matrices around points. (Default "rf") |
hicResolution |
: The resolution
used in hicLst. If |
matriceDim |
: The size of matrices in output. (Default 21). |
shift |
: Only when "referencePoint" is "rf".
Factor defining how much of the distance between anchor and bait is
extracted before and after the region (Default 1).
Ex: for shift=2, extracted matrices will be:
|
remove_duplicates |
: remove duplicated submatrices ? This avoids duplicated submatrices when both anchor and bait bins are from the same feature. ex. BEAF32-BEAF32, same submatrix twice with opposite orientations(Default TRUE) |
cores |
: An integer to specify the number of cores. (Default 1) |
verbose |
: If TRUE, show the progression in console. (Default FALSE) |
ExtractSubmatrix
A matrices list.
# Data data(Beaf32_Peaks.gnr) data(HiC_Ctrl.cmx_lst) # Index Beaf32 Beaf32_Index.gnr <- IndexFeatures( gRangeList = list(Beaf = Beaf32_Peaks.gnr), chromSizes = data.frame(seqnames = c("2L", "2R"), seqlengths = c(23513712, 25286936)), binSize = 100000 ) # Beaf32 <-> Beaf32 Pairing Beaf_Beaf.gni <- SearchPairs(indexAnchor = Beaf32_Index.gnr) Beaf_Beaf.gni <- Beaf_Beaf.gni[seq_len(2000)] # subset 2000 first for exemple # Matrices extractions of regions defined between # Beaf32 <-> Beaf32 interactions interactions_RF.mtx_lst <- ExtractSubmatrix( genomicFeature = Beaf_Beaf.gni, hicLst = HiC_Ctrl.cmx_lst, referencePoint = "rf" ) # Matrices extractions center on Beaf32 <-> Beaf32 pointinteraction interactions_PF.mtx_lst <- ExtractSubmatrix( genomicFeature = Beaf_Beaf.gni, hicLst = HiC_Ctrl.cmx_lst, referencePoint = "pf" )
# Data data(Beaf32_Peaks.gnr) data(HiC_Ctrl.cmx_lst) # Index Beaf32 Beaf32_Index.gnr <- IndexFeatures( gRangeList = list(Beaf = Beaf32_Peaks.gnr), chromSizes = data.frame(seqnames = c("2L", "2R"), seqlengths = c(23513712, 25286936)), binSize = 100000 ) # Beaf32 <-> Beaf32 Pairing Beaf_Beaf.gni <- SearchPairs(indexAnchor = Beaf32_Index.gnr) Beaf_Beaf.gni <- Beaf_Beaf.gni[seq_len(2000)] # subset 2000 first for exemple # Matrices extractions of regions defined between # Beaf32 <-> Beaf32 interactions interactions_RF.mtx_lst <- ExtractSubmatrix( genomicFeature = Beaf_Beaf.gni, hicLst = HiC_Ctrl.cmx_lst, referencePoint = "rf" ) # Matrices extractions center on Beaf32 <-> Beaf32 pointinteraction interactions_PF.mtx_lst <- ExtractSubmatrix( genomicFeature = Beaf_Beaf.gni, hicLst = HiC_Ctrl.cmx_lst, referencePoint = "pf" )
Search in a GInteraction object which interactions correspond to a target list and return a list of index or filter a matrices list according to target and a selectionFunction.
FilterInteractions( matrices = NULL, genomicInteractions = NULL, targets = NULL, selectionFun = function() { Reduce(intersect, interarctions.ndx_lst) } )
FilterInteractions( matrices = NULL, genomicInteractions = NULL, targets = NULL, selectionFun = function() { Reduce(intersect, interarctions.ndx_lst) } )
matrices |
<Listmatrix>: The matrices list
to filter. If is not |
genomicInteractions |
: The GInteraction object on which to compute the filter. |
targets |
: A named list that describe the target. |
selectionFun |
: A function that defines how the target variables must be crossed. (Default intersection of all targets) |
FilterInteractions
A list of elements index or a filtred matrices list with attributes updates.
# Data data(Beaf32_Peaks.gnr) data(HiC_Ctrl.cmx_lst) # Index Beaf32 Beaf32_Index.gnr <- IndexFeatures( gRangeList = list(Beaf = Beaf32_Peaks.gnr), chromSizes = data.frame(seqnames = c("2L", "2R"), seqlengths = c(23513712, 25286936)), binSize = 100000 ) # Beaf32 <-> Beaf32 Pairing Beaf_Beaf.gni <- SearchPairs(indexAnchor = Beaf32_Index.gnr) Beaf_Beaf.gni <- Beaf_Beaf.gni[seq_len(2000)] # subset 2000 first for exemple # Matrices extractions center on Beaf32 <-> Beaf32 point interaction interactions_PF.mtx_lst <- ExtractSubmatrix( genomicFeature = Beaf_Beaf.gni, hicLst = HiC_Ctrl.cmx_lst, referencePoint = "pf" ) # Create a target targets <- list( anchor.Beaf.name = c("Beaf32_108", "Beaf32_814"), distance = function(dist) { dist < 300000 } ) # We target the Beaf32<->Beaf32 interactions that are less than 300Kb away # and have peak Beaf32_2 and Beaf32_191 as anchors (i.e. left). # Create a selection selectionFun <- function() { intersect(anchor.Beaf.name, distance) } # We select the Beaf32<->Beaf32 interactions that satisfy both targeting # criteria (intersection). # Filtration on InteractionSet (Beaf32 <-> Beaf32 Pairs) FilterInteractions( genomicInteractions = Beaf_Beaf.gni, targets = targets, selectionFun = NULL ) |> str(max.level = 1) # Returns a named list (the names match the targeting criteria). # Each element is an index vector of Beaf32<->Beaf32 interactions # that satisfy the given criteria. # Filtration on Matrices List (Beaf32 <-> Beaf32 Extracted matrices) FilterInteractions( matrices = interactions_PF.mtx_lst, targets = targets, selectionFun = NULL ) |> str(max.level = 1) # Return the same kind of result. # Add the selection on InteractionSet Filtration FilterInteractions( genomicInteractions = Beaf_Beaf.gni, targets = targets, selectionFun = selectionFun ) |> str(max.level = 1) # This return the intersection of the index vector that satisfy both # targeting criteria. # Add the selection on Matrices List Filtration FilterInteractions( matrices = interactions_PF.mtx_lst, targets = targets, selectionFun = selectionFun ) |> str(max.level = 1) # This return the filtred matrices, i.e the matrices for which # the Beaf32<->Beaf32 interactions satisfy both targeting criteria. # Filtration with InteractionsSet as filtration criteria targets <- list(interactions = Beaf_Beaf.gni[seq_len(2)]) FilterInteractions( genomicInteractions = Beaf_Beaf.gni, targets = targets, selectionFun = NULL ) |> str(max.level = 1) # Filtration with GRanges as filtration criteria targets <- list(first = InteractionSet::anchors(Beaf_Beaf.gni)[["first"]][seq_len(2)]) FilterInteractions( genomicInteractions = Beaf_Beaf.gni, targets = targets, selectionFun = NULL ) |> str(max.level = 1)
# Data data(Beaf32_Peaks.gnr) data(HiC_Ctrl.cmx_lst) # Index Beaf32 Beaf32_Index.gnr <- IndexFeatures( gRangeList = list(Beaf = Beaf32_Peaks.gnr), chromSizes = data.frame(seqnames = c("2L", "2R"), seqlengths = c(23513712, 25286936)), binSize = 100000 ) # Beaf32 <-> Beaf32 Pairing Beaf_Beaf.gni <- SearchPairs(indexAnchor = Beaf32_Index.gnr) Beaf_Beaf.gni <- Beaf_Beaf.gni[seq_len(2000)] # subset 2000 first for exemple # Matrices extractions center on Beaf32 <-> Beaf32 point interaction interactions_PF.mtx_lst <- ExtractSubmatrix( genomicFeature = Beaf_Beaf.gni, hicLst = HiC_Ctrl.cmx_lst, referencePoint = "pf" ) # Create a target targets <- list( anchor.Beaf.name = c("Beaf32_108", "Beaf32_814"), distance = function(dist) { dist < 300000 } ) # We target the Beaf32<->Beaf32 interactions that are less than 300Kb away # and have peak Beaf32_2 and Beaf32_191 as anchors (i.e. left). # Create a selection selectionFun <- function() { intersect(anchor.Beaf.name, distance) } # We select the Beaf32<->Beaf32 interactions that satisfy both targeting # criteria (intersection). # Filtration on InteractionSet (Beaf32 <-> Beaf32 Pairs) FilterInteractions( genomicInteractions = Beaf_Beaf.gni, targets = targets, selectionFun = NULL ) |> str(max.level = 1) # Returns a named list (the names match the targeting criteria). # Each element is an index vector of Beaf32<->Beaf32 interactions # that satisfy the given criteria. # Filtration on Matrices List (Beaf32 <-> Beaf32 Extracted matrices) FilterInteractions( matrices = interactions_PF.mtx_lst, targets = targets, selectionFun = NULL ) |> str(max.level = 1) # Return the same kind of result. # Add the selection on InteractionSet Filtration FilterInteractions( genomicInteractions = Beaf_Beaf.gni, targets = targets, selectionFun = selectionFun ) |> str(max.level = 1) # This return the intersection of the index vector that satisfy both # targeting criteria. # Add the selection on Matrices List Filtration FilterInteractions( matrices = interactions_PF.mtx_lst, targets = targets, selectionFun = selectionFun ) |> str(max.level = 1) # This return the filtred matrices, i.e the matrices for which # the Beaf32<->Beaf32 interactions satisfy both targeting criteria. # Filtration with InteractionsSet as filtration criteria targets <- list(interactions = Beaf_Beaf.gni[seq_len(2)]) FilterInteractions( genomicInteractions = Beaf_Beaf.gni, targets = targets, selectionFun = NULL ) |> str(max.level = 1) # Filtration with GRanges as filtration criteria targets <- list(first = InteractionSet::anchors(Beaf_Beaf.gni)[["first"]][seq_len(2)]) FilterInteractions( genomicInteractions = Beaf_Beaf.gni, targets = targets, selectionFun = NULL ) |> str(max.level = 1)
Convert numbers of base into string with order of magnitude (Kbp, Mbp, Gbp) and vice versa.
GenomicSystem(x, digits = 3)
GenomicSystem(x, digits = 3)
x |
: The number to convert or string to convert. |
digits |
: The number of significant
digits to be used. See |
GenomicSystem
The converted number or string.
GenomicSystem(1540, 3) GenomicSystem(1540, 2) GenomicSystem("1Mbp") GenomicSystem("1Kbp") GenomicSystem("1k")
GenomicSystem(1540, 3) GenomicSystem(1540, 2) GenomicSystem("1Mbp") GenomicSystem("1Kbp") GenomicSystem("1k")
GetInfo
GetInfo(file = NULL, printInfos = TRUE, returnInfos = FALSE)
GetInfo(file = NULL, printInfos = TRUE, returnInfos = FALSE)
file |
path to your file. |
printInfos |
print info on console? (Default: TRUE) |
returnInfos |
return info? (Default: FALSE) |
list of characters if returnInfos
is TRUE.
h5_path <- system.file("extdata", "Control_HIC_10k_2L.h5", package = "HicAggR", mustWork = TRUE ) GetInfo(h5_path)
h5_path <- system.file("extdata", "Control_HIC_10k_2L.h5", package = "HicAggR", mustWork = TRUE ) GetInfo(h5_path)
Function that computes quantification of contact frequencies in a given area and returns it in a named vector.
GetQuantif( matrices, areaFun = "center", operationFun = "mean_rm0", varName = NULL )
GetQuantif( matrices, areaFun = "center", operationFun = "mean_rm0", varName = NULL )
matrices |
<Listmatrix>: A matrices list. |
areaFun |
: A character or function that allows to extract an area from each matrix that composes the matrices list (Default "center").
|
operationFun |
: A character or function specifying the operation applied to the selected area. (Default "mean_rm0")
|
varName |
: The name of a column in GInteraction attributes of matrices used as named in the output vector (Default NULL). By default, sub-matrices IDs are used. |
GetQuantif
A GRange object.
# Data data(Beaf32_Peaks.gnr) data(HiC_Ctrl.cmx_lst) # Index Beaf32 Beaf32_Index.gnr <- IndexFeatures( gRangeList = list(Beaf = Beaf32_Peaks.gnr), chromSizes = data.frame( seqnames = c("2L", "2R"), seqlengths = c(23513712, 25286936) ), binSize = 100000 ) # Beaf32 <-> Beaf32 Pairing Beaf_Beaf.gni <- SearchPairs(indexAnchor = Beaf32_Index.gnr) Beaf_Beaf.gni <- Beaf_Beaf.gni[seq_len(2000)] # subset 2000 first for exemple # Matrices extractions center on Beaf32 <-> Beaf32 point interaction interactions_PF.mtx_lst <- ExtractSubmatrix( genomicFeature = Beaf_Beaf.gni, hicLst = HiC_Ctrl.cmx_lst, referencePoint = "pf" ) GetQuantif( matrices = interactions_PF.mtx_lst, areaFun = "center", operationFun = "mean" ) |> head()
# Data data(Beaf32_Peaks.gnr) data(HiC_Ctrl.cmx_lst) # Index Beaf32 Beaf32_Index.gnr <- IndexFeatures( gRangeList = list(Beaf = Beaf32_Peaks.gnr), chromSizes = data.frame( seqnames = c("2L", "2R"), seqlengths = c(23513712, 25286936) ), binSize = 100000 ) # Beaf32 <-> Beaf32 Pairing Beaf_Beaf.gni <- SearchPairs(indexAnchor = Beaf32_Index.gnr) Beaf_Beaf.gni <- Beaf_Beaf.gni[seq_len(2000)] # subset 2000 first for exemple # Matrices extractions center on Beaf32 <-> Beaf32 point interaction interactions_PF.mtx_lst <- ExtractSubmatrix( genomicFeature = Beaf_Beaf.gni, hicLst = HiC_Ctrl.cmx_lst, referencePoint = "pf" ) GetQuantif( matrices = interactions_PF.mtx_lst, areaFun = "center", operationFun = "mean" ) |> head()
Create a ggplot object used for plot aggregation.
ggAPA( aggregatedMtx = NULL, title = NULL, trim = 0, tails = "both", colMin = NULL, colMid = NULL, colMax = NULL, colBreaks = NULL, blurPass = 0, boxKernel = NULL, kernSize = NULL, stdev = 0.5, loTri = NULL, colors = NULL, na.value = "#F2F2F2", colorScale = "linear", bias = 1, paletteLength = 51, annotate = TRUE, anchor.name = "Anchor", bait.name = "Bait", fixCoord = TRUE )
ggAPA( aggregatedMtx = NULL, title = NULL, trim = 0, tails = "both", colMin = NULL, colMid = NULL, colMax = NULL, colBreaks = NULL, blurPass = 0, boxKernel = NULL, kernSize = NULL, stdev = 0.5, loTri = NULL, colors = NULL, na.value = "#F2F2F2", colorScale = "linear", bias = 1, paletteLength = 51, annotate = TRUE, anchor.name = "Anchor", bait.name = "Bait", fixCoord = TRUE )
aggregatedMtx |
: The matrix to plot. (Default NULL) |
title |
: The title of plot. (Default NULL) |
trim |
: A number between 0 and 100 that gives the percentage of trimming. (Default 0) |
tails |
: Which boundary must be trimmed?
If it's both, trim half of the percentage in inferior and superior.
see |
colMin |
: Minimal value of Heatmap,
force color range. If |
colMid |
: Center value of Heatmap,
force color range. If |
colMax |
: Maximal value of Heatmap,
force color range. If |
colBreaks |
: Repartition of colors.
If |
blurPass |
: Number of blur pass. (Default 0) |
boxKernel |
: If |
kernSize |
: Size of box applied to blurr.
If |
stdev |
: SD of gaussian smooth. (Default 0.5) |
loTri |
: The value that replace all value in the lower triangle of matrice (Usefull when blur is apply).(Default NULL) |
colors |
: Heatmap color list.
If |
na.value |
: Color of NA values. (Default "#F2F2F2") |
colorScale |
: Shape of color scale on of "linear" or "density" based. (Default "linear") |
bias |
: A positive number. Higher values give
more widely spaced colors at the high end. See |
paletteLength |
: The number of color in the palette. (Default 51) |
annotate |
: Should there be axis ticks? (Default: TRUE) |
anchor.name |
Name of anchor for annotation. (Default "Anchor") |
bait.name |
Name of bait for annotation. (Default "Bait") |
fixCoord |
Fix axes coordinates? (Default TRUE) |
ggAPA
A ggplot object.
# Data data(Beaf32_Peaks.gnr) data(HiC_Ctrl.cmx_lst) # Index Beaf32 Beaf32_Index.gnr <- IndexFeatures( gRangeList = list(Beaf = Beaf32_Peaks.gnr), chromSizes = data.frame(seqnames = c("2L", "2R"), seqlengths = c(23513712, 25286936)), binSize = 100000 ) # Beaf32 <-> Beaf32 Pairing Beaf_Beaf.gni <- SearchPairs(indexAnchor = Beaf32_Index.gnr) Beaf_Beaf.gni <- Beaf_Beaf.gni[seq_len(2000)] # subset 2000 first for exemple # Matrices extractions center on Beaf32 <-> Beaf32 point interaction interactions_PF.mtx_lst <- ExtractSubmatrix( genomicFeature = Beaf_Beaf.gni, hicLst = HiC_Ctrl.cmx_lst, referencePoint = "pf" ) # Aggregate matrices in one matrix aggreg.mtx <- Aggregation(interactions_PF.mtx_lst) # Visualization ggAPA( aggregatedMtx = aggreg.mtx ) # Add Title ggAPA( aggregatedMtx = aggreg.mtx, title = "APA" ) # Trim values ggAPA( aggregatedMtx = aggreg.mtx, title = "APA 30% trimmed on upper tail of distribution", trim = 30, tails = "upper" ) ggAPA( aggregatedMtx = aggreg.mtx, title = "APA 30% trimmed on lower tail of distribution", trim = 30, tails = "lower" ) ggAPA( aggregatedMtx = aggreg.mtx, title = "APA 15% trimmed on each tail of distribution", trim = 30, tails = "both" ) # Change Minimal, Central and Maximal Colors scale value ggAPA( aggregatedMtx = aggreg.mtx, title = "APA [min 200, center 300, max 600]", colMin = 200, colMid = 300, colMax = 600 ) # Change Color ggAPA( aggregatedMtx = aggreg.mtx, title = "APA", colors = viridis(6), na.value = "black" ) ggAPA( aggregatedMtx = aggreg.mtx, title = "APA", colors = c("black", "white"), ) # Change Color distribution ggAPA( aggregatedMtx = aggreg.mtx, title = "APA [100,150,200,250,300,350,600]", colBreaks = c(100, 150, 200, 250, 300, 350, 600) # Choosen Breaks ) ggAPA( aggregatedMtx = aggreg.mtx, title = "APA", colorScale = "density" # color distribution based on density ) ggAPA( aggregatedMtx = aggreg.mtx, title = "APA", bias = 2 # (>1 wait on extremums) ) ggAPA( aggregatedMtx = aggreg.mtx, title = "APA", bias = 0.5 # (<1 wait on center) ) # Apply a Blurr ggAPA( aggregatedMtx = aggreg.mtx, title = "APA", blurPass = 1, stdev = 0.5 ) # ggplot2 object modifications # Since the function returns a ggplot object, it is possible # to modify it following the ggplot2 grammar. ggAPA( aggregatedMtx = aggreg.mtx, title = "APA", ) + ggplot2::labs( title = "New title", subtitle = "and subtitle" )
# Data data(Beaf32_Peaks.gnr) data(HiC_Ctrl.cmx_lst) # Index Beaf32 Beaf32_Index.gnr <- IndexFeatures( gRangeList = list(Beaf = Beaf32_Peaks.gnr), chromSizes = data.frame(seqnames = c("2L", "2R"), seqlengths = c(23513712, 25286936)), binSize = 100000 ) # Beaf32 <-> Beaf32 Pairing Beaf_Beaf.gni <- SearchPairs(indexAnchor = Beaf32_Index.gnr) Beaf_Beaf.gni <- Beaf_Beaf.gni[seq_len(2000)] # subset 2000 first for exemple # Matrices extractions center on Beaf32 <-> Beaf32 point interaction interactions_PF.mtx_lst <- ExtractSubmatrix( genomicFeature = Beaf_Beaf.gni, hicLst = HiC_Ctrl.cmx_lst, referencePoint = "pf" ) # Aggregate matrices in one matrix aggreg.mtx <- Aggregation(interactions_PF.mtx_lst) # Visualization ggAPA( aggregatedMtx = aggreg.mtx ) # Add Title ggAPA( aggregatedMtx = aggreg.mtx, title = "APA" ) # Trim values ggAPA( aggregatedMtx = aggreg.mtx, title = "APA 30% trimmed on upper tail of distribution", trim = 30, tails = "upper" ) ggAPA( aggregatedMtx = aggreg.mtx, title = "APA 30% trimmed on lower tail of distribution", trim = 30, tails = "lower" ) ggAPA( aggregatedMtx = aggreg.mtx, title = "APA 15% trimmed on each tail of distribution", trim = 30, tails = "both" ) # Change Minimal, Central and Maximal Colors scale value ggAPA( aggregatedMtx = aggreg.mtx, title = "APA [min 200, center 300, max 600]", colMin = 200, colMid = 300, colMax = 600 ) # Change Color ggAPA( aggregatedMtx = aggreg.mtx, title = "APA", colors = viridis(6), na.value = "black" ) ggAPA( aggregatedMtx = aggreg.mtx, title = "APA", colors = c("black", "white"), ) # Change Color distribution ggAPA( aggregatedMtx = aggreg.mtx, title = "APA [100,150,200,250,300,350,600]", colBreaks = c(100, 150, 200, 250, 300, 350, 600) # Choosen Breaks ) ggAPA( aggregatedMtx = aggreg.mtx, title = "APA", colorScale = "density" # color distribution based on density ) ggAPA( aggregatedMtx = aggreg.mtx, title = "APA", bias = 2 # (>1 wait on extremums) ) ggAPA( aggregatedMtx = aggreg.mtx, title = "APA", bias = 0.5 # (<1 wait on center) ) # Apply a Blurr ggAPA( aggregatedMtx = aggreg.mtx, title = "APA", blurPass = 1, stdev = 0.5 ) # ggplot2 object modifications # Since the function returns a ggplot object, it is possible # to modify it following the ggplot2 grammar. ggAPA( aggregatedMtx = aggreg.mtx, title = "APA", ) + ggplot2::labs( title = "New title", subtitle = "and subtitle" )
In situ Hi-C on non-heat treated S2 cells
(Drosophila Melanogaster) with MboI on chromosome 2R and 2L download from
4DN
portal (Ray J, Munn PR, et al., 2019). This data is the result of the
ImportHiC()
function.
data(HiC_Ctrl.cmx_lst)
data(HiC_Ctrl.cmx_lst)
A a list of ContactMatrix objects. Each element correspond to the interaction matrix of two chromosomes.
data(HiC_Ctrl.cmx_lst) HiC_Ctrl.cmx_lst
data(HiC_Ctrl.cmx_lst) HiC_Ctrl.cmx_lst
In situ Hi-C on heat treated S2 cells (Drosophila Melanogaster)
with MboI on chromosome 2R and 2L download from
4DN
portal (Ray J, Munn PR, et al., 2019). This data is the result of the
ImportHiC()
function.
data(HiC_HS.cmx_lst)
data(HiC_HS.cmx_lst)
A a list of ContactMatrix objects. Each element correspond to the interaction matrix of two chromosomes.
data(HiC_HS.cmx_lst) HiC_HS.cmx_lst
data(HiC_HS.cmx_lst) HiC_HS.cmx_lst
Create an Hue palette.
Hue( paletteLength = 9, rotation = NULL, hueRange = c(0, 360), saturation = 0.65, lightness = 0.65, alphaValue = 1, alpha = FALSE )
Hue( paletteLength = 9, rotation = NULL, hueRange = c(0, 360), saturation = 0.65, lightness = 0.65, alphaValue = 1, alpha = FALSE )
paletteLength |
: Color number. |
rotation |
: If positive, rotates clockwise in the color space, reversing if the number is negative. If is NULL, compute rotation according to hueRange parameter. (Default NULL) |
hueRange |
: Degree range in color space between 0 and 360. (Default c(0,360)) |
saturation |
: Saturation value between 0 and 1. (Default 0.65) |
lightness |
: Lightness value between 0 and 1. (Default 0.65) |
alphaValue |
: Opacity value between 0 and 1. (Default 1) |
alpha |
: Whether the alpha layer should be returned. (Default FALSE) |
Hue
A vector of color.
Hue(paletteLength = 9)
Hue(paletteLength = 9)
Compute Iterative Correction (Vanilla Count) on hic maps.
ICEnorm(hic, qtlTh = 0.15, maxIter = 50)
ICEnorm(hic, qtlTh = 0.15, maxIter = 50)
hic |
: The HiC maps chunk to normalize. |
qtlTh |
: The threshold quantile below which the bins will be ignored. (Default 0.15) |
maxIter |
: The maximum iteration number. |
ICEnorm
A normalized contactMatrix
data(HiC_Ctrl.cmx_lst) HiC_Ctrl_ICE.cmx <- ICEnorm(HiC_Ctrl.cmx_lst[['2L_2L']])
data(HiC_Ctrl.cmx_lst) HiC_Ctrl_ICE.cmx <- ICEnorm(HiC_Ctrl.cmx_lst[['2L_2L']])
Import ..hic, .cool, .mcool or .bedpe data
ImportHiC( file = NULL, hicResolution = NULL, chromSizes = NULL, chrom_1 = NULL, chrom_2 = NULL, verbose = FALSE, cores = 1, hic_norm = "NONE", hic_matrix = "observed", cool_balanced = FALSE, cool_weight_name = "weight", cool_divisive_weights = FALSE, h5_fill_upper = TRUE )
ImportHiC( file = NULL, hicResolution = NULL, chromSizes = NULL, chrom_1 = NULL, chrom_2 = NULL, verbose = FALSE, cores = 1, hic_norm = "NONE", hic_matrix = "observed", cool_balanced = FALSE, cool_weight_name = "weight", cool_divisive_weights = FALSE, h5_fill_upper = TRUE )
file |
<GRanges or PairsGRanges or GInteractions>: The genomic feature on which compute the extraction of HiC submatrix. Extension should be .hic, .cool, .mcool, .h5, .hdf5, .HDF5 or .bedpe" assuming .h5 and .hdf5 are only for cool (not mcool). |
hicResolution |
: The HiC resolution. |
chromSizes |
<data.frame>: A data.frame where first colum correspond to the chromosomes names, and the second column correspond to the chromosomes lengths in base pairs. |
chrom_1 |
: The seqnames of first chromosmes (rows in matrix). |
chrom_2 |
: The seqnames of second chromosmes
(col in matrix).
If |
verbose |
: Show the progression in console? (Default FALSE) |
cores |
: An integer to specify the number of cores. (Default 1) |
hic_norm |
: "norm" argument to supply to
|
hic_matrix |
: "matrix" argument to supply to
|
cool_balanced |
Import already balanced matrix? (Default: FALSE) |
cool_weight_name |
Name of the correcter in
the cool file. (Default: weight).
|
cool_divisive_weights |
Does the correcter vector contain divisive biases as in hicExplorer or multiplicative as in cooltools? (Default: FALSE) |
h5_fill_upper |
Do the matrix in h5 format need to be transposed? (Default: TRUE) |
ImportHiC
If you request "expected" values when importing .hic format data, you must do yourself the "oe" by importing manually the observed counts as well.
Prior to v.0.9.0 cooltools had multiplicative weight only, so make sure your correcters are divisive or multiplicative. https://cooler.readthedocs.io/en/stable/releasenotes.html#v0-9-0
When loading hic matrix in h5 format make sure you have enough momory to load the full matrix with all chromosomes regardless of values for chrom_1 and chrom_2 arguments. The function first loads the whole matrix, then extracts matrices per chromosome for the time being, it's easier ;).
A matrices list.
# Prepare Temp Directory options(timeout = 3600) temp.dir <- file.path(tempdir(), "HIC_DATA") dir.create(temp.dir) # Download .hic file Hic.url <- paste0( "https://4dn-open-data-public.s3.amazonaws.com/", "fourfront-webprod/wfoutput/", "7386f953-8da9-47b0-acb2-931cba810544/4DNFIOTPSS3L.hic" ) HicOutput.pth <- file.path(temp.dir, "Control_HIC.hic") HicOutput.pth <- normalizePath(HicOutput.pth) if(.Platform$OS.type == "windows"){ download.file(Hic.url, HicOutput.pth, method = "auto", extra = "-k",mode="wb") }else{ download.file(Hic.url, HicOutput.pth, method = "auto", extra = "-k") } # Import .hic file HiC_Ctrl.cmx_lst <- ImportHiC( file = HicOutput.pth, hicResolution = 100000, chrom_1 = c("2L", "2L", "2R"), chrom_2 = c("2L", "2R", "2R") ) # Download .mcool file Mcool.url <- paste0( "https://4dn-open-data-public.s3.amazonaws.com/", "fourfront-webprod/wfoutput/", "4f1479a2-4226-4163-ba99-837f2c8f4ac0/4DNFI8DRD739.mcool" ) McoolOutput.pth <- file.path(temp.dir, "HeatShock_HIC.mcool") HicOutput.pth <- normalizePath(McoolOutput.pth) if(.Platform$OS.type == "windows"){ download.file(Mcool.url, McoolOutput.pth, method = "auto", extra = "-k",mode="wb") }else{ download.file(Mcool.url, McoolOutput.pth, method = "auto", extra = "-k") } # Import .mcool file HiC_HS.cmx_lst <- ImportHiC( file = McoolOutput.pth, hicResolution = 100000, chrom_1 = c("2L", "2L", "2R"), chrom_2 = c("2L", "2R", "2R") ) # Import .h5 file h5_path <- system.file("extdata", "Control_HIC_10k_2L.h5", package = "HicAggR", mustWork = TRUE ) binSize=10000 hicLst <- ImportHiC( file = h5_path, hicResolution = binSize, chromSizes = data.frame(seqnames = c("2L"), seqlengths = c(23513712)), chrom_1 = c("2L") )
# Prepare Temp Directory options(timeout = 3600) temp.dir <- file.path(tempdir(), "HIC_DATA") dir.create(temp.dir) # Download .hic file Hic.url <- paste0( "https://4dn-open-data-public.s3.amazonaws.com/", "fourfront-webprod/wfoutput/", "7386f953-8da9-47b0-acb2-931cba810544/4DNFIOTPSS3L.hic" ) HicOutput.pth <- file.path(temp.dir, "Control_HIC.hic") HicOutput.pth <- normalizePath(HicOutput.pth) if(.Platform$OS.type == "windows"){ download.file(Hic.url, HicOutput.pth, method = "auto", extra = "-k",mode="wb") }else{ download.file(Hic.url, HicOutput.pth, method = "auto", extra = "-k") } # Import .hic file HiC_Ctrl.cmx_lst <- ImportHiC( file = HicOutput.pth, hicResolution = 100000, chrom_1 = c("2L", "2L", "2R"), chrom_2 = c("2L", "2R", "2R") ) # Download .mcool file Mcool.url <- paste0( "https://4dn-open-data-public.s3.amazonaws.com/", "fourfront-webprod/wfoutput/", "4f1479a2-4226-4163-ba99-837f2c8f4ac0/4DNFI8DRD739.mcool" ) McoolOutput.pth <- file.path(temp.dir, "HeatShock_HIC.mcool") HicOutput.pth <- normalizePath(McoolOutput.pth) if(.Platform$OS.type == "windows"){ download.file(Mcool.url, McoolOutput.pth, method = "auto", extra = "-k",mode="wb") }else{ download.file(Mcool.url, McoolOutput.pth, method = "auto", extra = "-k") } # Import .mcool file HiC_HS.cmx_lst <- ImportHiC( file = McoolOutput.pth, hicResolution = 100000, chrom_1 = c("2L", "2L", "2R"), chrom_2 = c("2L", "2R", "2R") ) # Import .h5 file h5_path <- system.file("extdata", "Control_HIC_10k_2L.h5", package = "HicAggR", mustWork = TRUE ) binSize=10000 hicLst <- ImportHiC( file = h5_path, hicResolution = binSize, chromSizes = data.frame(seqnames = c("2L"), seqlengths = c(23513712)), chrom_1 = c("2L") )
Function that indexes a GRanges object on binned genome and constraints. Needed prior HicAggR::SearchPairs() function.
IndexFeatures( gRangeList = NULL, genomicConstraint = NULL, chromSizes = NULL, binSize = NULL, method = "mean", metadataColName = NULL, cores = 1, verbose = FALSE )
IndexFeatures( gRangeList = NULL, genomicConstraint = NULL, chromSizes = NULL, binSize = NULL, method = "mean", metadataColName = NULL, cores = 1, verbose = FALSE )
gRangeList |
<GRanges or GRangesList or listGRanges>: GRanges object, list of GRanges or GRangesList containing coordinates to index. |
genomicConstraint |
: GRanges object of constraint regions. Note that bins in the same constraint region only will be paired in HicAggR::SearchPairs(). If NULL chromosomes in chromSizes are used as constraints (Default NULL) |
chromSizes |
<data.frame>: A data.frame containing chromosomes names and lengths in base pairs (see example). |
binSize |
: Bin size in bp - corresponds to matrix resolution. |
method |
: A string defining which summary method is used on metadata columns defined in metadataColName if multiple ranges are indexed in the same bin. Use 'mean', 'median', 'sum', 'max' or 'min'. (Default 'mean”) |
metadataColName |
: A character vector that specify the metadata columns of GRanges on which to apply the summary method if multiple ranges are indexed in the same bin. |
cores |
: Number of cores used. (Default 1) |
verbose |
: Show the progression in console? (Default FALSE) |
IndexFeatures
A GRanges object.
data(Beaf32_Peaks.gnr) Beaf32_Index.gnr <- IndexFeatures( gRangeList = list(Beaf = Beaf32_Peaks.gnr), chromSizes = data.frame( seqnames = c("2L", "2R"), seqlengths = c(23513712, 25286936) ), binSize = 100000 )
data(Beaf32_Peaks.gnr) Beaf32_Index.gnr <- IndexFeatures( gRangeList = list(Beaf = Beaf32_Peaks.gnr), chromSizes = data.frame( seqnames = c("2L", "2R"), seqlengths = c(23513712, 25286936) ), binSize = 100000 )
Create mega contactMatrix from a list of contactMatrix.
JoinHiC(hicLst)
JoinHiC(hicLst)
hicLst |
<ListContactMatrix>: The HiC maps list. |
JoinHiC
A ContactMatrix.
data(HiC_Ctrl.cmx_lst) Mega_Ctrl.cmx <- JoinHiC(HiC_Ctrl.cmx_lst)
data(HiC_Ctrl.cmx_lst) Mega_Ctrl.cmx <- JoinHiC(HiC_Ctrl.cmx_lst)
Merge GRanges or a list of GRanges
MergeGRanges(..., sortRanges = FALSE, reduceRanges = FALSE)
MergeGRanges(..., sortRanges = FALSE, reduceRanges = FALSE)
... |
<GRanges or GRangesList or listGRanges>: Some GRanges or a list of GRanges or a GRangesList. |
sortRanges |
: Whether the result should be sorted. (Default FALSE) |
reduceRanges |
: Whether the result should be reduced. See GenomicRanges::reduce for more details. (Default FALSE) |
MergeGRanges
a GRange object.
GRange_1.grn <- GenomicRanges::GRanges( seqnames = S4Vectors::Rle(c("chr1", "chr2", "chr1"), c(1, 3, 1)), ranges = IRanges::IRanges(101:105, end = 111:115, names = letters[seq_len(5)]), strand = S4Vectors::Rle(BiocGenerics::strand(c("-", "+", "*", "+")), c(1, 1, 2, 1)), score = seq_len(5) ) GRange_2.grn <- GenomicRanges::GRanges( seqnames = S4Vectors::Rle(c("chr1", "chr3"), c(1, 4)), ranges = IRanges::IRanges(106:110, end = 116:120, names = letters[6:10]), strand = S4Vectors::Rle(BiocGenerics::strand(c("*", "+", "-")), c(2, 1, 2)), score = 6:10 ) GRange_1.grn GRange_2.grn MergeGRanges(GRange_1.grn, GRange_2.grn) GRange.lst <- list(GRange_1.grn, GRange_2.grn) MergeGRanges(GRange.lst) MergeGRanges(GRange.lst, reduceRanges = TRUE)
GRange_1.grn <- GenomicRanges::GRanges( seqnames = S4Vectors::Rle(c("chr1", "chr2", "chr1"), c(1, 3, 1)), ranges = IRanges::IRanges(101:105, end = 111:115, names = letters[seq_len(5)]), strand = S4Vectors::Rle(BiocGenerics::strand(c("-", "+", "*", "+")), c(1, 1, 2, 1)), score = seq_len(5) ) GRange_2.grn <- GenomicRanges::GRanges( seqnames = S4Vectors::Rle(c("chr1", "chr3"), c(1, 4)), ranges = IRanges::IRanges(106:110, end = 116:120, names = letters[6:10]), strand = S4Vectors::Rle(BiocGenerics::strand(c("*", "+", "-")), c(2, 1, 2)), score = 6:10 ) GRange_1.grn GRange_2.grn MergeGRanges(GRange_1.grn, GRange_2.grn) GRange.lst <- list(GRange_1.grn, GRange_2.grn) MergeGRanges(GRange.lst) MergeGRanges(GRange.lst, reduceRanges = TRUE)
Oriente extracted Matrix according to the anchors and bait order. Apply a 180° rotation follow with a transposation on a matrix or on matrices in a list according to the interactions attributes of the list.
OrientateMatrix(mtx, verbose = TRUE)
OrientateMatrix(mtx, verbose = TRUE)
mtx |
<matrix or Listmatrix>: Matrix or matricies list to oriente |
verbose |
: Report the number of matrices corrected. (Default: TRUE) |
OrientateMatrix
Oriented matrix or matricies list
# Data data(Beaf32_Peaks.gnr) data(HiC_Ctrl.cmx_lst) # Index Beaf32 in TADs domains Beaf32_Index.gnr <- IndexFeatures( gRangeList = list(Beaf = Beaf32_Peaks.gnr), chromSizes = data.frame( seqnames = c("2L", "2R"), seqlengths = c(23513712, 25286936) ), binSize = 100000 ) # Beaf32 <-> Beaf32 Pairing Beaf_Beaf.gni <- SearchPairs(indexAnchor = Beaf32_Index.gnr) Beaf_Beaf.gni <- Beaf_Beaf.gni[seq_len(2000)] # subset 2000 first for exemple # Matrices extractions center on Beaf32 <-> Beaf32 point interaction interactions_PF.mtx_lst <- ExtractSubmatrix( genomicFeature = Beaf_Beaf.gni, hicLst = HiC_Ctrl.cmx_lst, referencePoint = "pf" ) # Matrices Orientation oriented_Interactions_PF.mtx_lst <- OrientateMatrix(interactions_PF.mtx_lst)
# Data data(Beaf32_Peaks.gnr) data(HiC_Ctrl.cmx_lst) # Index Beaf32 in TADs domains Beaf32_Index.gnr <- IndexFeatures( gRangeList = list(Beaf = Beaf32_Peaks.gnr), chromSizes = data.frame( seqnames = c("2L", "2R"), seqlengths = c(23513712, 25286936) ), binSize = 100000 ) # Beaf32 <-> Beaf32 Pairing Beaf_Beaf.gni <- SearchPairs(indexAnchor = Beaf32_Index.gnr) Beaf_Beaf.gni <- Beaf_Beaf.gni[seq_len(2000)] # subset 2000 first for exemple # Matrices extractions center on Beaf32 <-> Beaf32 point interaction interactions_PF.mtx_lst <- ExtractSubmatrix( genomicFeature = Beaf_Beaf.gni, hicLst = HiC_Ctrl.cmx_lst, referencePoint = "pf" ) # Matrices Orientation oriented_Interactions_PF.mtx_lst <- OrientateMatrix(interactions_PF.mtx_lst)
Function that normalises HiC matrices by expected values computed per genomic distance.
OverExpectedHiC( hicLst, method = "mean_non_zero", verbose = FALSE, cores = 1, plot_contact_vs_dist = "per_seq" )
OverExpectedHiC( hicLst, method = "mean_non_zero", verbose = FALSE, cores = 1, plot_contact_vs_dist = "per_seq" )
hicLst |
<ListContactMatrix>: The HiC maps list. |
method |
Options are "mean_non_zero", "mean_total", or "lieberman". Look at details for more. (Default: "mean_non_zero") |
verbose |
: Show the progression in console? (Default FALSE) |
cores |
: Number of cores to be used. (Default 1) |
plot_contact_vs_dist |
Whether to plot contact vs distance curve per chromosome ("per_seq"), all chromosomes ("total") or not (NULL). (Default "per_seq") |
OverExpectedHiC
Methods to calculate expected values per distance:
"mean_non_zero": for each distance, average contact value is calculated using only non-zero values.
"mean_total": for each distance, average contact value is calculated using all values at this distance.
"lieberman": for each distance, contact values are summed and divided by chromsome length minus distance. Only for cis contacts.
A matrices list.
# Note: run HicAggR::BalanceHiC before OverExpectedHiC calculation. data(HiC_Ctrl.cmx_lst) OverExpectedHiC(HiC_Ctrl.cmx_lst)
# Note: run HicAggR::BalanceHiC before OverExpectedHiC calculation. data(HiC_Ctrl.cmx_lst) OverExpectedHiC(HiC_Ctrl.cmx_lst)
Draw aggregation plot from aggregation matrices.
PlotAPA( aggregatedMtx = NULL, trim = 0, colMin = NULL, colMid = NULL, colMax = NULL, colMinCond = NULL, colMaxCond = NULL, extra_info = FALSE, ... )
PlotAPA( aggregatedMtx = NULL, trim = 0, colMin = NULL, colMid = NULL, colMax = NULL, colMinCond = NULL, colMaxCond = NULL, extra_info = FALSE, ... )
aggregatedMtx |
: The aggregated matrix. |
trim |
: A number between 0 and 100 that gives the percentage of triming in matrices. |
colMin |
: The minimal value in color scale. If Null automaticaly find. |
colMid |
: The middle value in color scale. If Null automaticaly find. |
colMax |
: The mximal value in color scale. If Null automaticaly find. |
colMinCond |
: Avalaible for plotting
differential aggregation. The minimal value in color scale in the
classsical aggregation plot. If |
colMaxCond |
: Avalaible for plotting
differantial aggregation. The maxiaml value in color scale in the
classsical aggregation plot. If |
extra_info |
do you want to have a recall of your arguments values? (Default FALSE) |
... |
additional arguments to |
PlotAPA
None
# Data data(Beaf32_Peaks.gnr) data(HiC_Ctrl.cmx_lst) # Index Beaf32 Beaf32_Index.gnr <- IndexFeatures( gRangeList = list(Beaf = Beaf32_Peaks.gnr), chromSizes = data.frame(seqnames = c("2L", "2R"), seqlengths = c(23513712, 25286936)), binSize = 100000 ) # Beaf32 <-> Beaf32 Pairing Beaf_Beaf.gni <- SearchPairs(indexAnchor = Beaf32_Index.gnr) Beaf_Beaf.gni <- Beaf_Beaf.gni[seq_len(2000)] # subset 2000 first for exemple # Matrices extractions center on Beaf32 <-> Beaf32 point interaction interactions_PF.mtx_lst <- ExtractSubmatrix( genomicFeature = Beaf_Beaf.gni, hicLst = HiC_Ctrl.cmx_lst, referencePoint = "pf" ) # Aggregate matrices in one matrix aggreg.mtx <- Aggregation(interactions_PF.mtx_lst) # Visualization PlotAPA( aggregatedMtx = aggreg.mtx ) PlotAPA( aggregatedMtx= aggreg.mtx, trim= 20, colMin= -2, colMid= 0, colMax= 2, colMinCond = 0, colMaxCond = 2 )
# Data data(Beaf32_Peaks.gnr) data(HiC_Ctrl.cmx_lst) # Index Beaf32 Beaf32_Index.gnr <- IndexFeatures( gRangeList = list(Beaf = Beaf32_Peaks.gnr), chromSizes = data.frame(seqnames = c("2L", "2R"), seqlengths = c(23513712, 25286936)), binSize = 100000 ) # Beaf32 <-> Beaf32 Pairing Beaf_Beaf.gni <- SearchPairs(indexAnchor = Beaf32_Index.gnr) Beaf_Beaf.gni <- Beaf_Beaf.gni[seq_len(2000)] # subset 2000 first for exemple # Matrices extractions center on Beaf32 <-> Beaf32 point interaction interactions_PF.mtx_lst <- ExtractSubmatrix( genomicFeature = Beaf_Beaf.gni, hicLst = HiC_Ctrl.cmx_lst, referencePoint = "pf" ) # Aggregate matrices in one matrix aggreg.mtx <- Aggregation(interactions_PF.mtx_lst) # Visualization PlotAPA( aggregatedMtx = aggreg.mtx ) PlotAPA( aggregatedMtx= aggreg.mtx, trim= 20, colMin= -2, colMid= 0, colMax= 2, colMinCond = 0, colMaxCond = 2 )
Separates matrices based on interaction distance, performs aggregation and plots Aggregated signal for each chunk of interaction distances.
plotMultiAPA(submatrices = NULL, ctrlSubmatrices = NULL, ..., plot.opts = NULL)
plotMultiAPA(submatrices = NULL, ctrlSubmatrices = NULL, ..., plot.opts = NULL)
submatrices |
: The matrices list to
separate using interaction distances and aggregate.
Chunks of distances are created with:
|
ctrlSubmatrices |
: The matrices list to use as control condition for differential aggregation. |
... |
: Additional arguments to pass to
[Aggregation()].
For differential aggregation plot, plotMultiAPA( submatrices = interactions_HS.mtx_lst, ctrlSubmatrices = interactions_Ctrl.mtx_lst)``` [Aggregation()]: R:Aggregation() |
plot.opts |
list of arguments to pass to |
plotMultiAPA
A plot with separate APAs per distance and a list of aggregated matrices as invisible output.
#' # Data data(Beaf32_Peaks.gnr) data(HiC_Ctrl.cmx_lst) data(HiC_HS.cmx_lst) # Index Beaf32 Beaf32_Index.gnr <- IndexFeatures( gRangeList = list(Beaf = Beaf32_Peaks.gnr), chromSizes = data.frame(seqnames = c("2L", "2R"), seqlengths = c(23513712, 25286936)), binSize = 100000 ) # Beaf32 <-> Beaf32 Pairing Beaf_Beaf.gni <- SearchPairs(indexAnchor = Beaf32_Index.gnr) Beaf_Beaf.gni <- Beaf_Beaf.gni[seq_len(2000)] # subset 2000 first for eg # Matrices extractions center on Beaf32 <-> Beaf32 point interaction interactions_Ctrl.mtx_lst <- ExtractSubmatrix( genomicFeature = Beaf_Beaf.gni, hicLst = HiC_Ctrl.cmx_lst, referencePoint = "pf" ) interactions_HS.mtx_lst <- ExtractSubmatrix( genomicFeature = Beaf_Beaf.gni, hicLst = HiC_HS.cmx_lst, referencePoint = "pf" ) interactions_Ctrl.mtx_lst <- PrepareMtxList( matrices = interactions_Ctrl.mtx_lst ) # Aggregate matrices in one matrix plotMultiAPA(submatrices = interactions_Ctrl.mtx_lst) interactions_HS.mtx_lst <- PrepareMtxList( matrices = interactions_HS.mtx_lst ) # Differential Aggregation plotMultiAPA( submatrices = interactions_HS.mtx_lst, ctrlSubmatrices = interactions_Ctrl.mtx_lst, diffFun = "ratio", plot.opts = list(colors = list("blue","white","red")) )
#' # Data data(Beaf32_Peaks.gnr) data(HiC_Ctrl.cmx_lst) data(HiC_HS.cmx_lst) # Index Beaf32 Beaf32_Index.gnr <- IndexFeatures( gRangeList = list(Beaf = Beaf32_Peaks.gnr), chromSizes = data.frame(seqnames = c("2L", "2R"), seqlengths = c(23513712, 25286936)), binSize = 100000 ) # Beaf32 <-> Beaf32 Pairing Beaf_Beaf.gni <- SearchPairs(indexAnchor = Beaf32_Index.gnr) Beaf_Beaf.gni <- Beaf_Beaf.gni[seq_len(2000)] # subset 2000 first for eg # Matrices extractions center on Beaf32 <-> Beaf32 point interaction interactions_Ctrl.mtx_lst <- ExtractSubmatrix( genomicFeature = Beaf_Beaf.gni, hicLst = HiC_Ctrl.cmx_lst, referencePoint = "pf" ) interactions_HS.mtx_lst <- ExtractSubmatrix( genomicFeature = Beaf_Beaf.gni, hicLst = HiC_HS.cmx_lst, referencePoint = "pf" ) interactions_Ctrl.mtx_lst <- PrepareMtxList( matrices = interactions_Ctrl.mtx_lst ) # Aggregate matrices in one matrix plotMultiAPA(submatrices = interactions_Ctrl.mtx_lst) interactions_HS.mtx_lst <- PrepareMtxList( matrices = interactions_HS.mtx_lst ) # Differential Aggregation plotMultiAPA( submatrices = interactions_HS.mtx_lst, ctrlSubmatrices = interactions_Ctrl.mtx_lst, diffFun = "ratio", plot.opts = list(colors = list("blue","white","red")) )
Prepares matrices list for further analysis (eg. Aggregation or GetQuantif). Orientation can be corrected, and per matrix transformation can be performed.
PrepareMtxList( matrices, minDist = NULL, maxDist = NULL, rm0 = FALSE, transFun = NULL, orientate = FALSE )
PrepareMtxList( matrices, minDist = NULL, maxDist = NULL, rm0 = FALSE, transFun = NULL, orientate = FALSE )
matrices |
<listmatrix>: The matrices list to prepare. |
minDist |
: The minimal distance between anchor and bait. |
maxDist |
: The maximal distance between anchor and bait. |
rm0 |
: Whether 0 should be replaced with NA. (Default FALSE) |
transFun |
: The function used to transform or scale values in each submatrix before aggregation. The following characters can be submitted:
|
orientate |
: Whether matrices must be corrected for orientatation before the aggregation. |
PrepareMtxList
A matrix list ready for aggregation of values extraction.
# Data data(Beaf32_Peaks.gnr) data(HiC_Ctrl.cmx_lst) data(HiC_HS.cmx_lst) # Index Beaf32 Beaf32_Index.gnr <- IndexFeatures( gRangeList = list(Beaf = Beaf32_Peaks.gnr), chromSizes = data.frame(seqnames = c("2L", "2R"), seqlengths = c(23513712, 25286936)), binSize = 100000 ) # Beaf32 <-> Beaf32 Pairing Beaf_Beaf.gni <- SearchPairs(indexAnchor = Beaf32_Index.gnr) Beaf_Beaf.gni <- Beaf_Beaf.gni[seq_len(2000)] # subset 2000 first for exemple # Matrices extractions center on Beaf32 <-> Beaf32 point interaction interactions_Ctrl.mtx_lst <- ExtractSubmatrix( genomicFeature = Beaf_Beaf.gni, hicLst = HiC_Ctrl.cmx_lst, referencePoint = "pf" ) interactions_HS.mtx_lst <- ExtractSubmatrix( genomicFeature = Beaf_Beaf.gni, hicLst = HiC_HS.cmx_lst, referencePoint = "pf" ) interactions_Ctrl.mtx_lst <- PrepareMtxList( matrices = interactions_Ctrl.mtx_lst ) # Aggregate matrices in one matrix aggreg.mtx <- Aggregation(interactions_Ctrl.mtx_lst) interactions_HS.mtx_lst <- PrepareMtxList( matrices = interactions_HS.mtx_lst ) # Differential Aggregation aggregDiff.mtx <- Aggregation( ctrlMatrices = interactions_Ctrl.mtx_lst, matrices = interactions_HS.mtx_lst )
# Data data(Beaf32_Peaks.gnr) data(HiC_Ctrl.cmx_lst) data(HiC_HS.cmx_lst) # Index Beaf32 Beaf32_Index.gnr <- IndexFeatures( gRangeList = list(Beaf = Beaf32_Peaks.gnr), chromSizes = data.frame(seqnames = c("2L", "2R"), seqlengths = c(23513712, 25286936)), binSize = 100000 ) # Beaf32 <-> Beaf32 Pairing Beaf_Beaf.gni <- SearchPairs(indexAnchor = Beaf32_Index.gnr) Beaf_Beaf.gni <- Beaf_Beaf.gni[seq_len(2000)] # subset 2000 first for exemple # Matrices extractions center on Beaf32 <-> Beaf32 point interaction interactions_Ctrl.mtx_lst <- ExtractSubmatrix( genomicFeature = Beaf_Beaf.gni, hicLst = HiC_Ctrl.cmx_lst, referencePoint = "pf" ) interactions_HS.mtx_lst <- ExtractSubmatrix( genomicFeature = Beaf_Beaf.gni, hicLst = HiC_HS.cmx_lst, referencePoint = "pf" ) interactions_Ctrl.mtx_lst <- PrepareMtxList( matrices = interactions_Ctrl.mtx_lst ) # Aggregate matrices in one matrix aggreg.mtx <- Aggregation(interactions_Ctrl.mtx_lst) interactions_HS.mtx_lst <- PrepareMtxList( matrices = interactions_HS.mtx_lst ) # Differential Aggregation aggregDiff.mtx <- Aggregation( ctrlMatrices = interactions_Ctrl.mtx_lst, matrices = interactions_HS.mtx_lst )
This function allows to obtain a dataframe that can be used with plotgardener's plotHicTriangle, plotHicRectangle, plotHicSquare. It is equivalent to plotgardener's readHic function.
preparePlotgardener( hicList = NULL, ctrlHicList = NULL, submatrices = NULL, submatrix.name = NULL, diffFun = "log2ratio", which_chrom = NULL, which_range = NULL )
preparePlotgardener( hicList = NULL, ctrlHicList = NULL, submatrices = NULL, submatrix.name = NULL, diffFun = "log2ratio", which_chrom = NULL, which_range = NULL )
hicList |
hicList from which to extract data |
ctrlHicList |
hicList to use as control for a differential analysis. |
submatrices |
list of submatrices. |
submatrix.name |
name of submatrix
to focus on. use |
diffFun |
The function used to compute differential between counts column of hicList and ctrlHicList. If the argument is a character, possible choices are:
|
which_chrom |
a combination
of chromsome names use |
which_range |
a GRanges object
or a string of type "chr1:1-100". see |
funcions returns a data.frame with 3 columns:
chrom, altchrom and counts. chrom being bin names of rows, altchrom being
bin names of columns and counts being the counts.
see also strawr::straw()
& plotgardener::readHic()
data(HiC_Ctrl.cmx_lst) data(HiC_HS.cmx_lst) preparePlotgardener( hicList = HiC_HS.cmx_lst, ctrlHicList = HiC_Ctrl.cmx_lst, which_chrom = "2L_2L", diffFun = "substract")|> head()
data(HiC_Ctrl.cmx_lst) data(HiC_HS.cmx_lst) preparePlotgardener( hicList = HiC_HS.cmx_lst, ctrlHicList = HiC_Ctrl.cmx_lst, which_chrom = "2L_2L", diffFun = "substract")|> head()
Creates pairs of coordinates from indexed anchor and bait genomic coordinates according to distance constraints.
SearchPairs( indexAnchor = NULL, indexBait = NULL, minDist = NULL, maxDist = NULL, exclude_duplicates = TRUE, exclude_self_interactions = TRUE, verbose = FALSE, cores = 1 )
SearchPairs( indexAnchor = NULL, indexBait = NULL, minDist = NULL, maxDist = NULL, exclude_duplicates = TRUE, exclude_self_interactions = TRUE, verbose = FALSE, cores = 1 )
indexAnchor |
: A first indexed GRanges object used as pairs anchor (must be indexed using IndexFeatures()). |
indexBait |
: A second indexed GRanges object used as pairs bait (must be indexed using IndexFeatures()). If NULL, indexAnchor is used instead (Default NULL) |
minDist |
: Minimal distance between anchors and baits. (Default NULL) |
maxDist |
: Maximal distance between anchors and baits. (Default NULL) |
exclude_duplicates |
Should duplicated pairs ("2L:100_2L:150" & "2L:150_2L:100") be removed? (Default: TRUE) |
exclude_self_interactions |
Should pairs between the same bin ("2L:100_2L:100") be excluded? (Default: TRUE) |
verbose |
: Show the progression in console? (Default FALSE) |
cores |
: Number of cores to use. (Default 1) |
SearchPairs
A GInteractions object.
# Data data(Beaf32_Peaks.gnr) # Index Beaf32 Beaf32_Index.gnr <- IndexFeatures( gRangeList = list(Beaf = Beaf32_Peaks.gnr), chromSizes = data.frame(seqnames = c("2L", "2R"), seqlengths = c(23513712, 25286936)), binSize = 100000 ) # Beaf32 <-> Beaf32 Pairing Beaf_Beaf.gni <- SearchPairs(indexAnchor = Beaf32_Index.gnr)
# Data data(Beaf32_Peaks.gnr) # Index Beaf32 Beaf32_Index.gnr <- IndexFeatures( gRangeList = list(Beaf = Beaf32_Peaks.gnr), chromSizes = data.frame(seqnames = c("2L", "2R"), seqlengths = c(23513712, 25286936)), binSize = 100000 ) # Beaf32 <-> Beaf32 Pairing Beaf_Beaf.gni <- SearchPairs(indexAnchor = Beaf32_Index.gnr)
Get all sequences lengths for each ranges of a GRanges object.
SeqEnds(gRanges)
SeqEnds(gRanges)
gRanges |
: A GRanges object. |
SeqEnds
An integer vector.
GRange.grn <- GenomicRanges::GRanges( seqnames = S4Vectors::Rle(c("chr1", "chr2", "chr1"), c(1, 3, 1)), ranges = IRanges::IRanges(101:105, end = 111:115, names = letters[seq_len(5)]), strand = S4Vectors::Rle(BiocGenerics::strand(c("-", "+", "*", "+")), c(1, 1, 2, 1)), seqinfo = c(chr1 = 200, chr2 = 300), score = seq_len(5) ) SeqEnds(GRange.grn)
GRange.grn <- GenomicRanges::GRanges( seqnames = S4Vectors::Rle(c("chr1", "chr2", "chr1"), c(1, 3, 1)), ranges = IRanges::IRanges(101:105, end = 111:115, names = letters[seq_len(5)]), strand = S4Vectors::Rle(BiocGenerics::strand(c("-", "+", "*", "+")), c(1, 1, 2, 1)), seqinfo = c(chr1 = 200, chr2 = 300), score = seq_len(5) ) SeqEnds(GRange.grn)
Convert ranges describe with string (i.e seqname:start-end:strand) in GRanges object.
StrToGRanges(stringRanges)
StrToGRanges(stringRanges)
stringRanges |
: Strings to convert on GRanges. |
StrToGRanges
A GRanges object.
StrToGRanges("chr1:1-100:+") StrToGRanges(c("chr1:1-100:+", "chr2:400-500:-", "chr1:10-50:*"))
StrToGRanges("chr1:1-100:+") StrToGRanges(c("chr1:1-100:+", "chr2:400-500:-", "chr1:10-50:*"))
Change values in matrix with observed, balanced, observed/expected or expected values according to what are be done in hic.
SwitchMatrix(hicLst, matrixKind = c("obs", "norm", "o/e", "exp"))
SwitchMatrix(hicLst, matrixKind = c("obs", "norm", "o/e", "exp"))
hicLst |
<ListContactMatrix>: The HiC maps list. |
matrixKind |
: The kind of matrix you want. |
SwitchMatrix
A ContactMatrix list.
# Data data(HiC_Ctrl.cmx_lst) # Preprocess HiC HiC.cmx_lst <- HiC_Ctrl.cmx_lst |> BalanceHiC( interactionType = "cis", method = "ICE" ) |> OverExpectedHiC() # Switch values in matrix HiC_Ctrl_Obs.cmx_lst <- SwitchMatrix(HiC.cmx_lst, matrixKind = "obs") HiC_Ctrl_Norm.cmx_lst <- SwitchMatrix(HiC.cmx_lst, matrixKind = "norm") HiC_Ctrl_oe.cmx_lst <- SwitchMatrix(HiC.cmx_lst, matrixKind = "o/e") HiC_Ctrl_exp.cmx_lst <- SwitchMatrix(HiC.cmx_lst, matrixKind = "exp")
# Data data(HiC_Ctrl.cmx_lst) # Preprocess HiC HiC.cmx_lst <- HiC_Ctrl.cmx_lst |> BalanceHiC( interactionType = "cis", method = "ICE" ) |> OverExpectedHiC() # Switch values in matrix HiC_Ctrl_Obs.cmx_lst <- SwitchMatrix(HiC.cmx_lst, matrixKind = "obs") HiC_Ctrl_Norm.cmx_lst <- SwitchMatrix(HiC.cmx_lst, matrixKind = "norm") HiC_Ctrl_oe.cmx_lst <- SwitchMatrix(HiC.cmx_lst, matrixKind = "o/e") HiC_Ctrl_exp.cmx_lst <- SwitchMatrix(HiC.cmx_lst, matrixKind = "exp")
Drosophila Melanogaster TADs on chromosome 2R and 2L (F.Ramirez, 2018)
data(TADs_Domains.gnr)
data(TADs_Domains.gnr)
An object of class GRanges.
data(TADs_Domains.gnr) TADs_Domains.gnr
data(TADs_Domains.gnr) TADs_Domains.gnr
Data from a CHip Seq experiment
data(TSS_Peaks.gnr)
data(TSS_Peaks.gnr)
An object of class GRanges.
data(TSS_Peaks.gnr) TSS_Peaks.gnr
data(TSS_Peaks.gnr) TSS_Peaks.gnr
Compute Vanilla Count or Vanilla Count square root correction normalization on hic maps.
VCnorm(hic = NULL, qtlTh = 0.15, vcsqrt = TRUE)
VCnorm(hic = NULL, qtlTh = 0.15, vcsqrt = TRUE)
hic |
: The HiC maps chunk to normalize. |
qtlTh |
: The threshold quantile below which the bins will be ignored. (Default 0.15) |
vcsqrt |
: Whether the square root should be applied. (Default TRUE) |
VCnorm
A matrices list.
# Data data(HiC_Ctrl.cmx_lst) HiC_Ctrl_VC.cmx <- VCnorm(HiC_Ctrl.cmx_lst[["2L_2L"]]) HiC_Ctrl_VC_SQRT.cmx <- VCnorm(HiC_Ctrl.cmx_lst[["2L_2L"]], vcsqrt = TRUE)
# Data data(HiC_Ctrl.cmx_lst) HiC_Ctrl_VC.cmx <- VCnorm(HiC_Ctrl.cmx_lst[["2L_2L"]]) HiC_Ctrl_VC_SQRT.cmx <- VCnorm(HiC_Ctrl.cmx_lst[["2L_2L"]], vcsqrt = TRUE)
Create a viridis palette.
viridis( paletteLength = NULL, space = "rgb", interpolationMethod = "linear", bias = 1 )
viridis( paletteLength = NULL, space = "rgb", interpolationMethod = "linear", bias = 1 )
paletteLength |
: Color number. |
space |
: A character string; interpolation in RGB or CIE Lab color spaces. See ?grDevices::colorRamp for more details. (Default "rgb") |
interpolationMethod |
: Use spline or linear interpolation. See ?grDevices::colorRamp for more details. (Default "linear") |
bias |
: A positive number. Higher values give more widely spaced colors at the high end. See ?grDevices::colorRamp for more details. (Default 1) |
viridis
A vector of color.
viridis(9)
viridis(9)
Create a YlGnBu palette.
YlGnBu( paletteLength = NULL, space = "rgb", interpolationMethod = "linear", bias = 1 )
YlGnBu( paletteLength = NULL, space = "rgb", interpolationMethod = "linear", bias = 1 )
paletteLength |
: Color number. |
space |
: A character string; interpolation in RGB or CIE Lab color spaces. See ?grDevices::colorRamp for more details. (Default "rgb") |
interpolationMethod |
: Use spline or linear interpolation. See ?grDevices::colorRamp for more details. (Default "linear") |
bias |
: A positive number. Higher values give
more widely spaced colors at the high end. See |
YlGnBu
A vector of color.
YlGnBu(9)
YlGnBu(9)
Create a YlOrRd palette.
YlOrRd( paletteLength = NULL, space = "rgb", interpolationMethod = "linear", bias = 1 )
YlOrRd( paletteLength = NULL, space = "rgb", interpolationMethod = "linear", bias = 1 )
paletteLength |
: Color number. |
space |
: A character string; interpolation
in RGB or CIE Lab color spaces. See |
interpolationMethod |
: Use spline or linear
interpolation. See |
bias |
: A positive number. Higher values give
more widely spaced colors at the high end. See |
YlOrRd
A vector of color.
YlOrRd(9)
YlOrRd(9)