Package 'HiLDA'

Title: Conducting statistical inference on comparing the mutational exposures of mutational signatures by using hierarchical latent Dirichlet allocation
Description: A package built under the Bayesian framework of applying hierarchical latent Dirichlet allocation. It statistically tests whether the mutational exposures of mutational signatures (Shiraishi-model signatures) are different between two groups. The package also provides inference and visualization.
Authors: Zhi Yang [aut, cre], Yuichi Shiraishi [ctb]
Maintainer: Zhi Yang <[email protected]>
License: GPL-3
Version: 1.21.0
Built: 2024-11-29 08:01:08 UTC
Source: https://github.com/bioc/HiLDA

Help Index


Check whether the parameter F is within the appropriate range

Description

Check whether the parameter F is within the appropriate range

Usage

boundaryTurbo_F(turboF, fdim, signatureNum)

Arguments

turboF

F (converted for turboEM)

fdim

a vector specifying the number of possible values for each mutation signature

signatureNum

the number of mutation signatures

Value

a logical value


Check whether the parameter Q is within the appropriate range

Description

Check whether the parameter Q is within the appropriate range

Usage

boundaryTurbo_Q(turboQ, signatureNum, sampleNum)

Arguments

turboQ

Q (converted for turboEM)

signatureNum

the number of mutation signatures

sampleNum

the number of cancer genomes

Value

a logical value


A function for calculating the log-likelihood from the data and parameters

Description

A function for calculating the log-likelihood from the data and parameters

Usage

calcPMSLikelihood(p, y)

Arguments

p

this variable includes the parameters for mutation signatures and membership parameters

y

this variable includes the information on the mutation features, the number of mutation signatures specified and so on

Value

a value


Restore the converted parameter F for turboEM

Description

Restore the converted parameter F for turboEM

Usage

convertFromTurbo_F(turboF, fdim, signatureNum, isBackground)

Arguments

turboF

F (converted for turboEM)

fdim

a vector specifying the number of possible values for each mutation signature

signatureNum

the number of mutation signatures

isBackground

the logical value showing whether a background mutaiton features is included or not

Value

a vector


Restore the converted parameter Q for turboEM

Description

Restore the converted parameter Q for turboEM

Usage

convertFromTurbo_Q(turboQ, signatureNum, sampleNum)

Arguments

turboQ

Q (converted for turboEM)

signatureNum

the number of mutation signatures

sampleNum

the number of cancer genomes

Value

a vector


Convert the parameter F so that turboEM can treat

Description

Convert the parameter F so that turboEM can treat

Usage

convertToTurbo_F(vF, fdim, signatureNum, isBackground)

Arguments

vF

F (converted to a vector)

fdim

a vector specifying the number of possible values for each mutation signature

signatureNum

the number of mutation signatures

isBackground

the logical value showing whether a background mutaiton features is included or not

Value

a vector


Convert the parameter Q so that turboEM can treat

Description

Convert the parameter Q so that turboEM can treat

Usage

convertToTurbo_Q(vQ, signatureNum, sampleNum)

Arguments

vQ

Q (converted to a vector)

signatureNum

the number of mutation signatures

sampleNum

the number of cancer genomes

Value

a vector


An S4 class representing the estimated parameters

Description

An S4 class representing the estimated parameters

Slots

sampleList

a list of sample names observed in the input mutation data

signatureNum

the number of mutation signatures specified at the time of estimation

isBackGround

the flag showing whether the background signature data is used or not.

backGroundProb

the background signatures

signatureFeatureDistribution

estimated parameters for mutation signatures

sampleSignatureDistribution

estimated parameters for memberships of mutation signatures for each sample

loglikelihood

the log-likelihood value for the estimated parameters


Calculate the value of the log-likelihood for given parameters

Description

Calculate the value of the log-likelihood for given parameters

Usage

getLogLikelihoodC(
  vPatternList,
  vSparseCount,
  vF,
  vQ,
  fdim,
  signatureNum,
  sampleNum,
  patternNum,
  samplePatternNum,
  isBackground,
  vF0
)

Arguments

vPatternList

The list of possible mutation features (converted to a vector)

vSparseCount

The table showing (mutation feature, sample, the number of mutation) (converted to a vector)

vF

F (converted to a vector)

vQ

Q (converted to a vector)

fdim

a vector specifying the number of possible values for each mutation signature

signatureNum

the number of mutation signatures

sampleNum

the number of cancer genomes

patternNum

the number of possible combinations of all the mutation features

samplePatternNum

the number of possible combination of samples and mutation patternns

isBackground

the logical value showing whether a background mutaiton features is included or not

vF0

a background mutaiton features

Value

a value


Get mutation feature vector from context sequence data and reference and alternate allele information

Description

Get mutation feature vector from context sequence data and reference and alternate allele information

Usage

getMutationFeatureVector(
  context,
  ref_base,
  alt_base,
  strandInfo = NULL,
  numBases,
  type
)

Arguments

context

the context sequence data around the mutated position. This shoud be Biostrings::DNAStringSet class

ref_base

the reference bases at the mutated position.

alt_base

the alternate bases at the mutated position.

strandInfo

transcribed strand information at the mutated position. (this is optional)

numBases

the number of flanking bases around the mutated position.

type

the type of mutation feature vecotr (should be "independent" or "full").

Value

a mutation featuer vector


Read the raw mutation data with the mutation feature vector format, estimate and plot both mutation signatures and their fractions

Description

Read the raw mutation data with the mutation feature vector format, estimate and plot both mutation signatures and their fractions

Usage

hildaBarplot(
  inputG,
  hildaResult,
  sigOrder = NULL,
  refGroup,
  sortSampleNum = TRUE,
  refName = "Control",
  altName = "Case",
  charSize = 3
)

Arguments

inputG

a MutationFeatureData S4 class output by the pmsignature.

hildaResult

a rjags class output by HiLDA.

sigOrder

the order of signatures if needed (default: NULL).

refGroup

the samples in the reference group (default: NULL).

sortSampleNum

whether to sort plots by number of mutations (default: TRUE).

refName

the name of reference group (default: Control)

altName

the name of the other group (default: Case)

charSize

the size of the character on the signature plot (default: 3)

Value

a list of a signature plot and a barplot of mutational exposures

Examples

load(system.file("extdata/sample.rdata", package="HiLDA"))
inputFile <- system.file("extdata/hildaLocal.rdata", package="HiLDA")
hildaLocal <- readRDS(inputFile)

hildaBarplot(G, hildaLocal, refGroup=1:4)

Read the raw mutation data with the mutation feature vector format, estimate and plot both mutation signatures and their fractions

Description

Read the raw mutation data with the mutation feature vector format, estimate and plot both mutation signatures and their fractions

Usage

hildaDiffPlot(inputG, hildaResult, sigOrder = NULL, charSize = 3)

Arguments

inputG

a MutationFeatureData S4 class output by the pmsignature.

hildaResult

a rjags class output by HiLDA.

sigOrder

the order of signatures if needed (default: NULL).

charSize

the size of the character on the signature plot (default: 3)

Value

a list of the signature plot and the mean difference plot.

Examples

load(system.file("extdata/sample.rdata", package="HiLDA"))
inputFile <- system.file("extdata/hildaLocal.rdata", package="HiLDA")
hildaLocal <- readRDS(inputFile)

hildaDiffPlot(G, hildaLocal)

Compute the Bayes factor

Description

Compute the Bayes factor

Usage

hildaGlobalResult(jagsOutput, pM1 = 0.5)

Arguments

jagsOutput

the output jags file generated by the jags function from the R2jags package.

pM1

the probability of sampling the null (default: 0.5)

Value

a number for the Bayes factor

Examples

load(system.file("extdata/sample.rdata", package="HiLDA"))
hildaGlobal <- hildaTest(inputG=G, numSig=3, refGroup=1:4, nIter=1000,
localTest=TRUE)
hildaGlobalResult(hildaGlobal)

Extract the posterior distributions of the mean differences in muational exposures

Description

Extract the posterior distributions of the mean differences in muational exposures

Usage

hildaLocalResult(jagsOutput)

Arguments

jagsOutput

the output jags file generated by the jags function from the R2jags package.

Value

a data frame that contains the posterior distributions of difference.

Examples

inputFile <- system.file("extdata/hildaLocal.rdata", package="HiLDA")
hildaLocal <- readRDS(inputFile)
hildaLocalResult(hildaLocal)

Plot mutation signatures from HiLDA output

Description

Plot mutation signatures from HiLDA output

Usage

hildaPlotSignature(hildaResult, sigOrder = NULL, colorList = NULL, ...)

Arguments

hildaResult

a rjags class output by HiLDA

sigOrder

the order of signatures if needed (default: NULL)

colorList

a vector of color for mutational exposures barplots

...

additional arguments passed on to visPMS

Value

a plot object containing all mutational signatures

Examples

inputFile <- system.file("extdata/hildaLocal.rdata", package="HiLDA")
hildaLocal <- readRDS(inputFile)
hildaPlotSignature(hildaLocal)

Read the raw mutation data of Mutation Position Format.

Description

The mutation position format is tab-delimited text file, where the 1st-5th columns shows sample names, chromosome names, coordinates, reference bases (A, C, G, or T) and the alternate bases (A, C, G, or T), respectively. An example is as follows;

sample1 chr1 100 A C

sample1 chr1 200 A T

sample1 chr2 100 G T

sample2 chr1 300 T C

sample3 chr3 400 T C

Also, this function usually can accept compressed files (e.g., by gzip, bzip2 and so on) when using recent version of R.

Usage

hildaReadMPFile(
  infile,
  numBases = 3,
  trDir = FALSE,
  bs_genome = NULL,
  txdb_transcript = NULL
)

Arguments

infile

the path for the input file for the mutation data of Mutation Position Format.

numBases

the number of upstream and downstream flanking bases (including the mutated base) to take into account.

trDir

the index representing whether transcription direction is considered or not. The gene annotation information is given by UCSC knownGene (TxDb.Hsapiens.UCSC.hg19.knownGene object) When trDir is TRUE, the mutations located in intergenic region are excluded from the analysis.

bs_genome

this argument specifies the reference genome (e.g., B Sgenome.Mmusculus.UCSC.mm10 can be used for the mouse genome). See https://bioconductor.org/packages/release/bioc/html/BSgenome.html for the available genome list

txdb_transcript

this argument specified the transcript database (e.g., TxDb.Mmusculus.UCSC.mm10.knownGene can be used for the mouse genome). See https://bioconductor.org/packages/release/bioc/html/AnnotationDbi.html for details.

Value

The output is an instance of MutationFeatureData S4 class (which stores summarized information on mutation data). This will be typically used as the initial values for the global test and the local test.

Examples

inputFile <- system.file("extdata/esophageal.mp.txt.gz", package="HiLDA")
G <- hildaReadMPFile(inputFile, numBases=5, trDir=TRUE)

Output the maximum potential scale reduction statistic of all parameters estimated

Description

Output the maximum potential scale reduction statistic of all parameters estimated

Usage

hildaRhat(jagsOutput)

Arguments

jagsOutput

the output jags file generated by the jags function from the R2jags package.

Value

a number for the Rhat statistic.

Examples

inputFile <- system.file("extdata/hildaLocal.rdata", package="HiLDA")
hildaLocal <- readRDS(inputFile)
hildaRhat(hildaLocal)

Apply HiLDA to statistically testing the global difference in burdens of mutation signatures between two groups

Description

Apply HiLDA to statistically testing the global difference in burdens of mutation signatures between two groups

Usage

hildaTest(
  inputG,
  numSig,
  refGroup,
  useInits = NULL,
  sigOrder = NULL,
  nIter = 2000,
  nBurnin = 0,
  pM1 = 0.5,
  localTest = TRUE,
  ...
)

Arguments

inputG

a MutationFeatureData S4 class output by the pmsignature.

numSig

an integer number of the number of mutational signatures.

refGroup

the indice indicating the samples in the reference group.

useInits

a EstimatedParameters S4 class output by the pmsignature (default: NULL)

sigOrder

the order of the mutational signatures.

nIter

number of total iterations per chain (default: 2000).

nBurnin

length of burn (default: 0).

pM1

the probability of sampling the null (default: 0.5)

localTest

a logical value (default: TRUE)

...

Other arguments passed on to methods.

Value

the output jags file

Examples

load(system.file("extdata/sample.rdata", package="HiLDA"))

## with initial values
hildaLocal <- hildaTest(inputG=G, numSig=3, refGroup=1:4, nIter=1000,
localTest=TRUE)
hildaGlobal <- hildaTest(inputG=G, numSig=3, refGroup=1:4, nIter=1000,
localTest=FALSE)

An S4 class to represent a mutation meta information common to many data types

Description

@slot type type of data format (independent, full, custom) @slot flankingBasesNum the number of flanking bases to consider (only applicable for independent and full types) @slot transcriptionDirection the flag representing whether transcription direction is considered or not @slot possibleFeatures a vector representing the numbers of possible values for each mutation feature


An S4 class representing the mutation data

Description

An S4 class representing the mutation data

Slots

featureVectorList

a list of feature vectors actually observed in the input mutation data

sampleList

a list of sample names observed in the input mutation data

countData

a matrix representing the number of mutations and samples. The (1st, 2nd, 3rd) columns are for (mutation pattern index, sample index, frequencies).

mutationPosition

a data frame containing position and mutations


A function for estimating parameters using Squared EM algorithm

Description

A function for estimating parameters using Squared EM algorithm

Usage

mySquareEM(p, y, tol = 1e-04, maxIter = 10000)

Arguments

p

this variable includes the parameters for mutation signatures and membership parameters

y

this variable includes the information on the mutation features, the number of mutation signatures specified and so on

tol

tolerance for the estimation (when the difference of log-likelihoods become below this value, stop the estimation)

maxIter

the maximum number of iteration of estimation

Value

a list


Plot both mutation signatures and their mutational exposures from pmsignature output

Description

Plot both mutation signatures and their mutational exposures from pmsignature output

Usage

pmBarplot(
  inputG,
  inputParam,
  sigOrder = NULL,
  refGroup = NULL,
  sortSampleNum = TRUE,
  refName = "Control",
  altName = "Case",
  charSize = 3
)

Arguments

inputG

a MutationFeatureData S4 class output by the pmsignature.

inputParam

a estimatedParameters S4 class output by the pmsignature.

sigOrder

the order of signatures if needed (default: NULL).

refGroup

the samples in the reference group (default: NULL).

sortSampleNum

whether to sort by number of mutations (default: TRUE).

refName

the name of reference group (default: Control).

altName

the name of the other group (default: Case).

charSize

the size of the character on the signature plot (default: 3).

Value

a list of a signature plot and a barplot of mutational exposures

Examples

load(system.file("extdata/sample.rdata", package="HiLDA"))
Param <- pmgetSignature(G, K = 3)

pmPlots <- pmBarplot(G, Param, refGroup=1:4)
cowplot::plot_grid(pmPlots$sigPlot, pmPlots$propPlot, rel_widths = c(1,3))

Obtain the parameters for mutation signatures and memberships

Description

Obtain the parameters for mutation signatures and memberships

Usage

pmgetSignature(
  mutationFeatureData,
  K,
  numInit = 10,
  tol = 1e-04,
  maxIter = 10000
)

Arguments

mutationFeatureData

the mutation data (MutationFeatureData class (S4 class)) by the hildaReadMPFile.

K

the number of mutation signatures

numInit

the number of performing calculations with different initial values

tol

tolerance for the estimation (when the difference of log-likelihoods become below this value, stop the estimation)

maxIter

the maximum number of iteration of estimation

Value

The output is an instance of EstimatedParameters S4 class, which stores estimated parameters and other meta-information, and will be used for saving parameter values and visualizing the mutation signatures and memberships

Examples

## After obtaining G (see e.g., hildaReadMPFile function)
load(system.file("extdata/sample.rdata", package="HiLDA"))
Param <- pmgetSignature(G, K = 3)

Plot both mutation signatures and their mutational exposures from pmsignature output for more than two groups

Description

Plot both mutation signatures and their mutational exposures from pmsignature output for more than two groups

Usage

pmMultiBarplot(
  inputG,
  inputParam,
  sigOrder = NULL,
  groupIndices,
  sortSampleNum = TRUE,
  charSize = 3
)

Arguments

inputG

a MutationFeatureData S4 class output by the pmsignature.

inputParam

a estimatedParameters S4 class output by the pmsignature.

sigOrder

the order of signatures if needed (default: NULL).

groupIndices

a vector of group indicators.

sortSampleNum

an indictor variable on whether samples are sorted by the number of mutations (default: TRUE).

charSize

the size of the character on the signature plot (default: 3)

Value

a list of the signature plot and the mean difference plot.

Examples

load(system.file("extdata/sample.rdata", package="HiLDA"))
Param <- pmgetSignature(G, K = 3)

pmPlots <- pmMultiBarplot(G, Param, groupIndices=c(1, rep(2,3), rep(3,6)))
cowplot::plot_grid(pmPlots$sigPlot, pmPlots$propPlot, rel_widths = c(1,3))

Plot mutation signatures from pmsignature output

Description

Plot mutation signatures from pmsignature output

Usage

pmPlotSignature(inputParam, sigOrder = NULL, colorList = NULL, ...)

Arguments

inputParam

a estimatedParameters S4 class output by the pmsignature.

sigOrder

the order of signatures if needed (default: NULL).

colorList

a list of color to highlight the signatures (default: NULL).

...

additional arguments passed on to visPMS.

Value

a plot object containing all mutational signatures

Examples

load(system.file("extdata/sample.rdata", package="HiLDA"))
Param <- pmgetSignature(G, K = 3)
pmPlotSignature(Param)

A functional for generating the function checking the parameter (p) is within the restricted conditions or not

Description

A functional for generating the function checking the parameter (p) is within the restricted conditions or not

Usage

PMSboundary(y)

Arguments

y

this variable includes the information on the mutation features, the number of mutation signatures specified and so on

Value

a functional


Update the parameter F and Q (M-step in the EM-algorithm)

Description

Update the parameter F and Q (M-step in the EM-algorithm)

Usage

updateMstepFQC(
  vPatternList,
  vSparseCount,
  nTheta,
  fdim,
  signatureNum,
  sampleNum,
  patternNum,
  samplePatternNum,
  isBackground
)

Arguments

vPatternList

The list of possible mutation features (converted to a vector)

vSparseCount

The table showing (mutation feature, sample, the number of mutation) (converted to a vector)

nTheta

The parameters in the distribution

fdim

a vector specifying the number of possible values for each mutation signature

signatureNum

the number of mutation signatures

sampleNum

the number of cancer genomes

patternNum

the number of possible combinations of all the mutation features

samplePatternNum

the number of possible combination of samples and mutation patternns

isBackground

the logical value showing whether a background mutaiton features is included or not

Value

a vector


A function for updating parameters using EM-algorithm

Description

A function for updating parameters using EM-algorithm

Usage

updatePMSParam(p, y)

Arguments

p

this variable includes the parameters for mutation signatures and membership parameters

y

this variable includes the information on the mutation features, the number of mutation signatures specified and so on

Value

a value


Update the auxiliary parameters theta and normalize them so that the summation of each group sums to 1 (E-step), also calculate the current log-likelihood value

Description

Update the auxiliary parameters theta and normalize them so that the summation of each group sums to 1 (E-step), also calculate the current log-likelihood value

Usage

updateTheta_NormalizedC(
  vPatternList,
  vSparseCount,
  vF,
  vQ,
  fdim,
  signatureNum,
  sampleNum,
  patternNum,
  samplePatternNum,
  isBackground,
  vF0
)

Arguments

vPatternList

The list of possible mutation features (converted to a vector)

vSparseCount

The table showing (mutation feature, sample, the number of mutation) (converted to a vector)

vF

F (converted to a vector)

vQ

Q (converted to a vector)

fdim

a vector specifying the number of possible values for each mutation signature

signatureNum

the number of mutation signatures

sampleNum

the number of cancer genomes

patternNum

the number of possible combinations of all the mutation features

samplePatternNum

the number of possible combination of samples and mutation patternns

isBackground

the logical value showing whether a background mutaiton features is included or not

vF0

a background mutaiton features

Value

a value for theta


visualize probabisitic mutaiton signature for the independent model

Description

Generate visualization of mutation signatures for the model with substitution patterns and flanking bases represented by the indepenent representation.

Usage

visPMS(
  vF,
  numBases,
  baseCol = NA,
  trDir = FALSE,
  charSize = 5,
  isScale = FALSE,
  alpha = 2,
  charLimit = 0.25
)

Arguments

vF

a matrix for mutation signature

numBases

the number of flanking bases

baseCol

the colour of the bases (A, C, G, T, plus/minus strand)

trDir

the index whether the strand direction is plotted or not

charSize

the size of the character

isScale

the index whether the height of the flanking base is changed or not

alpha

the parameter for the Renyi entropy (applicable only if the isScale is TRUE)

charLimit

the limit of char size

Value

a plot of the input mutational signature

Examples

load(system.file("extdata/sample.rdata", package="HiLDA"))
Param <- pmgetSignature(G, K = 3)

sig <- slot(Param, "signatureFeatureDistribution")[1,,]
visPMS(sig, numBases = 5, isScale = TRUE)