Package 'HIBAG'

Title: HLA Genotype Imputation with Attribute Bagging
Description: Imputes HLA classical alleles using GWAS SNP data, and it relies on a training set of HLA and SNP genotypes. HIBAG can be used by researchers with published parameter estimates instead of requiring access to large training sample datasets. It combines the concepts of attribute bagging, an ensemble classifier method, with haplotype inference for SNPs and HLA types. Attribute bagging is a technique which improves the accuracy and stability of classifier ensembles using bootstrap aggregating and random variable selection.
Authors: Xiuwen Zheng [aut, cre, cph] , Bruce Weir [ctb, ths]
Maintainer: Xiuwen Zheng <[email protected]>
License: GPL-3
Version: 1.43.1
Built: 2024-11-21 03:03:40 UTC
Source: https://github.com/bioc/HIBAG

Help Index


HLA Genotype Imputation with Attribute Bagging

Description

To impute HLA types from unphased SNP data using an attribute bagging method.

Details

Package: HIBAG
Type: R/Bioconductor Package
License: GPL version 3
Kernel Version: v1.5

HIBAG is a state of the art software package for imputing HLA types using SNP data, and it uses the R statistical programming language. HIBAG is highly accurate, computationally tractable, and can be used by researchers with published parameter estimates instead of requiring access to large training sample datasets. It combines the concepts of attribute bagging, an ensemble classifier method, with haplotype inference for SNPs and HLA types. Attribute bagging is a technique which improves the accuracy and stability of classifier ensembles using bootstrap aggregating and random variable selection.

Features:
1) HIBAG can be used by researchers with published parameter estimates (https://hibag.s3.amazonaws.com/hlares_index.html) instead of requiring access to large training sample datasets.
2) A typical HIBAG parameter file contains only haplotype frequencies at different SNP subsets rather than individual training genotypes.
3) SNPs within the xMHC region (chromosome 6) are used for imputation.
4) HIBAG employs unphased genotypes of unrelated individuals as a training set.
5) HIBAG supports parallel computing with R.

Author(s)

Xiuwen Zheng [aut, cre, cph] [email protected], Bruce S. Weir [ctb, ths] [email protected]

References

Zheng X, Shen J, Cox C, Wakefield J, Ehm M, Nelson M, Weir BS; HIBAG – HLA Genotype Imputation with Attribute Bagging. The Pharmacogenomics Journal. doi: 10.1038/tpj.2013.18. https://www.nature.com/articles/tpj201318

Examples

# HLA_Type_Table data
head(HLA_Type_Table)
dim(HLA_Type_Table)  # 60 13

# HapMap_CEU_Geno data
summary(HapMap_CEU_Geno)


######################################################################

# make a "hlaAlleleClass" object
hla.id <- "A"
hla <- hlaAllele(HLA_Type_Table$sample.id,
    H1 = HLA_Type_Table[, paste(hla.id, ".1", sep="")],
    H2 = HLA_Type_Table[, paste(hla.id, ".2", sep="")],
    locus=hla.id, assembly="hg19")

# divide HLA types randomly
set.seed(100)
hlatab <- hlaSplitAllele(hla, train.prop=0.5)
names(hlatab)
# "training"   "validation"
summary(hlatab$training)
summary(hlatab$validation)

# SNP predictors within the flanking region on each side
region <- 500   # kb
snpid <- hlaFlankingSNP(HapMap_CEU_Geno$snp.id, HapMap_CEU_Geno$snp.position,
    hla.id, region*1000, assembly="hg19")
length(snpid)  # 275

# training and validation genotypes
train.geno <- hlaGenoSubset(HapMap_CEU_Geno,
    snp.sel=match(snpid, HapMap_CEU_Geno$snp.id),
    samp.sel=match(hlatab$training$value$sample.id,
    HapMap_CEU_Geno$sample.id))
test.geno <- hlaGenoSubset(HapMap_CEU_Geno,
    samp.sel=match(hlatab$validation$value$sample.id,
    HapMap_CEU_Geno$sample.id))

# train a HIBAG model
set.seed(100)
# please use "nclassifier=100" when you use HIBAG for real data
model <- hlaAttrBagging(hlatab$training, train.geno, nclassifier=4,
    verbose.detail=TRUE)
summary(model)

# validation
pred <- hlaPredict(model, test.geno)
summary(pred)

# compare
(comp <- hlaCompareAllele(hlatab$validation, pred, allele.limit=model,
    call.threshold=0))
(comp <- hlaCompareAllele(hlatab$validation, pred, allele.limit=model,
    call.threshold=0.5))


# save the parameter file
mobj <- hlaModelToObj(model)
save(mobj, file="HIBAG_model.RData")
save(test.geno, file="testgeno.RData")
save(hlatab, file="HLASplit.RData")

# Clear Workspace
hlaClose(model)  # release all resources of model
rm(list = ls())


######################################################################

# NOW, load a HIBAG model from the parameter file
mobj <- get(load("HIBAG_model.RData"))
model <- hlaModelFromObj(mobj)

# validation
test.geno <- get(load("testgeno.RData"))
hlatab <- get(load("HLASplit.RData"))

pred <- hlaPredict(model, test.geno)
# compare
(comp <- hlaCompareAllele(hlatab$validation, pred, allele.limit=model,
    call.threshold=0.5))


#########################################################################
# import a PLINK BED file
#
bed.fn <- system.file("extdata", "HapMap_CEU.bed", package="HIBAG")
fam.fn <- system.file("extdata", "HapMap_CEU.fam", package="HIBAG")
bim.fn <- system.file("extdata", "HapMap_CEU.bim", package="HIBAG")
hapmap.ceu <- hlaBED2Geno(bed.fn, fam.fn, bim.fn, assembly="hg19")


#########################################################################
# predict
#
pred <- hlaPredict(model, hapmap.ceu, type="response")
head(pred$value)
#   sample.id allele1 allele2      prob
# 1   NA10859   01:01   03:01 0.9999992
# 2   NA11882   01:01   29:02 1.0000000
# ...


# delete the temporary files
unlink(c("HIBAG_model.RData", "testgeno.RData", "HLASplit.RData"), force=TRUE)

SNP genotypes of a study simulated from HapMap CEU genotypic data

Description

An object of hlaSNPGenoClass of 60 samples and 1564 SNPs.

Usage

HapMap_CEU_Geno

Value

A list

References

https://www.ncbi.nlm.nih.gov/variation/news/NCBI_retiring_HapMap/

The International HapMap Consortium. A second generation human haplotype map of over 3.1 million SNPs. Nature 449, 851-861. 2007.


Four-digit HLA types of a study simulated from HapMap CEU

Description

A data.frame object including HLA-A, B, C, DRB1, DQA1 and DQB1 loci of 60 samples.

Usage

HLA_Type_Table

Value

A data.frame

References

A high-resolution HLA and SNP haplotype map for disease association studies in the extended human MHC. de Bakker PI, McVean G, Sabeti PC, Miretti MM, Green T, Marchini J, Ke X, Monsuur AJ, Whittaker P, Delgado M, Morrison J, Richardson A, Walsh EC, Gao X, Galver L, Hart J, Hafler DA, Pericak-Vance M, Todd JA, Daly MJ, Trowsdale J, Wijmenga C, Vyse TJ, Beck S, Murray SS, Carrington M, Gregory S, Deloukas P, Rioux JD. Nat Genet. 2006 Oct;38(10):1166-72. Epub 2006 Sep 24.


Class of HLA Amino Acid Sequence Type

Description

The definition of a class for HLA protein amino acid sequences.

Value

There are following components:

locus

HLA locus

pos.start

the starting position in basepair

pos.end

the end position in basepair

value

a data frame

assembly

the human genome reference, such like "hg19"

start.position

the start position

reference

reference sequence

The component value includes:

sample.id

sample ID

allele1

amino acid or nucleotide sequence

allele2

amino acid or nucleotide sequence

P1, ..., Pn

if applicable, a matrix of posterior probability, row – sample, column – position of amino acid

Author(s)

Xiuwen Zheng

See Also

hlaConvSequence


A list of HLA/KIR types

Description

Return an object of hlaAlleleClass, which contains HLA/KIR types.

Usage

hlaAllele(sample.id, H1, H2, max.resolution="", locus="any", assembly="auto",
    locus.pos.start=NA_integer_, locus.pos.end=NA_integer_, prob=NULL,
    na.rm=TRUE)

Arguments

sample.id

sample IDs

H1

a vector of HLA/KIR alleles

H2

a vector of HLA/KIR alleles

max.resolution

"2-digit", "1-field", "4-digit", "2-field", "6-digit", "3-field", "8-digit", "4-field", "allele", "protein", "full", "none", or "": "allele" = "2-digit"; "protein" = "4-digit"; "full", "none" or "" for no limit on resolution

locus

the name of HLA locus: "A", "B", "C", "DRB1", "DRB5", "DQA1", "DQB1", "DPB1", KIR locus, or "any", where "any" indicates any other multiallelic locus; see hlaLociInfo for possible locus names

assembly

the human genome reference: "hg18", "hg19" (default), "hg38"; "auto" refers to "hg19"; "auto-silent" refers to "hg19" without any warning

locus.pos.start

the starting position in basepair

locus.pos.end

the end position in basepair

prob

the probabilities assigned to the samples

na.rm

if TRUE, remove the samples without valid HLA types

Details

The format of H1 and H2 is "allele group : different protein : synonymous mutations in exons : synonymous mutations in introns"L, where the suffix L is express level (N, null; L, low; S, secreted; A, aberrant; Q: questionable). For example, "44:02:01:02L". If max.resolution is specified, the HLA alleles will be trimmed with a possible maximum resolution.

Value

Return a hlaAlleleClass object, and it is a list:

locus

HLA locus

pos.start

the starting position in basepair

pos.end

the end position in basepair

value

a data frame

assembly

the human genome reference, such like "hg19"

The component value includes:

sample.id

sample ID

allele1

HLA allele

allele2

HLA allele

prob

the posterior probability

Author(s)

Xiuwen Zheng

See Also

hlaAlleleDigit, hlaAlleleSubset, hlaLociInfo, hlaAlleleToVCF

Examples

head(HLA_Type_Table)
dim(HLA_Type_Table)  # 60 13

# make a "hlaAlleleClass" object
hla.id <- "A"
hla <- hlaAllele(HLA_Type_Table$sample.id,
    H1 = HLA_Type_Table[, paste(hla.id, ".1", sep="")],
    H2 = HLA_Type_Table[, paste(hla.id, ".2", sep="")],
    locus=hla.id, assembly="hg19")
summary(hla)


# encode other loci
hlaAllele("HD0010", "1", "2", locus="NewLocus")

Class of HLA/KIR Type

Description

The definition of a class for HLA/KIR types, returned from hlaAllele.

Value

There are following components:

locus

HLA/KIR locus

pos.start

the starting position in basepair

pos.end

the end position in basepair

value

a data frame

assembly

the human genome reference, such like "hg19"

postprob

if applicable, a matrix of all posterior probabilities

~

The component value includes:

sample.id

sample ID

allele1

HLA allele

allele2

HLA allele

prob

if applicable, the posterior probability

Author(s)

Xiuwen Zheng

See Also

hlaAllele


Trim HLA alleles

Description

Trim HLA alleles to specified width.

Usage

hlaAlleleDigit(obj, max.resolution=NA_character_, rm.suffix=FALSE)

Arguments

obj

should be a hlaAlleleClass object or characters

max.resolution

"2-digit", "1-field", "4-digit", "2-field", "6-digit", "3-field", "8-digit", "4-field", "allele", "protein", "full", "none", or "": "allele" = "2-digit"; "protein" = "4-digit"; "full", "none" or "" for no limit on resolution

rm.suffix

whether remove the non-digit suffix in the last field, e.g., for "01:22N", "N" is a non-digit suffix

Details

If max.resolution is specified, the HLA alleles will be trimmed with the maximum resolution. See https://hla.alleles.org/nomenclature/naming.html for the HLA nomenclature.

Value

Return a hlaAlleleClass object if obj is hlaAlleleClass-type, or characters if obj is character-type.

Author(s)

Xiuwen Zheng

See Also

hlaAllele

Examples

head(HLA_Type_Table)
dim(HLA_Type_Table)  # 60 13

# make a "hlaAlleleClass" object
hla.id <- "A"
hla <- hlaAllele(HLA_Type_Table$sample.id,
    H1 = HLA_Type_Table[, paste(hla.id, ".1", sep="")],
    H2 = HLA_Type_Table[, paste(hla.id, ".2", sep="")],
    locus = hla.id, assembly="hg19")
summary(hla)

hla2 <- hlaAlleleDigit(hla, "2-digit")
summary(hla2)

Get a subset of HLA/KIR types

Description

Get a subset of HLA/KIR types from an object of hlaAlleleClass.

Usage

hlaAlleleSubset(hla, samp.sel=NULL)

Arguments

hla

an object of hlaAlleleClass

samp.sel

a logical vector, or an integer vector of indices

Value

Return hlaAlleleClass.

Author(s)

Xiuwen Zheng

See Also

hlaAllele, hlaAlleleDigit

Examples

head(HLA_Type_Table)
dim(HLA_Type_Table)  # 60 13

# make a "hlaAlleleClass" object
hla.id <- "A"
hla <- hlaAllele(HLA_Type_Table$sample.id,
    H1 = HLA_Type_Table[, paste(hla.id, ".1", sep="")],
    H2 = HLA_Type_Table[, paste(hla.id, ".2", sep="")],
    locus=hla.id, assembly="hg19")
summary(hla)

subhla <- hlaAlleleSubset(hla, 1:100)
summary(subhla)

Convert HLA alleles to VCF

Description

To convert the HLA allele data to a VCF file.

Usage

hlaAlleleToVCF(hla, outfn, DS=TRUE, allele.list=FALSE, prob.cutoff=NaN,
    verbose=TRUE)

Arguments

hla

an object of hlaAlleleClass for HLA alleles, or a list of hlaAlleleClass objects

outfn

a VCF file name or a connection; if outfn ends with ".gz" or ".xz", gzfile or xzfile will be used to compress the output file

DS

if TRUE, output dosages in the DS field

allele.list

a logical value or a character vector for a list of alleles; when it is a logical value, if TRUE and dosage is available, use all possible alleles in the dosages; otherwise, use the alleles predicted at least once

prob.cutoff

a probability threshold for setting the output alleles and dosages to missing; the output VCF file contains all samples in hla ignoring prob.cutoff

verbose

if TRUE, show information

Value

Return outfn.

Author(s)

Xiuwen Zheng

References

Zheng X, Shen J, Cox C, Wakefield J, Ehm M, Nelson M, Weir BS; HIBAG – HLA Genotype Imputation with Attribute Bagging. Pharmacogenomics Journal. doi: 10.1038/tpj.2013.18. https://www.nature.com/articles/tpj201318

See Also

hlaAttrBagging, hlaAllele

Examples

# make a "hlaAlleleClass" object
hla.id <- "A"
hla <- hlaAllele(HLA_Type_Table$sample.id,
    H1 = HLA_Type_Table[, paste(hla.id, ".1", sep="")],
    H2 = HLA_Type_Table[, paste(hla.id, ".2", sep="")],
    locus=hla.id, assembly="hg19")

# SNP predictors within the flanking region on each side
region <- 500   # kb
snpid <- hlaFlankingSNP(HapMap_CEU_Geno$snp.id, HapMap_CEU_Geno$snp.position,
    hla.id, region*1000, assembly="hg19")
length(snpid)  # 275

# train a HIBAG model
set.seed(100)
# please use "nclassifier=100" when you use HIBAG for real data
model <- hlaAttrBagging(hla, HapMap_CEU_Geno, nclassifier=2)
summary(model)

# validation
pred <- hlaPredict(model, HapMap_CEU_Geno)
summary(pred)


# output to standard output with dosages
hlaAlleleToVCF(hlaAlleleSubset(pred, 1:4), stdout())

Statistical Association Tests

Description

Perform statistical association tests via Pearson's Chi-squared test, Fisher's exact test and logistic regressions.

Usage

## S3 method for class 'hlaAlleleClass'
hlaAssocTest(hla, formula, data,
    model=c("dominant", "additive", "recessive", "genotype"),
    model.fit=c("glm"), prob.threshold=NaN, use.prob=FALSE, showOR=FALSE,
    verbose=TRUE, ...)
## S3 method for class 'hlaAASeqClass'
hlaAssocTest(hla, formula, data,
    model=c("dominant", "additive", "recessive", "genotype"),
    model.fit=c("glm"), prob.threshold=NaN, use.prob=FALSE, showOR=FALSE,
    show.all=FALSE, verbose=TRUE, ...)

Arguments

hla

an object of hlaAlleleClass

formula

an object of class "formula" (or one that can be coerced to that class): a symbolic description of the model to be fitted, e.g., y ~ 1, y ~ h + a

data

an optional data frame, list or environment containing the variables in the model. If not found in data, the variables are taken from environment(formula)

model

dominant, additive, recessive or genotype models: "dominant" is default

model.fit

"glm" – generalized linear regression

prob.threshold

the probability threshold to exclude individuals with low confidence scores

use.prob

if TRUE, use the posterior probabilities as weights in glm models

showOR

show odd ratio (OR) instead of log OR if TRUE

show.all

if TRUE, show both significant and non-significant results; if FALSE, only show significant results

verbose

if TRUE, show information

...

optional arguments to glm or nlme call

Details

model description (given a specific HLA allele h)
dominant [-/-] vs. [-/h,h/h] (0 vs. 1 in design matrix)
additive [-] vs. [h] in Chi-squared and Fisher's exact test, the allele dosage in regressions (0: -/-, 1: -/h, 2: h/h)
recessive [-/-,-/h] vs. [h/h] (0 vs. 1 in design matrix)
genotype [-/-], [-/h], [h/h] (0 vs. 1 in design matrix)

In allelic associations, Chi-squared and Fisher exact tests are preformed on the cross tabulation, which is constructed according to the specified model (dominant, additive, recessive and gneotype).

In amino acid associations, Fisher exact test is performed on a cross tabulation with the numbers of each amino acid stratified by response variable (e.g., disease status).

In linear and logistic regressions, 95% confidence intervals are calculated based on asymptotic normality. The option use.prob=TRUE might be useful in the sensitivity analysis.

Value

Return a data.frame with

[-]

the number of haplotypes not carrying the specified HLA allele

[h]

the number of haplotype carrying the specified HLA allele

%.[-], ...

case/disease proportion in the group [-], ...

[-/-]

the number of individuals or haplotypes not carrying the specified HLA allele

[-/h]

the number of individuals or haplotypes carrying one specified HLA allele

[-/h]

the number of individuals or haplotypes carrying two specified HLA alleles

[-/h, h/h]

the number of individuals or haplotypes carrying one or two specified HLA alleles

[-/-, -/h]

the number of individuals or haplotypes carrying at most one specified HLA allele

%.[-/-], ...

case/disease proportion in the group [-/-], ...

avg.[-/-], ...

outcome average in the group [-/-], ...

chisq.st

the value the chi-squared test statistic

chisq.p

the p-value for the Chi-squared test

fisher.p

the p-value for the Fisher's exact test

h.est

the coefficient estimate of HLA allele

h.25%, h.75%

the 95% confidence interval for HLA allele

h.pval

p value for HLA allele

Author(s)

Xiuwen Zheng

See Also

hlaConvSequence, summary.hlaAASeqClass

Examples

hla.id <- "A"
hla <- hlaAllele(HLA_Type_Table$sample.id,
    H1 = HLA_Type_Table[, paste(hla.id, ".1", sep="")],
    H2 = HLA_Type_Table[, paste(hla.id, ".2", sep="")],
    locus=hla.id, assembly="hg19")

set.seed(1000)
n <- nrow(hla$value)
dat <- data.frame(case = c(rep(0, n/2), rep(1, n/2)), y = rnorm(n),
    pc1 = rnorm(n))

hlaAssocTest(hla, case ~ 1, data=dat)
hlaAssocTest(hla, case ~ 1, data=dat, model="additive")
hlaAssocTest(hla, case ~ 1, data=dat, model="recessive")
hlaAssocTest(hla, case ~ 1, data=dat, model="genotype")

hlaAssocTest(hla, y ~ 1, data=dat)
hlaAssocTest(hla, y ~ 1, data=dat, model="genotype")

hlaAssocTest(hla, case ~ h, data=dat)
hlaAssocTest(hla, case ~ h + pc1, data=dat)
hlaAssocTest(hla, case ~ h + pc1, data=dat, showOR=TRUE)

hlaAssocTest(hla, y ~ h, data=dat)
hlaAssocTest(hla, y ~ h + pc1, data=dat)
hlaAssocTest(hla, y ~ h + pc1, data=dat, showOR=TRUE)

hlaAssocTest(hla, case ~ h, data=dat, model="additive")
hlaAssocTest(hla, case ~ h, data=dat, model="recessive")
hlaAssocTest(hla, case ~ h, data=dat, model="genotype")

The class of HIBAG model

Description

The class of a HIBAG model, and its instance is returned from hlaAttrBagging.

Value

Return a list of:

n.samp

the total number of training samples

n.snp

the total number of candidate SNP predictors

sample.id

the sample IDs

snp.id

the SNP IDs

snp.position

SNP position in basepair

snp.allele

a vector of characters with the format of “A allele/B allele”

snp.allele.freq

the allele frequencies

hla.locus

the name of HLA locus

hla.allele

the HLA alleles used in the model

hla.freq

the HLA allele frequencies

assembly

the human genome reference, such like "hg19"

model

internal use

appendix

an optional list: platform – supported platform(s); information – other information, like training sets, authors; warning – any warning message

matching

matching proportion in the training set

Author(s)

Xiuwen Zheng

See Also

hlaAttrBagging, hlaParallelAttrBagging, hlaAttrBagObj


Build a HIBAG model

Description

To build a HIBAG model for predicting HLA types with SNP markers.

Usage

hlaAttrBagging(hla, snp, nclassifier=100L, mtry=c("sqrt", "all", "one"),
    prune=TRUE, na.rm=TRUE, mono.rm=TRUE, maf=NaN, nthread=1L, verbose=TRUE,
    verbose.detail=FALSE)

Arguments

hla

the training HLA types, an object of hlaAlleleClass

snp

the training SNP genotypes, an object of hlaSNPGenoClass

nclassifier

the total number of individual classifiers

mtry

a character or a numeric value, the number of variables randomly sampled as candidates for each selection. See details

prune

if TRUE, to perform a parsimonious forward variable selection, otherwise, exhaustive forward variable selection. See details

na.rm

if TRUE, remove the samples with missing HLA alleles

mono.rm

if TRUE, remove monomorphic SNPs

maf

MAF threshold for SNP filter, excluding any SNP with MAF < maf

nthread

specify the number of threads used in the model building; if TRUE, use the number of threads returned from RcppParallel::defaultNumThreads() (by default using all threads)

verbose

if TRUE, show information

verbose.detail

if TRUE, show more information

Details

mtry (the number of variables randomly sampled as candidates for each selection, "sqrt" by default): "sqrt", using the square root of the total number of candidate SNPs; "all", using all candidate SNPs; "one", using one SNP; an integer, specifying the number of candidate SNPs; 0 < r < 1, the number of candidate SNPs is "r * the total number of SNPs".

prune: there is no significant difference on accuracy between parsimonious and exhaustive forward variable selections. If prune=TRUE, the searching algorithm performs a parsimonious forward variable selection: if a new SNP predictor reduces the current out-of-bag accuracy, then it is removed from the candidate SNP set for future searching. Parsimonious selection helps to improve the computational efficiency by reducing the searching times on non-informative SNP markers.

hlaParallelAttrBagging extends hlaAttrBagging to allow parallel computing with multiple compute nodes in a cluster. An autosave function is available in hlaParallelAttrBagging when an new individual classifier is built internally without completing the ensemble.

Value

Return an object of hlaAttrBagClass:

n.samp

the total number of training samples

n.snp

the total number of candidate SNP predictors

sample.id

the sample IDs

snp.id

the SNP IDs

snp.position

SNP position in basepair

snp.allele

a vector of characters with the format of “A allele/B allele”

snp.allele.freq

the allele frequencies

hla.locus

the name of HLA locus

hla.allele

the HLA alleles used in the model

hla.freq

the HLA allele frequencies

assembly

the human genome reference, such like "hg19"

model

internal use

matching

matching proportion in the training set

Author(s)

Xiuwen Zheng

References

Zheng X, Shen J, Cox C, Wakefield J, Ehm M, Nelson M, Weir BS; HIBAG – HLA Genotype Imputation with Attribute Bagging. Pharmacogenomics Journal. doi: 10.1038/tpj.2013.18. https://www.nature.com/articles/tpj201318

See Also

hlaClose, hlaParallelAttrBagging, summary.hlaAttrBagClass, predict.hlaAttrBagClass, hlaPredict, hlaSetKernelTarget

Examples

# make a "hlaAlleleClass" object
hla.id <- "A"
hla <- hlaAllele(HLA_Type_Table$sample.id,
    H1 = HLA_Type_Table[, paste(hla.id, ".1", sep="")],
    H2 = HLA_Type_Table[, paste(hla.id, ".2", sep="")],
    locus=hla.id, assembly="hg19")

# divide HLA types randomly
set.seed(100)
hlatab <- hlaSplitAllele(hla, train.prop=0.5)
names(hlatab)
# "training"   "validation"
summary(hlatab$training)
summary(hlatab$validation)

# SNP predictors within the flanking region on each side
region <- 500   # kb
snpid <- hlaFlankingSNP(HapMap_CEU_Geno$snp.id, HapMap_CEU_Geno$snp.position,
    hla.id, region*1000, assembly="hg19")
length(snpid)  # 275

# training and validation genotypes
train.geno <- hlaGenoSubset(HapMap_CEU_Geno,
    snp.sel=match(snpid, HapMap_CEU_Geno$snp.id),
    samp.sel=match(hlatab$training$value$sample.id,
    HapMap_CEU_Geno$sample.id))
test.geno <- hlaGenoSubset(HapMap_CEU_Geno,
    samp.sel=match(hlatab$validation$value$sample.id,
    HapMap_CEU_Geno$sample.id))

# train a HIBAG model
set.seed(100)
# please use "nclassifier=100" when you use HIBAG for real data
model <- hlaAttrBagging(hlatab$training, train.geno, nclassifier=4,
    verbose.detail=TRUE)
summary(model)

# validation
pred <- hlaPredict(model, test.geno)
summary(pred)

# compare
(comp <- hlaCompareAllele(hlatab$validation, pred, allele.limit=model,
    call.threshold=0))
(comp <- hlaCompareAllele(hlatab$validation, pred, allele.limit=model,
    call.threshold=0.5))


# save the parameter file
mobj <- hlaModelToObj(model)
save(mobj, file="HIBAG_model.RData")
save(test.geno, file="testgeno.RData")
save(hlatab, file="HLASplit.RData")

# Clear Workspace
hlaClose(model)  # release all resources of model
rm(list = ls())


######################################################################

# NOW, load a HIBAG model from the parameter file
mobj <- get(load("HIBAG_model.RData"))
model <- hlaModelFromObj(mobj)

# validation
test.geno <- get(load("testgeno.RData"))
hlatab <- get(load("HLASplit.RData"))

pred <- hlaPredict(model, test.geno, type="response")
summary(pred)

# compare
(comp <- hlaCompareAllele(hlatab$validation, pred, allele.limit=model,
    call.threshold=0))
(comp <- hlaCompareAllele(hlatab$validation, pred, allele.limit=model,
    call.threshold=0.5))


# delete the temporary files
unlink(c("HIBAG_model.RData", "testgeno.RData", "HLASplit.RData"), force=TRUE)

The class of HIBAG object

Description

The class of a HIBAG object, which can be saved in the .RData file.

Value

A list of:

n.samp

the total number of training samples

n.snp

the total number of candidate SNP predictors

sample.id

the sample IDs

snp.id

the SNP IDs

snp.position

SNP position in basepair

snp.allele

a vector of characters with the format of “A allele/B allele”

snp.allele.freq

the allele frequencies

hla.locus

the name of HLA locus

hla.allele

the HLA alleles used in the model

hla.freq

the HLA allele frequencies

assembly

the human genome reference, such like "hg19"

classifiers

a list of all classifiers (described as follows)

matching

matching proportion in the training set

appendix

platform – supported platform(s); information – other information, like training sets, authors; warning – any warning message

classifiers has the following components:

samp.num

the number of copies of samples in a bootstrap sample

haplos

a data.frame of haplotype frequencies

.

freq – haplotype frequency

.

hla – a HLA allele

.

haplo – a SNP haplotype, with an entry value 0 standing for B (ZERO A allele), 1 for A (ONE A allele)

snpidx

the SNP indices used in this classifier

outofbag.acc

the out-of-bag accuracy of this classifier

Author(s)

Xiuwen Zheng

See Also

hlaAttrBagging, hlaParallelAttrBagging, hlaModelToObj, hlaModelFiles, hlaAttrBagClass


Convert from PLINK BED format

Description

To convert a PLINK BED file to an object of hlaSNPGenoClass.

Usage

hlaBED2Geno(bed.fn, fam.fn, bim.fn, rm.invalid.allele=FALSE,
    import.chr="xMHC", assembly="auto", verbose=TRUE)

Arguments

bed.fn

binary file, genotype information

fam.fn

family, individual information, etc

bim.fn

extended MAP file: two extra cols = allele names

rm.invalid.allele

if TRUE, remove SNPs with non-standard alleles (except A,G,C,T)

import.chr

the chromosome, "1" .. "22", "X", "Y", "XY", "MT", "xMHC", or "", where "xMHC" implies the extended MHC on chromosome 6, and "" for all SNPs; "6" for all SNPs on chromosome 6 for HLA; "19" for all SNPs on chromosome 19 for KIR

assembly

the human genome reference: "hg18", "hg19" (default), "hg38"; "auto" refers to "hg19"; "auto-silent" refers to "hg19" without any warning

verbose

if TRUE, show information

Value

Return an object of hlaSNPGenoClass.

Author(s)

Xiuwen Zheng

See Also

hlaGeno2PED, hlaGDS2Geno

Examples

# Import a PLINK BED file
bed.fn <- system.file("extdata", "HapMap_CEU.bed", package="HIBAG")
fam.fn <- system.file("extdata", "HapMap_CEU.fam", package="HIBAG")
bim.fn <- system.file("extdata", "HapMap_CEU.bim", package="HIBAG")

hapmap.ceu <- hlaBED2Geno(bed.fn, fam.fn, bim.fn, assembly="hg19")
summary(hapmap.ceu)

# Or

hapmap.ceu <- hlaBED2Geno(bed.fn, fam.fn, bim.fn, assembly="hg19",
    rm.invalid.allele=TRUE, import.chr="6")
summary(hapmap.ceu)

Check SNP alleles

Description

Check SNP reference and non-reference alleles.

Usage

hlaCheckAllele(allele1, allele2)

Arguments

allele1

two alleles for the first individual, like c("A/G", "C/G")

allele2

two alleles for the second individual, like c("A/G", "C/G")

Value

Return a logical vector, where TRUE indicates the alleles are matching at that locus.

Author(s)

Xiuwen Zheng

See Also

hlaCheckSNPs

Examples

hlaCheckAllele(c("A/G", "T/G", "0/A"), c("G/A", "C/A", "G/0"))

Check the SNP predictors in a HIBAG model

Description

Check the SNP predictors in a HIBAG model, by calculating the overlapping between the model and SNP genotypes.

Usage

hlaCheckSNPs(model, object,
    match.type=c("Position", "Pos+Allele", "RefSNP+Position", "RefSNP"), verbose=TRUE)

Arguments

model

an object of hlaAttrBagClass, or an object of hlaAttrBagObj

object

a genotype object of hlaSNPGenoClass, or a character vector like c("rs2523442", "rs9257863", ...)

match.type

"RefSNP+Position" (by default) – using both of RefSNP IDs and positions; "RefSNP" – using RefSNP IDs only; "Position" – using positions only

verbose

if TRUE, show information

Value

Return a data.frame for individual classifiers:

NumOfValidSNP

the number of non-missing SNPs in an individual classifier

NumOfSNP

the number of SNP predictors in an individual classifier

fraction

NumOfValidSNP / NumOfSNP

Author(s)

Xiuwen Zheng

See Also

hlaAttrBagging, predict.hlaAttrBagClass

Examples

# make a "hlaAlleleClass" object
hla.id <- "DQB1"
hla <- hlaAllele(HLA_Type_Table$sample.id,
    H1 = HLA_Type_Table[, paste(hla.id, ".1", sep="")],
    H2 = HLA_Type_Table[, paste(hla.id, ".2", sep="")],
    locus=hla.id, assembly="hg19")

# training genotypes
region <- 100   # kb
snpid <- hlaFlankingSNP(HapMap_CEU_Geno$snp.id, HapMap_CEU_Geno$snp.position,
    hla.id, region*1000, assembly="hg19")
train.geno <- hlaGenoSubset(HapMap_CEU_Geno,
    snp.sel = match(snpid, HapMap_CEU_Geno$snp.id))

# train a HIBAG model
set.seed(1000)
model <- hlaAttrBagging(hla, train.geno, nclassifier=2)
print(model)


hlaCheckSNPs(model, train.geno)

# close the HIBAG model explicitly
hlaClose(model)

Dispose a model object

Description

Release all resources stored in the hlaAttrBagClass object. The HIBAG package allows up to 256 hlaAttrBagClass objects stored in memory.

Usage

hlaClose(model)

Arguments

model

an object of hlaAttrBagClass

Value

None.

Author(s)

Xiuwen Zheng

See Also

hlaAttrBagging, summary.hlaAttrBagClass


Combine two datasets of HLA types

Description

Combine two objects of hlaAlleleClass.

Usage

hlaCombineAllele(H1, H2)

Arguments

H1

the first hlaAlleleClass object

H2

the second hlaAlleleClass object

Value

Return hlaAlleleClass.

Author(s)

Xiuwen Zheng

See Also

hlaAllele, hlaAlleleSubset

Examples

head(HLA_Type_Table)
dim(HLA_Type_Table)  # 60 13

# make a "hlaAlleleClass" object
hla.id <- "C"
hla <- hlaAllele(HLA_Type_Table$sample.id,
    HLA_Type_Table[, paste(hla.id, ".1", sep="")],
    HLA_Type_Table[, paste(hla.id, ".2", sep="")],
    locus=hla.id, assembly="hg19")
summary(hla)

subhla1 <- hlaAlleleSubset(hla,   1:100)
summary(subhla1)
subhla2 <- hlaAlleleSubset(hla, 201:300)
summary(subhla2)

H <- hlaCombineAllele(subhla1, subhla2)
summary(H)

Combine two HIBAG models together

Description

Merge two objects of hlaAttrBagObj together, which is useful for building an ensemble model in parallel.

Usage

hlaCombineModelObj(obj1, obj2)

Arguments

obj1

an object of hlaAttrBagObj

obj2

an object of hlaAttrBagObj

Value

Return an object of hlaAttrBagObj.

Author(s)

Xiuwen Zheng

See Also

hlaAttrBagging, hlaModelFiles

Examples

# make a "hlaAlleleClass" object
hla.id <- "A"
hla <- hlaAllele(HLA_Type_Table$sample.id,
    H1 = HLA_Type_Table[, paste(hla.id, ".1", sep="")],
    H2 = HLA_Type_Table[, paste(hla.id, ".2", sep="")],
    locus=hla.id, assembly="hg19")

# SNP predictors within the flanking region on each side
region <- 500   # kb
snpid <- hlaFlankingSNP(HapMap_CEU_Geno$snp.id, HapMap_CEU_Geno$snp.position,
    hla.id, region*1000, assembly="hg19")
length(snpid)  # 275

# training genotypes
train.geno <- hlaGenoSubset(HapMap_CEU_Geno,
    snp.sel = match(snpid, HapMap_CEU_Geno$snp.id))

# train a HIBAG model
set.seed(100)
m1 <- hlaAttrBagging(hla, train.geno, nclassifier=1)
m2 <- hlaAttrBagging(hla, train.geno, nclassifier=1)

m1.obj <- hlaModelToObj(m1)
m2.obj <- hlaModelToObj(m2)

m.obj <- hlaCombineModelObj(m1.obj, m2.obj)
summary(m.obj)

Evaluate prediction accuracies

Description

To evaluate the overall accuracy, sensitivity, specificity, positive predictive value, negative predictive value.

Usage

hlaCompareAllele(TrueHLA, PredHLA, allele.limit=NULL, call.threshold=NaN,
    match.threshold=NaN, max.resolution="", output.individual=FALSE,
    verbose=TRUE)

Arguments

TrueHLA

an object of hlaAlleleClass, the true HLA types

PredHLA

an object of hlaAlleleClass, the predicted HLA types

allele.limit

a list of HLA alleles, the validation samples are limited to those having HLA alleles in allele.limit, or NULL for no limit. allele.limit could be character-type, hlaAttrBagClass or hlaAttrBagObj

call.threshold

the call threshold for posterior probability, i.e., call or no call is determined by whether prob >= call.threshold or not

match.threshold

the matching threshold for SNP haplotype similiarity, e.g., use 1% quantile of matching statistics of a training model

max.resolution

"2-digit", "4-digit", "6-digit", "8-digit", "allele", "protein", "2", "4", "6", "8", "full" or "": "allele" = "2-digit", "protein" = "4-digit", "full" and "" indicating no limit on resolution

output.individual

if TRUE, output accuracy for each individual

verbose

if TRUE, show information

Value

Return a list(overall, confusion, detail), or list(overall, confusion, detail, individual) if output.individual=TRUE.

overall (data.frame):

total.num.ind

the total number of individuals

crt.num.ind

the number of individuals with correct HLA types

crt.num.haplo

the number of chromosomes with correct HLA alleles

acc.ind

the proportion of individuals with correctly predicted HLA types (i.e., both of alleles are correct, the accuracy of an individual is 0 or 1.)

acc.haplo

the proportion of chromosomes with correctly predicted HLA alleles (i.e., the accuracy of an individual is 0, 0.5 or 1, since an individual has two alleles.)

call.threshold

call threshold, if it is NaN, no call threshold is executed

n.call

the number of individuals with call

call.rate

overall call rate

confusion (matrix): a confusion matrix.

detail (data.frame):

allele

HLA alleles

train.num

the number of training haplotypes

train.freq

the training haplotype frequencies

valid.num

the number of validation haplotypes

valid.freq

the validation haplotype frequencies

call.rate

the call rates for HLA alleles

accuracy

allele accuracy

sensitivity

sensitivity

specificity

specificity

ppv

positive predictive value

npv

negative predictive value

miscall

the most likely miss-called alleles

miscall.prop

the proportions of the most likely miss-called allele in all miss-called alleles

individual (data.frame):

sample.id

sample id

true.hla

the true HLA type

pred.hla

the prediction of HLA type

accuracy

accuracy, 0, 0.5, or 1

Author(s)

Xiuwen Zheng

See Also

hlaAttrBagging, predict.hlaAttrBagClass, hlaReport

Examples

# make a "hlaAlleleClass" object
hla.id <- "A"
hla <- hlaAllele(HLA_Type_Table$sample.id,
    H1 = HLA_Type_Table[, paste(hla.id, ".1", sep="")],
    H2 = HLA_Type_Table[, paste(hla.id, ".2", sep="")],
    locus=hla.id, assembly="hg19")

# divide HLA types randomly
set.seed(100)
hlatab <- hlaSplitAllele(hla, train.prop=0.5)
names(hlatab)
# "training"   "validation"
summary(hlatab$training)
summary(hlatab$validation)

# SNP predictors within the flanking region on each side
region <- 500   # kb
snpid <- hlaFlankingSNP(HapMap_CEU_Geno$snp.id, HapMap_CEU_Geno$snp.position,
    hla.id, region*1000, assembly="hg19")
length(snpid)  # 275

# training and validation genotypes
train.geno <- hlaGenoSubset(HapMap_CEU_Geno,
    snp.sel=match(snpid, HapMap_CEU_Geno$snp.id),
    samp.sel=match(hlatab$training$value$sample.id,
    HapMap_CEU_Geno$sample.id))
test.geno <- hlaGenoSubset(HapMap_CEU_Geno,
    samp.sel=match(hlatab$validation$value$sample.id,
    HapMap_CEU_Geno$sample.id))

# train a HIBAG model
set.seed(100)
model <- hlaAttrBagging(hlatab$training, train.geno, nclassifier=4,
    verbose.detail=TRUE)
summary(model)

# validation
pred <- hlaPredict(model, test.geno)
# compare
(comp <- hlaCompareAllele(hlatab$validation, pred, allele.limit=model,
    call.threshold=0))
(comp <- hlaCompareAllele(hlatab$validation, pred, allele.limit=model,
    call.threshold=0.5))

Conversion From HLA Alleles to Amino Acid Sequences

Description

Convert (P-coded or G-coded) HLA alleles to amino acid sequences.

Usage

hlaConvSequence(hla=character(), locus=NULL,
    method=c("protein", "protein_reference"),
    code=c("exact", "P.code", "G.code", "P.code.merge", "G.code.merge"),
    region=c("auto", "all", "P.code", "G.code"), release=c("v3.22.0"),
    replace=NULL)

Arguments

hla

characters, or an object of hlaAlleleClass, at least 4-digit or 2-field (P-coded) HLA alleles

locus

"A", "B", "C", "DRB1", "DQA1", "DQB1", "DPB1" or "DPA1"

method

"protein": returns protein sequence alignments, "protein_reference": returns the protein sequence alignment reference

code

"exact": requires full resolution; "P.code": allows ambiguous alleles according to P code; "G.code": allows ambiguous alleles according to G code; "P.code.merge" and "G.code.merge" merge multiple ambiguous allele sequences by masking unknown or ambiguous amino acid an asterisk

region

"all": returns all amino acid or nucleotide sequences; "P.code", "G.code": returns the exon 2 and 3 for HLA class I, and the exon 2 for HLA class II alleles; "auto": region="all" if code=="exact", region="P.code" if code=="P.code"|"P.code.merge", region="G.code" if code=="G.code"|"G.code.merge"

release

"v3.22.0" – IPD-IMGT/HLA 3.22.0 database (2015-10-07)

replace

NULL, or a character vector, e.g., c("09:02"="107:01"), any "09:02" will be replaced by "107:01". Due to the change of HLA nomenclature from 2010, HLA-DPB1*09:02 is replaced by DPB1*107:01

Details

The P or G codes for reporting of ambiguous allele typings can be found: http://hla.alleles.org/alleles/p_groups.html or http://hla.alleles.org/alleles/g_groups.html. The protein sequences for each HLA alleles could be found: http://hla.alleles.org/alleles/text_index.html.

Due to allelic ambiguity, multiple alleles are assigned to a 2-field P-coded allele or 3-field G-coded allele. For HLA Class I alleles, identity in the 'antigen binding domains' is based on identical protein sequences as encoded by exons 2 and 3. For HLA Class II alleles this is based on identical protein sequences as encoded by exon 2. P codes and G codes encode the same protein sequence for the peptide binding domains (exon 2 and 3 for HLA class I and exon 2 only for HLA class II alleles).

1. the sequence is displayed as a hyphen "-" where it is identical to the reference.

2. an insertion or deletion is represented by a period ".".

3. an unknown or ambiguous position in the alignment is represented by an asterisk "*".

4. a capital X is used for the 'stop' codons in protein alignments.

http://hla.alleles.org/alleles/formats.html

HLA class I and II sequence alignments (Text Index): http://hla.alleles.org/alleles/text_index.html

WARNING: if you are not familiar with HLA nomenclature, you might consult with the package author or anyone who is familiar with HLA sequence alignments.

Value

Return an object of hlaAASeqClass or a list of characters. NULL or NA in the list indicates no matching.

Author(s)

Xiuwen Zheng

References

The licence and disclaimer of distributed HLA data: Creative Commons Attribution-NoDerivs Licence (http://hla.alleles.org/terms.html).

Robinson J, Halliwell JA, Hayhurst JH, Flicek P, Parham P, Marsh SGE: The IPD and IMGT/HLA database: allele variant databases. Nucleic Acids Research. 2015 43:D423-431

Robinson J, Malik A, Parham P, Bodmer JG, Marsh SGE: IMGT/HLA - a sequence database for the human major histocompatibility complex. Tissue Antigens. 2000 55:280-7

See Also

hlaAlleleSubset

Examples

hlaConvSequence(locus="A", method="protein_reference")

# exact match
hlaConvSequence(c("01:01", "02:02", "01:01:01G", "01:01:01:01", "07"),
    locus="A")

# allow ambiguity
hlaConvSequence(c("01:01", "02:02", "01:01:01G", "01:01:01:01", "07"),
    locus="A", code="P.code")
hlaConvSequence(c("01:01", "02:02", "01:01:01G", "01:01:01:01", "07"),
    locus="A", code="P.code.merge")


hlaConvSequence(locus="DPB1", method="protein_reference")
hlaConvSequence(c("09:01", "09:02"), locus="DPB1", replace=c("09:02"="107:01"))
hlaConvSequence(c("09:01", "09:02"), locus="DPB1", code="P.code",
    replace=c("09:02"="107:01"))
hlaConvSequence(c("09:01", "09:02"), locus="DPB1", code="P.code.merge",
    replace=c("09:02"="107:01"))


hlaConvSequence(locus="DQB1", method="protein_reference")
hlaConvSequence(c("05:01:01:01", "06:01:01"), locus="DQB1")
hlaConvSequence(c("05:01", "06:01"), locus="DQB1", code="P.code")
hlaConvSequence(c("05:01", "06:01"), locus="DQB1", code="P.code.merge")



hla.id <- "A"
hla <- hlaAllele(HLA_Type_Table$sample.id,
    H1 = HLA_Type_Table[, paste(hla.id, ".1", sep="")],
    H2 = HLA_Type_Table[, paste(hla.id, ".2", sep="")],
    locus=hla.id, assembly="hg19")

(v <- hlaConvSequence(hla, code="P.code.merge"))
summary(v)

v <- hlaConvSequence(hla, code="P.code.merge", region="all")
summary(v)



hla.id <- "DQB1"
hla <- hlaAllele(HLA_Type_Table$sample.id,
    H1 = HLA_Type_Table[, paste(hla.id, ".1", sep="")],
    H2 = HLA_Type_Table[, paste(hla.id, ".2", sep="")],
    locus=hla.id, assembly="hg19")

(v <- hlaConvSequence(hla, code="P.code.merge"))
summary(v)

v <- hlaConvSequence(hla, code="P.code.merge", region="all")
summary(v)

Distance matrix of HLA alleles

Description

To calculate the distance matrix of HLA alleles from a HIBAG model.

Usage

hlaDistance(model)

Arguments

model

a model of hlaAttrBagClass or hlaAttrBagObj

Value

Return a distance matrix with row and column names for HLA alleles.

Author(s)

Xiuwen Zheng

Examples

# make a "hlaAlleleClass" object
hla.id <- "A"
hla <- hlaAllele(HLA_Type_Table$sample.id,
    H1 = HLA_Type_Table[, paste(hla.id, ".1", sep="")],
    H2 = HLA_Type_Table[, paste(hla.id, ".2", sep="")],
    locus=hla.id, assembly="hg19")

# flanking genotypes
train.geno <- hlaGenoSubsetFlank(HapMap_CEU_Geno, hla.id, 500000)
summary(train.geno)

# train a HIBAG model
set.seed(100)
model <- hlaAttrBagging(hla, train.geno, nclassifier=10)
summary(model)

# distance matrix
d <- hlaDistance(model)

# draw
p <- hclust(as.dist(d))
plot(p, xlab="HLA alleles")

SNP IDs or SNP genotypes in Flanking Region

Description

To get SNPs in the flanking region of a specified HLA/KIR locus.

Usage

hlaFlankingSNP(snp.id, position, locus, flank.bp=500000L, assembly="auto",
    pos.mid=NA_integer_)
hlaGenoSubsetFlank(genoobj, locus="any", flank.bp=500000L, assembly="auto",
    pos.mid=NA_integer_)

Arguments

snp.id

a vector of SNP IDs

genoobj

a genotype object of hlaSNPGenoClass

position

a vector of positions

locus

the name of HLA locus, or "any" for other genes and using pos.mid

flank.bp

the size of flanking region on each side in basepair

assembly

the human genome reference: "hg18", "hg19" (default), "hg38"; "auto" refers to "hg19"; "auto-silent" refers to "hg19" without any warning

pos.mid

the middle position of the flanking region

Details

hla.id is "A", "B", "C", "DRB1", "DRB5", "DQA1", "DQB1", "DPB1" or "any".

Value

Return selected SNP IDs from snp.id.

Author(s)

Xiuwen Zheng

See Also

hlaGenoSubset, hlaLociInfo

Examples

# make a "hlaAlleleClass" object
hla.id <- "A"
hla <- hlaAllele(HLA_Type_Table$sample.id,
    H1 = HLA_Type_Table[, paste(hla.id, ".1", sep="")],
    H2 = HLA_Type_Table[, paste(hla.id, ".2", sep="")],
    locus=hla.id, assembly="hg19")

# training genotypes
region <- 500   # kb
snpid <- hlaFlankingSNP(HapMap_CEU_Geno$snp.id, HapMap_CEU_Geno$snp.position,
    hla.id, region*1000, assembly="hg19")
train.geno <- hlaGenoSubset(HapMap_CEU_Geno,
    snp.sel  = match(snpid, HapMap_CEU_Geno$snp.id))
summary(train.geno)


# or using hlaGenoSubsetFlank
train.geno <- hlaGenoSubsetFlank(HapMap_CEU_Geno, hla.id, region*1000)
summary(train.geno)


## customize positions
snpid <- hlaFlankingSNP(HapMap_CEU_Geno$snp.id, HapMap_CEU_Geno$snp.position,
    "any", 500*1000, pos.mid=29954010)

Import genotypes from a GDS file

Description

To convert a SNPRelate or SeqArray GDS file to an object of hlaSNPGenoClass.

Usage

hlaGDS2Geno(gds.fn, rm.invalid.allele=FALSE, import.chr="xMHC", assembly="auto",
    verbose=TRUE)

Arguments

gds.fn

a file name for the GDS file defined in the SNPRelate or SeqArray package

rm.invalid.allele

if TRUE, remove SNPs with non-standard alleles (except A,G,C,T)

import.chr

the chromosome, "1" .. "22", "X", "Y", "XY", "MT", "xMHC", or "", where "xMHC" implies the extended MHC on chromosome 6, and "" for all SNPs

assembly

the human genome reference: "hg18", "hg19" (default), "hg38"; "auto" refers to "hg19"; "auto-silent" refers to "hg19" without any warning

verbose

if TRUE, show information

Value

Return an object of hlaSNPGenoClass.

Author(s)

Xiuwen Zheng

See Also

hlaGeno2PED, hlaBED2Geno

Examples

# Import a SNP GDS file
fn <- system.file("extdata", "HapMap_CEU_Chr6.gds", package="HIBAG")

geno <- hlaGDS2Geno(fn, assembly="hg18", rm.invalid.allele=TRUE)

summary(geno)

Convert to PLINK PED format

Description

Convert an object of hlaSNPGenoClass to a file of PLINK PED format.

Usage

hlaGeno2PED(geno, out.fn)

Arguments

geno

a genotype object of hlaSNPGenoClass

out.fn

the file name of output ped file

Details

Two files ".map" and ".ped" are created.

Value

None.

Author(s)

Xiuwen Zheng

See Also

hlaBED2Geno

Examples

# make a "hlaAlleleClass" object
hla.id <- "A"
hla <- hlaAllele(HLA_Type_Table$sample.id,
    H1 = HLA_Type_Table[, paste(hla.id, ".1", sep="")],
    H2 = HLA_Type_Table[, paste(hla.id, ".2", sep="")],
    max.resolution="4-digit", locus=hla.id, assembly="hg19")

# training genotypes
region <- 500   # kb
snpid <- hlaFlankingSNP(HapMap_CEU_Geno$snp.id, HapMap_CEU_Geno$snp.position,
    hla.id, region*1000, assembly="hg19")

train.geno <- hlaGenoSubset(HapMap_CEU_Geno,
    snp.sel = match(snpid, HapMap_CEU_Geno$snp.id))

hlaGeno2PED(train.geno, "test")


# delete the temporary files
unlink(c("test.map", "test.ped"), force=TRUE)

Allele Frequency

Description

To calculate the allele frequencies from genotypes or haplotypes.

Usage

hlaGenoAFreq(obj)

Arguments

obj

an object of hlaSNPGenoClass

Value

Return allele frequecies.

Author(s)

Xiuwen Zheng

See Also

hlaGenoAFreq, hlaGenoMFreq, hlaGenoMRate, hlaGenoMRate_Samp

Examples

summary(HapMap_CEU_Geno)

summary(hlaGenoAFreq(HapMap_CEU_Geno))

Combine two genotypic data sets into one

Description

To combine two genotypic data sets into one dataset.

Usage

hlaGenoCombine(geno1, geno2,
    match.type=c("Position", "Pos+Allele", "RefSNP+Position", "RefSNP"),
    allele.check=TRUE, same.strand=FALSE, verbose=TRUE)

Arguments

geno1

the first genotype object of hlaSNPGenoClass

geno2

the second genotype object of hlaSNPGenoClass

match.type

"RefSNP+Position" (by default) – using both of RefSNP IDs and positions; "RefSNP" – using RefSNP IDs only; "Position" – using positions only

allele.check

if TRUE, call hlaGenoSwitchStrand to check and then switch allele pairs if needed

same.strand

TRUE assuming alleles are on the same strand (e.g., forward strand); otherwise, FALSE not assuming whether on the same strand or not

verbose

show information, if TRUE

Details

The function merges two SNP dataset geno1 and geno2, and returns a SNP dataset consisting of the SNP intersect between geno1 and geno2, and having the same SNP information (allele and position) as geno1.

Value

An object of hlaSNPGenoClass.

Author(s)

Xiuwen Zheng

See Also

hlaMakeSNPGeno, hlaGenoSubset

Examples

# import a PLINK BED file
bed.fn <- system.file("extdata", "HapMap_CEU.bed", package="HIBAG")
fam.fn <- system.file("extdata", "HapMap_CEU.fam", package="HIBAG")
bim.fn <- system.file("extdata", "HapMap_CEU.bim", package="HIBAG")
hapmap.ceu <- hlaBED2Geno(bed.fn, fam.fn, bim.fn, assembly="hg19")

# combine two datasets together
geno <- hlaGenoCombine(HapMap_CEU_Geno, hapmap.ceu)
summary(geno)

Composite Linkage Disequilibrium

Description

To calculate composite linkage disequilibrium (r2) between HLA locus and SNP markers.

Usage

hlaGenoLD(hla, geno)

Arguments

hla

an object of hlaAlleleClass

geno

an object of hlaSNPGenoClass, or a vector or matrix for SNP data

Value

Return a vector of linkage disequilibrium (r2) for each SNP marker.

Author(s)

Xiuwen Zheng

References

Weir BS, Cockerham CC: Complete characterization of disequilibrium at two loci; in Feldman MW (ed): Mathematical Evolutionary Theory. Princeton, NJ: Princeton University Press, 1989.

Zaykin, D. V., Pudovkin, A., and Weir, B. S. (2008). Correlation-based inference for linkage disequilibrium with multiple alleles. Genetics 180, 533-545.

Examples

# plot linkage disequilibrium
ymax <- 0.16
plot(NaN, NaN, xlab="SNP Position (in KB)",
    ylab="Composite Linkage Disequilibrium (r2)",
    xlim=range(HapMap_CEU_Geno$snp.position)/1000, ylim=c(0, ymax),
    main="Major Histocompatibility Complex")

hla.list <- c("A", "C", "DQA1")
col.list <- 1:3

# for-loop
for (i in 1:3)
{
    hla.id <- hla.list[i]

    # make a "hlaAlleleClass" object
    hla <- hlaAllele(HLA_Type_Table$sample.id,
        H1 = HLA_Type_Table[, paste(hla.id, ".1", sep="")],
        H2 = HLA_Type_Table[, paste(hla.id, ".2", sep="")],
        locus=hla.id, assembly="hg19")

    # linkage disequilibrium between HLA locus and SNP markers
    ld <- hlaGenoLD(hla, HapMap_CEU_Geno)

    # draw
    points(HapMap_CEU_Geno$snp.position/1000, ld, pch="*", col=i)
    x <- (hla$pos.start/1000 + hla$pos.end/1000)/2
    abline(v=x, col=col.list[i], lty=3, lwd=2.5)
    points(x, ymax, pch=25, col=7, bg=col.list[i], cex=1.5)
}
legend("topleft", col=col.list, pt.bg=col.list, text.col=col.list, pch=25,
    legend=paste("HLA -", hla.list))

Minor Allele Frequency

Description

To calculate the minor allele frequencies from genotypes or haplotypes.

Usage

hlaGenoMFreq(obj)

Arguments

obj

an object of hlaSNPGenoClass

Value

Return minor allele frequecies.

Author(s)

Xiuwen Zheng

See Also

hlaGenoAFreq, hlaGenoMFreq, hlaGenoMRate, hlaGenoMRate_Samp

Examples

summary(HapMap_CEU_Geno)

summary(hlaGenoMFreq(HapMap_CEU_Geno))

Missing Rates Per SNP

Description

To calculate the missing rates from genotypes or haplotypes per SNP.

Usage

hlaGenoMRate(obj)

Arguments

obj

an object of hlaSNPGenoClass

Value

Return missing rates per SNP.

Author(s)

Xiuwen Zheng

See Also

hlaGenoAFreq, hlaGenoMFreq, hlaGenoMRate, hlaGenoMRate_Samp

Examples

summary(HapMap_CEU_Geno)

summary(hlaGenoMRate(HapMap_CEU_Geno))

Missing Rates Per Sample

Description

To calculate the missing rates from genotypes or haplotypes per sample.

Usage

hlaGenoMRate_Samp(obj)

Arguments

obj

an object of hlaSNPGenoClass

Value

Return missing rates per sample.

Author(s)

Xiuwen Zheng

See Also

hlaGenoAFreq, hlaGenoMFreq, hlaGenoMRate, hlaGenoMRate_Samp

Examples

summary(HapMap_CEU_Geno)

summary(hlaGenoMRate_Samp(HapMap_CEU_Geno))

Get a subset of genotypes

Description

To get a subset of genotypes from a hlaSNPGenoClass object.

Usage

hlaGenoSubset(genoobj, samp.sel=NULL, snp.sel=NULL, snp.id=NULL)

Arguments

genoobj

a genotype object of hlaSNPGenoClass

samp.sel

a logical vector, or an integer vector of indices

snp.sel

a logical vector, or an integer vector of indices

snp.id

SNP IDs to be selected, or NULL

Details

genoobj$genotype is a numeric matrix, with an entry value 0 standing for BB (ZERO A allele), 1 for AB (ONE A allele), 2 for AA (TWO A alleles) and others for missing values (missing genotypes are usually set to be NA).

Value

Return a hlaSNPGenoClass object, and it is a list:

genotype

a genotype matrix, “# of SNPs” - by - “# of individuals”

sample.id

a vector of sample IDs

snp.id

a vector of SNP IDs

snp.position

a vector of SNP positions in basepair

snp.allele

a vector of characters with the format of “A allele/B allele”

assembly

optional, human genome information

Author(s)

Xiuwen Zheng

See Also

hlaMakeSNPGeno, hlaGenoCombine

Examples

summary(HapMap_CEU_Geno)

geno <- hlaGenoSubset(HapMap_CEU_Geno,
    snp.sel = (hlaGenoMFreq(HapMap_CEU_Geno)>0.10))
summary(geno)

Allele flipping if needed

Description

Determine the ordered pair of A and B alleles, using the allele information provided by template.

Usage

hlaGenoSwitchStrand(target, template,
    match.type=c("Position", "Pos+Allele", "RefSNP+Position", "RefSNP"),
    same.strand=FALSE, verbose=TRUE)

Arguments

target

an object of hlaSNPGenoClass

template

a genotypic object of hlaSNPGenoClass, a model object of hlaAttrBagClass or a model object of hlaAttrBagObj

match.type

"RefSNP+Position" (by default) – using both of RefSNP IDs and positions; "RefSNP" – using RefSNP IDs only; "Position" – using positions only

same.strand

TRUE assuming alleles are on the same strand (e.g., forward strand); otherwise, FALSE not assuming whether on the same strand or not

verbose

show information, if TRUE

Details

The A/B pairs of target are determined using the information from template.

Value

Return a hlaSNPGenoClass object consisting of the SNP intersect between target and template.

Author(s)

Xiuwen Zheng

See Also

hlaMakeSNPGeno, hlaGenoSubset

Examples

summary(HapMap_CEU_Geno)
# A/C A/G C/T G/T 
# 136 655 632 141 

# import a PLINK BED file
bed.fn <- system.file("extdata", "HapMap_CEU.bed", package="HIBAG")
fam.fn <- system.file("extdata", "HapMap_CEU.fam", package="HIBAG")
bim.fn <- system.file("extdata", "HapMap_CEU.bim", package="HIBAG")
hapmap.ceu <- hlaBED2Geno(bed.fn, fam.fn, bim.fn, assembly="hg19")
summary(hapmap.ceu)
# A/C  A/G  A/T  C/G  C/T  G/T
# 332 1567   64  111 1510  348

# combine two datasets together
geno <- hlaGenoSwitchStrand(HapMap_CEU_Geno, hapmap.ceu)
summary(geno)
# There are 1564 SNPs in common.
# The allele pairs of 763 SNPs need to be switched.
# A/C A/G C/T G/T
# 104 505 496 109

Composite Linkage Disequilibrium in a Region

Description

To calculate composite linkage disequilibrium (r2) among SNPs within a region.

Usage

hlaLDMatrix(geno, loci=NULL, maf=0.01, assembly="auto", draw=TRUE,
    verbose=TRUE)

Arguments

geno

an object of hlaSNPGenoClass

maf

MAF filter >= maf

loci

NULL or a character vector, e.g., "A", "B"

assembly

the human genome reference: "hg18", "hg19" (default), "hg38"; "auto" refers to "hg19"; "auto-silent" refers to "hg19" without any warning

draw

if TRUE, return a ggplot2 object

verbose

if TRUE, show information

Value

Return a ggplot2 object if draw=TRUE or a matrix correlation.

Author(s)

Xiuwen Zheng

References

Weir BS, Cockerham CC: Complete characterization of disequilibrium at two loci; in Feldman MW (ed): Mathematical Evolutionary Theory. Princeton, NJ: Princeton University Press, 1989.

Examples

region <- 500*1000   # basepair
geno <- hlaGenoSubsetFlank(HapMap_CEU_Geno, "A", region)
summary(geno)

hlaLDMatrix(geno, "A")

HLA/KIR Locus Information

Description

To get the starting and ending positions in basepair of HLA/KIR loci.

Usage

hlaLociInfo(assembly=c("auto", "auto-silent", "hg18", "hg19", "hg38",
    "unknown"))

Arguments

assembly

the human genome reference: "hg18", "hg19" (default), "hg38"; "auto" refers to "hg19"; "auto-silent" refers to "hg19" without any warning

Value

Return a data frame include the genomic locations.

Author(s)

Xiuwen Zheng

References

NCBI Resources: https://www.ncbi.nlm.nih.gov/gene, HLA Nomenclature: http://hla.alleles.org/genes/index.html

Examples

hlaLociInfo()

Make a SNP genotype object

Description

To create a hlaSNPGenoClass object (SNP genotypic object).

Usage

hlaMakeSNPGeno(genotype, sample.id, snp.id, snp.position,
    A.allele, B.allele, assembly="auto")

Arguments

genotype

a genotype matrix, “# of SNPs” - by - “# of individuals”

sample.id

a vector of sample IDs

snp.id

a vector of SNP IDs

snp.position

a vector of SNP positions

A.allele

a vector of A alleles, A is usually defined as a minor or alternative allele

B.allele

a vector of B alleles, B is usually defined as a major or reference allele

assembly

the human genome reference: "hg18", "hg19" (default), "hg38"; "auto" refers to "hg19"; "auto-silent" refers to "hg19" without any warning

Details

genotype is a numeric matrix, with an entry value 0 standing for BB (ZERO A allele), 1 for AB (ONE A allele), 2 for AA (TWO A alleles) and others for missing values (missing genotypes are usually set to be NA).

Value

Return a hlaSNPGenoClass object, and it is a list:

genotype

a genotype matrix, “# of SNPs” - by - “# of individuals”

sample.id

a vector of sample IDs

snp.id

a vector of SNP IDs

snp.position

a vector of SNP positions in basepair

snp.allele

a vector of characters with the format of “A allele/B allele”

assembly

the human genome reference

Author(s)

Xiuwen Zheng

See Also

hlaGenoSubset, hlaGenoCombine

Examples

summary(HapMap_CEU_Geno)

allele <- strsplit(HapMap_CEU_Geno$snp.allele, "/")
A.allele <- sapply(allele, function(x) { x[1] })
B.allele <- sapply(allele, function(x) { x[2] })

geno <- hlaMakeSNPGeno(HapMap_CEU_Geno$genotype, HapMap_CEU_Geno$sample.id,
    HapMap_CEU_Geno$snp.id, HapMap_CEU_Geno$snp.position, A.allele, B.allele,
    assembly="hg19")

summary(geno)

Load a model object from files

Description

To load HIBAG models from a list of files, and merge all together.

Usage

hlaModelFiles(fn.list, action.missingfile=c("ignore", "stop"), verbose=TRUE)

Arguments

fn.list

a vector of file names

action.missingfile

"ignore", ignore the missing files, by default; "stop", stop if missing

verbose

if TRUE, show information

Value

Return hlaAttrBagObj.

Author(s)

Xiuwen Zheng

See Also

hlaAttrBagging, hlaModelToObj

Examples

# make a "hlaAlleleClass" object
hla.id <- "C"
hla <- hlaAllele(HLA_Type_Table$sample.id,
    H1 = HLA_Type_Table[, paste(hla.id, ".1", sep="")],
    H2 = HLA_Type_Table[, paste(hla.id, ".2", sep="")],
    locus=hla.id, assembly="hg19")

# training genotypes
region <- 100   # kb
snpid <- hlaFlankingSNP(HapMap_CEU_Geno$snp.id, HapMap_CEU_Geno$snp.position,
    hla.id, region*1000, assembly="hg19")
train.geno <- hlaGenoSubset(HapMap_CEU_Geno,
    snp.sel = match(snpid, HapMap_CEU_Geno$snp.id),
    samp.sel = match(hla$value$sample.id, HapMap_CEU_Geno$sample.id))

#
# train HIBAG models
#
set.seed(1000)

model1 <- hlaAttrBagging(hla, train.geno, nclassifier=1)
mobj1 <- hlaModelToObj(model1)
save(mobj1, file="tm1.RData")

model2 <- hlaAttrBagging(hla, train.geno, nclassifier=1)
mobj2 <- hlaModelToObj(model2)
save(mobj2, file="tm2.RData")

model3 <- hlaAttrBagging(hla, train.geno, nclassifier=1)
mobj3 <- hlaModelToObj(model3)
save(mobj3, file="tm3.RData")

# load all of mobj1, mobj2 and mobj3
mobj <- hlaModelFiles(c("tm1.RData", "tm2.RData", "tm3.RData"))
summary(mobj)


# delete the temporary files
unlink(c("tm1.RData", "tm2.RData", "tm3.RData"), force=TRUE)

Conversion between the in-memory model and the object that can be saved in a file

Description

Build a model hlaAttrBagClass from an object of hlaAttrBagObj which is stored in an R object file, or convert hlaAttrBagClass to hlaAttrBagObj.

Usage

hlaModelFromObj(obj)
hlaModelToObj(model)

Arguments

obj

an object of hlaAttrBagObj

model

an object of hlaAttrBagClass

Value

hlaModelFromObj returns hlaAttrBagClass, and hlaModelToObj returns hlaAttrBagObj.

Author(s)

Xiuwen Zheng

See Also

hlaAttrBagging

Examples

# make a "hlaAlleleClass" object
hla.id <- "DQB1"
hla <- hlaAllele(HLA_Type_Table$sample.id,
    H1 = HLA_Type_Table[, paste(hla.id, ".1", sep="")],
    H2 = HLA_Type_Table[, paste(hla.id, ".2", sep="")],
    locus=hla.id, assembly="hg19")

# training genotypes
region <- 100   # kb
snpid <- hlaFlankingSNP(HapMap_CEU_Geno$snp.id, HapMap_CEU_Geno$snp.position,
    hla.id, region*1000, assembly="hg19")
train.geno <- hlaGenoSubset(HapMap_CEU_Geno,
    snp.sel = match(snpid, HapMap_CEU_Geno$snp.id))

# train a HIBAG model
set.seed(1000)
model <- hlaAttrBagging(hla, train.geno, nclassifier=2)
print(model)

mobj <- hlaModelToObj(model)

is(model)
is(mobj)


# close the HIBAG model explicitly
hlaClose(model)

Out-of-bag estimation of overall accuracy, per-allele sensitivity, etc

Description

Out-of-bag estimation of overall accuracy, per-allele sensitivity, specificity, positive predictive value, negative predictive value and call rate.

Usage

hlaOutOfBag(model, hla, snp, call.threshold=NaN, verbose=TRUE)

Arguments

model

an object of hlaAttrBagClass or hlaAttrBagObj

hla

the training HLA types, an object of hlaAlleleClass

snp

the training SNP genotypes, an object of hlaSNPGenoClass

call.threshold

the specified call threshold; if NaN, no threshold is used

verbose

if TRUE, show information

Value

Return hlaAlleleClass.

Author(s)

Xiuwen Zheng

See Also

hlaCompareAllele, hlaReport

Examples

# make a "hlaAlleleClass" object
hla.id <- "A"
hla <- hlaAllele(HLA_Type_Table$sample.id,
    H1 = HLA_Type_Table[, paste(hla.id, ".1", sep="")],
    H2 = HLA_Type_Table[, paste(hla.id, ".2", sep="")],
    locus=hla.id, assembly="hg19")

# SNP predictors within the flanking region on each side
region <- 500   # kb
snpid <- hlaFlankingSNP(HapMap_CEU_Geno$snp.id, HapMap_CEU_Geno$snp.position,
    hla.id, region*1000, assembly="hg19")
length(snpid)  # 275

# training and validation genotypes
geno <- hlaGenoSubset(HapMap_CEU_Geno,
    snp.sel = match(snpid, HapMap_CEU_Geno$snp.id),
    samp.sel = match(hla$value$sample.id, HapMap_CEU_Geno$sample.id))

# train a HIBAG model
set.seed(100)
# please use "nclassifier=100" when you use HIBAG for real data
model <- hlaAttrBagging(hla, geno, nclassifier=4)
summary(model)

# out-of-bag estimation
(comp <- hlaOutOfBag(model, hla, geno, call.threshold=NaN, verbose=TRUE))

# report
hlaReport(comp, type="txt")

hlaReport(comp, type="tex")

hlaReport(comp, type="html")

Build a HIBAG model via parallel computation

Description

To build a HIBAG model for predicting HLA types via parallel computation.

Usage

hlaParallelAttrBagging(cl, hla, snp, auto.save="",
    nclassifier=100L, mtry=c("sqrt", "all", "one"), prune=TRUE, na.rm=TRUE,
    mono.rm=TRUE, maf=NaN, stop.cluster=FALSE, verbose=TRUE,
    verbose.detail=FALSE)

Arguments

cl

NULL, FALSE, TRUE, an integer, or a cluster object created by the parallel-package; if NULL or FALSE, use the serial implementation; if TRUE, use the number of threads returned from RcppParallel::defaultNumThreads() (by default using all threads); if an integer, specify the number of threads; When cl is TRUE or an integer, the multithreading implementation will be used; when cl is a cluster, the multi-processing implementation will be used where each individual classifier is built within a child process

hla

training HLA types, an object of hlaAlleleClass

snp

training SNP genotypes, an object of hlaSNPGenoClass

auto.save

specify a autosaved file name for an R object (.rda, .RData or .rds); "", no file saving; see details

nclassifier

the total number of individual classifiers

mtry

a character or a numeric value, the number of variables randomly sampled as candidates for each selection. See details

prune

if TRUE, to perform a parsimonious forward variable selection, otherwise, exhaustive forward variable selection. See details

na.rm

if TRUE, remove the samples with missing HLA types

mono.rm

if TRUE, remove monomorphic SNPs

maf

MAF threshold for SNP filter, excluding any SNP with MAF < maf

stop.cluster

TRUE: stop cluster nodes after completing the calculation

verbose

if TRUE, show information

verbose.detail

if TRUE, show more information

Details

mtry (the number of variables randomly sampled as candidates for each selection): "sqrt", using the square root of the total number of candidate SNPs; "all", using all candidate SNPs; "one", using one SNP; an integer, specifying the number of candidate SNPs; 0 < r < 1, the number of candidate SNPs is "r * the total number of SNPs".

prune: there is no significant difference on accuracy between parsimonious and exhaustive forward variable selections. If prune = TRUE, the searching algorithm performs a parsimonious forward variable selection: if a new SNP predictor reduces the current out-of-bag accuracy, then it is removed from the candidate SNP set for future searching. Parsimonious selection helps to improve the computational efficiency by reducing the searching times of non-informative SNP markers.

An autosave function is available in hlaParallelAttrBagging when an new individual classifier is built internally without completing the ensemble.

Value

Return an object of hlaAttrBagClass if auto.save="", and NULL otherwise.

Author(s)

Xiuwen Zheng

References

Zheng X, Shen J, Cox C, Wakefield J, Ehm M, Nelson M, Weir BS; HIBAG – HLA Genotype Imputation with Attribute Bagging. Pharmacogenomics Journal. doi: 10.1038/tpj.2013.18. https://www.nature.com/articles/tpj201318

See Also

hlaAttrBagging, hlaClose, hlaSetKernelTarget

Examples

# make a "hlaAlleleClass" object
hla.id <- "A"
hla <- hlaAllele(HLA_Type_Table$sample.id,
    H1 = HLA_Type_Table[, paste(hla.id, ".1", sep="")],
    H2 = HLA_Type_Table[, paste(hla.id, ".2", sep="")],
    locus=hla.id, assembly="hg19")

# divide HLA types randomly
set.seed(100)
hlatab <- hlaSplitAllele(hla, train.prop=0.5)
names(hlatab)
# "training"   "validation"
summary(hlatab$training)
summary(hlatab$validation)

# SNP predictors within the flanking region on each side
region <- 500   # kb
snpid <- hlaFlankingSNP(HapMap_CEU_Geno$snp.id, HapMap_CEU_Geno$snp.position,
    hla.id, region*1000, assembly="hg19")
length(snpid)  # 275

# training and validation genotypes
train.geno <- hlaGenoSubset(HapMap_CEU_Geno,
    snp.sel = match(snpid, HapMap_CEU_Geno$snp.id),
    samp.sel = match(hlatab$training$value$sample.id,
    HapMap_CEU_Geno$sample.id))
test.geno <- hlaGenoSubset(HapMap_CEU_Geno,
    samp.sel=match(hlatab$validation$value$sample.id,
    HapMap_CEU_Geno$sample.id))


#############################################################################
# Multithreading

set.seed(100)

# train a HIBAG model in parallel with 2 cores
# please use "nclassifier=100" when you use HIBAG for real data
model <- hlaParallelAttrBagging(2, hlatab$training, train.geno, nclassifier=4)


#############################################################################
# Multicore & autosave

library(parallel)

# choose an appropriate cluster size, e.g., 2
cl <- makeCluster(2)
set.seed(100)

# train a HIBAG model in parallel
# please use "nclassifier=100" when you use HIBAG for real data
hlaParallelAttrBagging(cl, hlatab$training, train.geno, nclassifier=4,
    auto.save="tmp_model.RData", stop.cluster=TRUE)

mobj <- get(load("tmp_model.RData"))
summary(mobj)
model <- hlaModelFromObj(mobj)

# validation
pred <- hlaPredict(model, test.geno)
summary(pred)

# compare
hlaCompareAllele(hlatab$validation, pred, allele.limit=model)$overall


# since 'stop.cluster=TRUE' used in 'hlaParallelAttrBagging'
# need a new cluster
cl <- makeCluster(2)

pred <- hlaPredict(model, test.geno, cl=cl)
summary(pred)

# stop parallel nodes
stopCluster(cl)


# delete the temporary file
unlink(c("tmp_model.RData"), force=TRUE)

HIBAG model prediction (in parallel)

Description

To predict HLA type based on a HIBAG model (in parallel).

Usage

hlaPredict(object, snp, cl=FALSE,
    type=c("response+dosage", "response", "prob", "response+prob"),
    vote=c("prob", "majority"), allele.check=TRUE,
    match.type=c("Position", "Pos+Allele", "RefSNP+Position", "RefSNP"),
    same.strand=FALSE, verbose=TRUE, verbose.match=TRUE)
## S3 method for class 'hlaAttrBagClass'
predict(object, snp, cl=FALSE,
    type=c("response+dosage", "response", "prob", "response+prob"),
    vote=c("prob", "majority"), allele.check=TRUE,
    match.type=c("Position", "Pos+Allele", "RefSNP+Position", "RefSNP"),
    same.strand=FALSE, verbose=TRUE, verbose.match=TRUE, ...)

Arguments

object

a model of hlaAttrBagClass

snp

a genotypic object of hlaSNPGenoClass

cl

FALSE, TRUE, an integer, or a cluster object created by the parallel-package; if FALSE, use the serial implementation; if TRUE, use the number of threads returned from RcppParallel::defaultNumThreads() (by default using all threads); if an integer, specify the number of threads

type

"response+dosage": return the best-guess types and dosages for each allele (by default); "response": return the best-guess types with its posterior probability; "prob": return a matrix for all posterior probabilities; "response+prob": return the best-guess, dosages and all posterior probabilities

vote

"prob" (default behavior) – make a prediction based on the averaged posterior probabilities from all individual classifiers; "majority" – majority voting from all individual classifiers, where each classifier votes for an HLA type

allele.check

if TRUE, check and then switch allele pairs if needed

match.type

"Position" – use positions only (by default); "RefSNP+Position" – use both of SNP IDs and positions; "RefSNP" – using SNP IDs only

same.strand

TRUE assuming alleles are on the same strand (e.g., forward strand); otherwise, FALSE not assuming whether on the same strand or not

verbose

if TRUE, show information

verbose.match

if TRUE, show missing SNP proportions for different match.type

...

unused

Details

If more than 50% of SNP predictors are missing, a warning will be given.

When match.type="RefSNP+Position", the matching of SNPs requires both SNP IDs and positions. A lower missing fraction maybe gained by matching SNP IDs or positions only. Call hlaPredict(..., match.type="RefSNP") or hlaPredict(..., match.type="Position") for this purpose. It could be safe to assume that the SNPs with the same positions on the same genome reference (e.g., hg19) are the same variant albeit the different SNP IDs. Any concern about SNP mismatching should be emailed to the genotyping platform provider.

Value

Return a hlaAlleleClass object with posterior probabilities of predicted HLA types, or a matrix of pairwise possible HLA types with all posterior probabilities. If type = "response+prob", return a hlaAlleleClass object with a matrix of postprob for the probabilities of all pairs of alleles. If a probability matrix is returned, colnames is sample.id and rownames is an unordered pair of HLA alleles.

Author(s)

Xiuwen Zheng

See Also

hlaAttrBagging, hlaAllele, hlaCompareAllele, hlaParallelAttrBagging, hlaSetKernelTarget, hlaAlleleToVCF

Examples

# make a "hlaAlleleClass" object
hla.id <- "A"
hla <- hlaAllele(HLA_Type_Table$sample.id,
    H1 = HLA_Type_Table[, paste(hla.id, ".1", sep="")],
    H2 = HLA_Type_Table[, paste(hla.id, ".2", sep="")],
    locus=hla.id, assembly="hg19")

# divide HLA types randomly
set.seed(100)
hlatab <- hlaSplitAllele(hla, train.prop=0.5)
names(hlatab)
# "training"   "validation"
summary(hlatab$training)
summary(hlatab$validation)

# SNP predictors within the flanking region on each side
region <- 500   # kb
snpid <- hlaFlankingSNP(HapMap_CEU_Geno$snp.id, HapMap_CEU_Geno$snp.position,
    hla.id, region*1000, assembly="hg19")
length(snpid)  # 275

# training and validation genotypes
train.geno <- hlaGenoSubset(HapMap_CEU_Geno,
    snp.sel=match(snpid, HapMap_CEU_Geno$snp.id),
    samp.sel=match(hlatab$training$value$sample.id,
    HapMap_CEU_Geno$sample.id))
test.geno <- hlaGenoSubset(HapMap_CEU_Geno,
    samp.sel=match(hlatab$validation$value$sample.id,
    HapMap_CEU_Geno$sample.id))

# train a HIBAG model
set.seed(100)
model <- hlaAttrBagging(hlatab$training, train.geno, nclassifier=4,
    verbose.detail=TRUE)
summary(model)

# validation
pred <- hlaPredict(model, test.geno, type="response+dosage")
pred

head(pred$value)
pred$dosage[, 1:4]  # a dosage matrix

# compare
(comp <- hlaCompareAllele(hlatab$validation, pred, allele.limit=model,
    call.threshold=0))
(comp <- hlaCompareAllele(hlatab$validation, pred, allele.limit=model,
    call.threshold=0.5))

Merge prediction results from multiple HIBAG models

Description

Return an object of hlaAlleleClass, which contains predicted HLA types.

Usage

hlaPredMerge(..., weight=NULL, equivalence=NULL, use.matching=TRUE,
    ret.dosage=TRUE, ret.postprob=FALSE, max.resolution="", rm.suffix=FALSE,
    verbose=TRUE)

Arguments

...

The object(s) of hlaAlleleClass, having a field of 'postprob', and returned by hlaPredict(..., type="response+prob")

weight

the weight used for each prediction; if NULL, equal weights to be used; or set the weight vector to be the training sample sizes

equivalence

a data.frame with two columns, the first column for new equivalent alleles, and the second for the alleles possibly exist in the object(s) passed to this function; there is no replace if the allele is not found in the second column

use.matching

if TRUE, use actual probabilities (i.e., poster prob. * matching) for merging; otherwise, use poster prob. instead. use.matching=TRUE is recommended.

ret.dosage

if TRUE, return dosages

ret.postprob

if TRUE, return average posterior probabilities

max.resolution

"2-digit", "1-field", "4-digit", "2-field", "6-digit", "3-field", "8-digit", "4-field", "allele", "protein", "full", "none", or "": "allele" = "2-digit"; "protein" = "4-digit"; "full", "none" or "" for no limit on resolution

rm.suffix

whether remove the non-digit suffix in the last field, e.g., for "01:22N", "N" is a non-digit suffix

verbose

if TRUE, show information

Details

Calculate a new probability matrix for each pair of HLA alleles, by averaging (posterior) probabilities from all models with specified weights. If equivalence is specified, multiple alleles might be collapsed into one class.

Value

Return a hlaAlleleClass object.

Author(s)

Xiuwen Zheng

See Also

hlaAttrBagging, hlaAllele, predict.hlaAttrBagClass

Examples

# make a "hlaAlleleClass" object
hla.id <- "A"
hla <- hlaAllele(HLA_Type_Table$sample.id,
    H1 = HLA_Type_Table[, paste(hla.id, ".1", sep="")],
    H2 = HLA_Type_Table[, paste(hla.id, ".2", sep="")],
    locus=hla.id, assembly="hg19")

# divide HLA types randomly
set.seed(100)
hlatab <- hlaSplitAllele(hla, train.prop=0.5)
names(hlatab)
# "training"   "validation"
summary(hlatab$training)
summary(hlatab$validation)

# SNP predictors within the flanking region on each side
region <- 500   # kb
snpid <- hlaFlankingSNP(HapMap_CEU_Geno$snp.id, HapMap_CEU_Geno$snp.position,
    hla.id, region*1000, assembly="hg19")
length(snpid)  # 275

# training and validation genotypes
train.geno <- hlaGenoSubset(HapMap_CEU_Geno,
    snp.sel=match(snpid, HapMap_CEU_Geno$snp.id),
    samp.sel=match(hlatab$training$value$sample.id,
    HapMap_CEU_Geno$sample.id))
test.geno <- hlaGenoSubset(HapMap_CEU_Geno,
    samp.sel=match(hlatab$validation$value$sample.id,
    HapMap_CEU_Geno$sample.id))

# train HIBAG models
set.seed(100)

# please use "nclassifier=100" when you use HIBAG for real data
m1 <- hlaAttrBagging(hlatab$training, train.geno, nclassifier=2,
    verbose.detail=TRUE)
m2 <- hlaAttrBagging(hlatab$training, train.geno, nclassifier=2,
    verbose.detail=TRUE)


# validation
pd1 <- hlaPredict(m1, test.geno, type="response+prob")
pd2 <- hlaPredict(m2, test.geno, type="response+prob")

hlaCompareAllele(hlatab$validation, pd1)$overall
hlaCompareAllele(hlatab$validation, pd2)$overall

# merge predictions from multiple models, by voting from all classifiers
pd <- hlaPredMerge(pd1, pd2)
pd

hlaCompareAllele(hlatab$validation, pd)$overall

# collapse to 2-digit
pd <- hlaPredMerge(pd1, pd2, max.resolution="2-digit", ret.postprob=FALSE)
pd

Finalize a HIBAG model

Description

Finalize a HIBAG model by removing unused SNP predictors and adding appendix information (platform, training set, authors, warning, etc)

Usage

hlaPublish(mobj, platform=NULL, information=NULL, warning=NULL,
    rm.unused.snp=TRUE, anonymize=TRUE, verbose=TRUE)

Arguments

mobj

an object of hlaAttrBagObj or hlaAttrBagClass

platform

the text of platform information

information

the other information, like authors

warning

any warning message

rm.unused.snp

if TRUE, remove unused SNPs from the model

anonymize

if TRUE, remove sample IDs

verbose

if TRUE, show information

Value

Returns a new object of hlaAttrBagObj.

Author(s)

Xiuwen Zheng

See Also

hlaModelFromObj, hlaModelToObj

Examples

# make a "hlaAlleleClass" object
hla.id <- "A"
hla <- hlaAllele(HLA_Type_Table$sample.id,
    H1 = HLA_Type_Table[, paste(hla.id, ".1", sep="")],
    H2 = HLA_Type_Table[, paste(hla.id, ".2", sep="")],
    locus=hla.id, assembly="hg19")

# training genotypes
region <- 250   # kb
snpid <- hlaFlankingSNP(HapMap_CEU_Geno$snp.id, HapMap_CEU_Geno$snp.position,
    hla.id, region*1000, assembly="hg19")
train.geno <- hlaGenoSubset(HapMap_CEU_Geno,
    snp.sel = match(snpid, HapMap_CEU_Geno$snp.id),
    samp.sel = match(hla$value$sample.id, HapMap_CEU_Geno$sample.id))


#
# train a HIBAG model
#
set.seed(1000)

# please use "nclassifier=100" when you use HIBAG for real data
model <- hlaAttrBagging(hla, train.geno, nclassifier=2, verbose.detail=TRUE)
summary(model)
length(model$snp.id)

mobj <- hlaPublish(model,
    platform = "Illumina 1M Duo",
    information = "Training set -- HapMap Phase II")
model2 <- hlaModelFromObj(mobj)
length(mobj$snp.id)
mobj$appendix
summary(mobj)

p1 <- hlaPredict(model, train.geno)
p2 <- hlaPredict(model2, train.geno)

# check
cbind(p1$value, p2$value)

Format a report

Description

Create a report for evaluating prediction accuracies.

Usage

hlaReport(object, export.fn="", type=c("txt", "tex", "html", "markdown"),
    header=TRUE)

Arguments

object

an object returned by hlaCompareAllele

export.fn

a file name for output, or "" for stdout

type

"txt" – tab-delimited text format; "tex" – tex format using the 'longtable' package; "html" – html file

header

if TRUE, output the header of text file associated corresponding format

Value

None.

Author(s)

Xiuwen Zheng

See Also

hlaCompareAllele

Examples

# make a "hlaAlleleClass" object
hla.id <- "A"
hla <- hlaAllele(HLA_Type_Table$sample.id,
    H1 = HLA_Type_Table[, paste(hla.id, ".1", sep="")],
    H2 = HLA_Type_Table[, paste(hla.id, ".2", sep="")],
    locus=hla.id, assembly="hg19")

# divide HLA types randomly
set.seed(100)
hlatab <- hlaSplitAllele(hla, train.prop=0.5)
names(hlatab)
# "training"   "validation"
summary(hlatab$training)
summary(hlatab$validation)

# SNP predictors within the flanking region on each side
region <- 500   # kb
snpid <- hlaFlankingSNP(HapMap_CEU_Geno$snp.id, HapMap_CEU_Geno$snp.position,
    hla.id, region*1000, assembly="hg19")
length(snpid)  # 275

# training and validation genotypes
train.geno <- hlaGenoSubset(HapMap_CEU_Geno,
    snp.sel = match(snpid, HapMap_CEU_Geno$snp.id),
    samp.sel = match(hlatab$training$value$sample.id,
    HapMap_CEU_Geno$sample.id))
test.geno <- hlaGenoSubset(HapMap_CEU_Geno,
    samp.sel=match(hlatab$validation$value$sample.id,
    HapMap_CEU_Geno$sample.id))

# train a HIBAG model
set.seed(100)
# please use "nclassifier=100" when you use HIBAG for real data
model <- hlaAttrBagging(hlatab$training, train.geno, nclassifier=4,
    verbose.detail=TRUE)
summary(model)

# validation
pred <- hlaPredict(model, test.geno)
# compare
(comp <- hlaCompareAllele(hlatab$validation, pred, allele.limit=model,
    call.threshold=0))


# report
hlaReport(comp, type="txt")

hlaReport(comp, type="tex")

hlaReport(comp, type="html")

hlaReport(comp, type="markdown")

Format a report with figures

Description

Create figures for evaluating prediction accuracies.

Usage

hlaReportPlot(PredHLA=NULL, TrueHLA=NULL, model=NULL,
    fig=c("matching", "call.rate", "call.threshold"), match.threshold=NaN,
    log_scale=TRUE)

Arguments

PredHLA

NULL, an object of hlaAlleleClass, the predicted HLA types

TrueHLA

NULL, an object of hlaAlleleClass, the true HLA types

model

NULL, or a model of hlaAttrBagClass

fig

"matching": violin plot for matching measurements; "call.rate": relationship between accuracy and call rate; "call.threshold": relationship between accuracy and call threshold

match.threshold

the threshold for matching proportion

log_scale

if TRUE, use log scale for matching violin plot

Value

Return a ggplot2 object.

Author(s)

Xiuwen Zheng

See Also

hlaReport

Examples

# make a "hlaAlleleClass" object
hla.id <- "A"
hla <- hlaAllele(HLA_Type_Table$sample.id,
    H1 = HLA_Type_Table[, paste(hla.id, ".1", sep="")],
    H2 = HLA_Type_Table[, paste(hla.id, ".2", sep="")],
    locus=hla.id, assembly="hg19")

# divide HLA types randomly
set.seed(100)
hlatab <- hlaSplitAllele(hla, train.prop=0.5)
names(hlatab)
# "training"   "validation"
summary(hlatab$training)
summary(hlatab$validation)

# SNP predictors within the flanking region on each side
region <- 500   # kb
snpid <- hlaFlankingSNP(HapMap_CEU_Geno$snp.id, HapMap_CEU_Geno$snp.position,
    hla.id, region*1000, assembly="hg19")
length(snpid)  # 275

# training and validation genotypes
train.geno <- hlaGenoSubset(HapMap_CEU_Geno,
    snp.sel = match(snpid, HapMap_CEU_Geno$snp.id),
    samp.sel = match(hlatab$training$value$sample.id,
    HapMap_CEU_Geno$sample.id))
test.geno <- hlaGenoSubset(HapMap_CEU_Geno,
    samp.sel=match(hlatab$validation$value$sample.id,
    HapMap_CEU_Geno$sample.id))

# train a HIBAG model
set.seed(100)
# please use "nclassifier=100" when you use HIBAG for real data
model <- hlaAttrBagging(hlatab$training, train.geno, nclassifier=4,
    verbose.detail=TRUE)
summary(model)

# validation
pred <- hlaPredict(model, test.geno)


# visualize
hlaReportPlot(pred, fig="matching")

hlaReportPlot(model=model, fig="matching")

hlaReportPlot(pred, model=model, fig="matching")

hlaReportPlot(pred, hlatab$validation, fig="call.rate")

hlaReportPlot(pred, hlatab$validation, fig="call.threshold")

Get sample IDs from HLA types with a filter

Description

Get sample IDs from HLA types limited to a set of HLA alleles.

Usage

hlaSampleAllele(TrueHLA, allele.limit=NULL, max.resolution="")

Arguments

TrueHLA

an object of hlaAlleleClass

allele.limit

a list of HLA alleles, the validation samples are limited to those having HLA alleles in allele.limit, or NULL for no limit. allele.limit could be character-type, hlaAttrBagClass or hlaAttrBagObj

max.resolution

"2-digit", "4-digit", "6-digit", "8-digit", "allele", "protein", "2", "4", "6", "8", "full" or "": "allele" = "2-digit", "protein" = "4-digit", "full" and "" mean no limit on resolution

Value

Return a list of sample IDs.

Author(s)

Xiuwen Zheng

See Also

hlaCompareAllele

Examples

# make a "hlaAlleleClass" object
hla.id <- "A"
hla <- hlaAllele(HLA_Type_Table$sample.id,
    HLA_Type_Table[, paste(hla.id, ".1", sep="")],
    HLA_Type_Table[, paste(hla.id, ".2", sep="")],
    locus=hla.id, assembly="hg19")
summary(hla)

hlaSampleAllele(hla)

hlaSampleAllele(hla, allele.limit=c(
    "01:01","02:01","02:06", "03:01", "11:01", "23:01"))

Set the CPU target

Description

Set the CPU target that the HIBAG algorithm is built on.

Usage

hlaSetKernelTarget(cpu=c("max", "auto.avx2", "base",
    "sse2", "sse4", "avx", "avx2", "avx512f", "avx512bw", "avx512vpopcnt"))

Arguments

cpu

Specify the Intel/AMD CPU flag; "max" by default

Details

If cpu="max", the kernel target will be automatically determined according to the CPU capabilities to maximize the algorithm efficiency. When cpu="auto.avx2", "avx2" is used instead of "avx512f", "avx512bw", "avx512vpopcnt" even if the CPU supports the AVX512F, AVX512BW or AVX512VPOPCNT intrinsics, since the CPU may reduce the frequency of the cores dynamically to keep power usage of AVX512 within bounds; if AVX2 is not applicable, other target will be automatically determined.

The HIBAG algorithm is optimized using different SIMD instruction sets to leverage the efficiency of the target Intel/AMD platform. The higher version of the C++ compiler is needed to enable the compilation of AVX2 and AVX512F intrinsics, e.g., GCC >= v6.0. If the compiler does not support the CPU target, the implementation on that target will be disabled.

Value

Return a character vector for describing the CPU capabilities, the compiler information and the supported implementation.

Author(s)

Xiuwen Zheng

See Also

hlaAttrBagging, hlaParallelAttrBagging, predict.hlaAttrBagClass, hlaPredict

Examples

hlaSetKernelTarget("auto")

The class of SNP genotypes

Description

The class of SNP genotypes, and its instance is returned from hlaMakeSNPGeno.

Value

There are five components:

genotype

a genotype matrix, “# of SNPs”-by-“# of individuals”; 0 standing for BB (ZERO A allele), 1 for AB (ONE A allele), 2 for AA (TWO A alleles) and NA for missing values (other values have no meaning)

sample.id

a vector of sample IDs

snp.id

a vector of SNP IDs

snp.position

a vector of SNP positions in basepair

snp.allele

a vector of characters with a format of “A allele/B allele”; B is usually defined as a major or reference allele, while A is defined as a minor or alternative allele

assembly

the human genome reference, such like "hg19"

Author(s)

Xiuwen Zheng

See Also

hlaMakeSNPGeno


Get SNP IDs and positions

Description

Get the information of SNP ID with or without position.

Usage

hlaSNPID(obj, type=c("Position", "Pos+Allele", "RefSNP+Position", "RefSNP"))

Arguments

obj

a genotypic object of hlaSNPGenoClass, a model object of hlaAttrBagClass or a model object of hlaAttrBagObj

type

"RefSNP+Position" (by default), "RefSNP" or "Position"

Value

If type = "RefSNP+Position", return paste(obj$snp.id, obj$snp.position, sep="-"); if type = "RefSNP", return obj$snp.id; if type = "Position", return obj$snp.position; if type = "Pos+Allele", return paste(obj$snp.position, obj$snp.allele, sep="-").

Author(s)

Xiuwen Zheng

See Also

hlaGenoSwitchStrand, hlaGenoCombine

Examples

x <- hlaSNPID(HapMap_CEU_Geno)
head(x)

x <- hlaSNPID(HapMap_CEU_Geno, "RefSNP")
head(x)

x <- hlaSNPID(HapMap_CEU_Geno, "Position")
head(x)

Divide the samples randomly

Description

Divide the samples to the training and validation sets randomly.

Usage

hlaSplitAllele(HLA, train.prop=0.5)

Arguments

HLA

an object of hlaAlleleClass

train.prop

the proporion of training set

Details

The algorithm tries to divide each HLA alleles into training and validation sets randomly with a training proportion train.prop.

Value

Return a list:

training

an object of hlaAlleleClass

validation

an object of hlaAlleleClass

Author(s)

Xiuwen Zheng

See Also

hlaAllele

Examples

# make a "hlaAlleleClass" object
hla.id <- "A"
hla <- hlaAllele(HLA_Type_Table$sample.id,
    H1 = HLA_Type_Table[, paste(hla.id, ".1", sep="")],
    H2 = HLA_Type_Table[, paste(hla.id, ".2", sep="")],
    locus=hla.id, assembly="hg19")

# divide HLA types randomly
set.seed(100)
hlatab <- hlaSplitAllele(hla, train.prop=0.5)
names(hlatab)
# "training"   "validation"
summary(hlatab$training)
summary(hlatab$validation)

Get a subset of individual classifiers

Description

Get the first n individual classifiers.

Usage

hlaSubModelObj(obj, n)

Arguments

obj

an object of hlaAttrBagObj

n

an integer, get the first n individual classifiers

Value

Return an object of hlaAttrBagObj.

Author(s)

Xiuwen Zheng

See Also

hlaAttrBagging

Examples

# make a "hlaAlleleClass" object
hla.id <- "C"
hla <- hlaAllele(HLA_Type_Table$sample.id,
    H1 = HLA_Type_Table[, paste(hla.id, ".1", sep="")],
    H2 = HLA_Type_Table[, paste(hla.id, ".2", sep="")],
    locus=hla.id, assembly="hg19")

# training genotypes
region <- 50   # kb
snpid <- hlaFlankingSNP(HapMap_CEU_Geno$snp.id, HapMap_CEU_Geno$snp.position,
    hla.id, region*1000, assembly="hg19")
train.geno <- hlaGenoSubset(HapMap_CEU_Geno,
    snp.sel = match(snpid, HapMap_CEU_Geno$snp.id))

# train a HIBAG model
set.seed(1000)
# please use "nclassifier=100" when you use HIBAG for real data
model <- hlaAttrBagging(hla, train.geno, nclassifier=2, verbose.detail=TRUE)
mobj <- hlaModelToObj(model)
summary(mobj)

newmobj <- hlaSubModelObj(mobj, 1)
summary(newmobj)

Get unique HLA alleles

Description

Get unique HLA alleles, which are in ascending order.

Usage

hlaUniqueAllele(hla, all=NA)

Arguments

hla

character-type HLA alleles, a hlaAlleleClass object, a link{hlaAttrBagClass} object, or a link{hlaAttrBagObj} object

all

when hla is a hlaAlleleClass object and all=TRUE, return all HLA alleles if hla$dosage or hla$postprob exists; otherwise, only return the alleles in hla$value

Details

Each HLA allele name has a unique number corresponding to up to four sets of digits separated by colons. The name designation depends on the sequence of the allele and that of its nearest relative. The digits before the first colon describe the type, which often corresponds to the serological antigen carried by an allotype. The next set of digits are used to list the subtypes, numbers being assigned in the order in which DNA sequences have been determined. Alleles whose numbers differ in the two sets of digits must differ in one or more nucleotide substitutions that change the amino acid sequence of the encoded protein. Alleles that differ only by synonymous nucleotide substitutions (also called silent or non-coding substitutions) within the coding sequence are distinguished by the use of the third set of digits. Alleles that only differ by sequence polymorphisms in the introns or in the 5' or 3' untranslated regions that flank the exons and introns are distinguished by the use of the fourth set of digits.

In addition to the unique allele number there are additional optional suffixes that may be added to an allele to indicate its expression status. Alleles that have been shown not to be expressed, 'Null' alleles have been given the suffix 'N'. Those alleles which have been shown to be alternatively expressed may have the suffix 'L', 'S', 'C', 'A' or 'Q'.

http://hla.alleles.org/nomenclature/index.html

Value

Return a character vector of HLA alleles

Author(s)

Xiuwen Zheng

See Also

hlaAllele, hlaAlleleDigit

Examples

# make a "hlaAlleleClass" object
hla.id <- "A"
hla <- hlaAllele(HLA_Type_Table$sample.id,
    H1 = HLA_Type_Table[, paste(hla.id, ".1", sep="")],
    H2 = HLA_Type_Table[, paste(hla.id, ".2", sep="")],
    locus=hla.id, assembly="hg19")
summary(hla)
hlaUniqueAllele(hla)

hlaUniqueAllele(c("01", "01:03", "01:01", "03:05", "03:01G",
    "03:05P", "03:104:01", "104:01"))

Plot a HIBAG model

Description

To show a scatterplot of the numbers of individual classifiers and SNP positions.

Usage

## S3 method for class 'hlaAttrBagObj'
plot(x, snp.col="gray33", snp.pch=1, snp.sz=1,
    locus.col="blue", locus.lty=1L, locus.lty2=2L, addplot=NULL,
    assembly="auto", ...)
## S3 method for class 'hlaAttrBagClass'
plot(x, ...)

Arguments

x

an object of hlaAttrBagObj

snp.col

the color of SNP uses

snp.pch

the point type of SNP uses

snp.sz

the point size of SNP uses

locus.col

the color of text and line for HLA locus

locus.lty

the type of line for the bounds of HLA locus

locus.lty2

the type of line for HLA locus

addplot

NULL for creating a plot, or a ggplot object to be appended

assembly

the human genome reference: "hg18", "hg19" (default), "hg38"; "auto" refers to "hg19"; "auto-silent" refers to "hg19" without any warning

...

further arguments passed to or from other methods

Value

None

Author(s)

Xiuwen Zheng

See Also

print.hlaAttrBagObj, summary.hlaAttrBagObj

Examples

# make a "hlaAlleleClass" object
hla.id <- "C"
hla <- hlaAllele(HLA_Type_Table$sample.id,
    H1 = HLA_Type_Table[, paste(hla.id, ".1", sep="")],
    H2 = HLA_Type_Table[, paste(hla.id, ".2", sep="")],
    locus=hla.id, assembly="hg19")

# training genotypes
region <- 100   # kb
snpid <- hlaFlankingSNP(HapMap_CEU_Geno$snp.id, HapMap_CEU_Geno$snp.position,
    hla.id, region*1000, assembly="hg19")
train.geno <- hlaGenoSubset(HapMap_CEU_Geno,
    snp.sel = match(snpid, HapMap_CEU_Geno$snp.id))

# train a HIBAG model
set.seed(1000)
# please use "nclassifier=100" when you use HIBAG for real data
model <- hlaAttrBagging(hla, train.geno, nclassifier=2, verbose.detail=TRUE)
plot(model)

Summarize a “hlaAttrBagClass” or “hlaAttrBagObj” object.

Description

Summarize an object of hlaAttrBagClass or hlaAttrBagObj.

Usage

## S3 method for class 'hlaAttrBagClass'
print(x, ...)
## S3 method for class 'hlaAttrBagObj'
print(x, ...)
## S3 method for class 'hlaAttrBagClass'
summary(object, show=TRUE, ...)
## S3 method for class 'hlaAttrBagObj'
summary(object, show=TRUE, ...)

Arguments

x

an object of hlaAttrBagClass or hlaAttrBagObj

object

an object of hlaAttrBagClass or hlaAttrBagObj

show

if TRUE, show information

...

further arguments passed to or from other methods

Value

print returns NULL.

summary.hlaAttrBagClass and summary.hlaAttrBagObj return a list:

num.classifier

the total number of classifiers

num.snp

the total number of SNPs

snp.id

SNP IDs

snp.position

SNP position in basepair

snp.hist

the number of classifier for each SNP, and it could be used for SNP importance

info

a data.frame for the average number of SNPs (num.snp), haplotypes (num.haplo), out-of-bag accuracies (accuracy) among all classifiers: mean, standard deviation, min, max

Author(s)

Xiuwen Zheng

See Also

plot.hlaAttrBagClass, plot.hlaAttrBagObj

Examples

# make a "hlaAlleleClass" object
hla.id <- "C"
hla <- hlaAllele(HLA_Type_Table$sample.id,
    H1 = HLA_Type_Table[, paste(hla.id, ".1", sep="")],
    H2 = HLA_Type_Table[, paste(hla.id, ".2", sep="")],
    locus=hla.id, assembly="hg19")

# training genotypes
region <- 100   # kb
snpid <- hlaFlankingSNP(HapMap_CEU_Geno$snp.id, HapMap_CEU_Geno$snp.position,
    hla.id, region*1000, assembly="hg19")
train.geno <- hlaGenoSubset(HapMap_CEU_Geno,
    snp.sel = match(snpid, HapMap_CEU_Geno$snp.id))

# train a HIBAG model
set.seed(1000)
# please use "nclassifier=100" when you use HIBAG for real data
model <- hlaAttrBagging(hla, train.geno, nclassifier=2, verbose.detail=TRUE)
print(model)

Summarize a “hlaAlleleClass” or “hlaAASeqClass” object

Description

Show the information of a hlaAlleleClass or hlaAASeqClass object.

Usage

## S3 method for class 'hlaAlleleClass'
summary(object, verbose=TRUE, ...)
## S3 method for class 'hlaAASeqClass'
summary(object, poly.only=TRUE, head=0L,
    verbose=TRUE, ...)
## S3 method for class 'hlaAlleleClass'
print(x, ...)

Arguments

object

an object of hlaAlleleClass or hlaAASeqClass

x

an object of hlaAlleleClass or hlaAASeqClass

poly.only

if TRUE, only show the amino acid positions with polymorphism; otherwise, show all sequences

head

show the first head rows of cross tabulation, or 0L for all rows

verbose

if TRUE, show information

...

further arguments passed to or from other methods

Value

Return a data.frame of count and frequency for each HLA allele, if object is hlaAlleleClass; a matrix of cross tabulation of amino acids at each position, if object is hlaAASeqClass.

Author(s)

Xiuwen Zheng

See Also

hlaAllele, hlaConvSequence


Summarize a SNP dataset

Description

Summarize the genotypic dataset.

Usage

## S3 method for class 'hlaSNPGenoClass'
summary(object, show=TRUE, ...)
## S3 method for class 'hlaSNPGenoClass'
print(x, ...)

Arguments

object

a genotype object of hlaSNPGenoClass

x

a genotype object of hlaSNPGenoClass

show

if TRUE, print information

...

further arguments passed to or from other methods

Value

None.

Author(s)

Xiuwen Zheng

See Also

hlaMakeSNPGeno, hlaGenoSubset

Examples

summary(HapMap_CEU_Geno)