Package 'HERON'

Title: Hierarchical Epitope pROtein biNding
Description: HERON is a software package for analyzing peptide binding array data. In addition to identifying significant binding probes, HERON also provides functions for finding epitopes (string of consecutive peptides within a protein). HERON also calculates significance on the probe, epitope, and protein level by employing meta p-value methods. HERON is designed for obtaining calls on the sample level and calculates fractions of hits for different conditions.
Authors: Sean McIlwain [aut, cre] , Irene Ong [aut]
Maintainer: Sean McIlwain <[email protected]>
License: GPL (>= 3)
Version: 1.5.0
Built: 2024-12-29 07:09:44 UTC
Source: https://github.com/bioc/HERON

Help Index


Add Sequence Annotations for Epitopes

Description

Add Sequence Annotations for Epitopes

Usage

addSequenceAnnotations(eds)

Arguments

eds

HERONEpitopeDataSet with probe_meta in metadata()

Value

HERONEpitopeDataSet with the rowData() set with sequence annotations

Examples

data(heffron2021_wuhan)
pval_seq_res <- calcCombPValues(heffron2021_wuhan)
pval_pr_res <- convertSequenceDSToProbeDS(pval_seq_res)
calls_res <- makeProbeCalls(pval_pr_res)
segments_res <- findEpitopeSegments(calls_res, "unique")
epval_res <- calcEpitopePValues(calls_res, segments_res)
epval_res <- addSequenceAnnotations(epval_res)

Calculate p-values using the "exprs" assay

Description

Calculate p-values using the "exprs" assay

Usage

calcCombPValues(
  obj,
  colData_in = NULL,
  d_sd_shift = NA,
  d_abs_shift = NA,
  d_paired = FALSE,
  g_sd_shift = 0,
  use = "tz",
  p_adjust_method = "BH"
)

Arguments

obj

HERONSequenceDataSet or HERONProbeDataSet

colData_in

optional column DataFrame (default: NULL => colData(obj)))

d_sd_shift

standard deviation shift for differential test

d_abs_shift

absolute shift for differential test

d_paired

run paired analysis

g_sd_shift

standard deviation shift for global test

use

use global-test ("z"), differential-test using t.test ("t"), differential-test using wilcox ("w"), or both global and differential ("tz")

p_adjust_method

method for adjusting p-values

Value

HERONSequenceDataSet/HERONProbeDataSet with the pvalue assay added

Examples

data(heffron2021_wuhan)
seq_pval_res <- calcCombPValues(heffron2021_wuhan)

Calculate epitope-level p-values

Description

Calculate epitope-level p-values

Usage

calcEpitopePValues(
  probe_pds,
  epitope_ids,
  metap_method = "wmax1",
  p_adjust_method = "BH"
)

Arguments

probe_pds

HERONProbeDataSet with the "pvalue" assay

epitope_ids

vector of epitope ids

metap_method

meta p-value method to use (see below)

p_adjust_method

what p.adjust method to use.

Details

The meta p-value methods supported by calcEpitopePValues are: min_bonf*, min*, max*, fischer/sumlog, hmp/harmonicmeanp, wilkinsons_min1/tippets, wilkinsons_min2/wmin2, wilkinsons_min3, wilkinsons_min4, wilkinsons_min5, wilkinsons_max1/wmax1, wilkinsons_max2/wmax2, and cct.

When choosing a p-value method, keep in mind that the epitope p-value should be one that requires most of the probe p-values to be small (e.g. *wmax1*) Other p-value methods such as the*cct* and the *hmp* have been shown to be more accurate with p-value that have dependencies.

Value

HERONEpitopeDataSet with "pvalue" and "padj" assays

See Also

[stats::p.adjust()] for p_adjust_parameter.

Examples

data(heffron2021_wuhan)
pval_seq_res <- calcCombPValues(heffron2021_wuhan)
pval_pr_res <- convertSequenceDSToProbeDS(pval_seq_res)
calls_res <- makeProbeCalls(pval_pr_res)
segments_res <- findEpitopeSegments(calls_res, "unique")
epval_res <- calcEpitopePValues(calls_res, segments_res)

Calculate Probe p-values using a differential paired t-test

Description

Calculate Probe p-values using a differential paired t-test

Usage

calcProbePValuesTPaired(
  probe_mat,
  colData_in,
  sd_shift = NA,
  abs_shift = NA,
  debug = FALSE
)

Arguments

probe_mat

numeric matrix or data.frame of values

colData_in

design data.frame

sd_shift

standard deviation shift to use when calculating p-values. Either sd_shift or abs_shift should be set

abs_shift

absolute shift to use when calculating p-values.

debug

print debugging information

Value

matrix of p-values on the post columns defined in the colData matrix. Attributes of the matrix are:

pars - data.frame parameters used in the paired t-test for each row (e.g. df, sd)

mapping - data.frame of mapping used for pre-post column calculation diff_mat - data.frame containing the post-pre differences for each sample (column) and probe (row)

Examples

data(heffron2021_wuhan)
colData_wu <- colData(heffron2021_wuhan)
pre_idx = which(colData_wu$visit == "pre")
## Make some samples paired
colData_post = colData_wu[colData_wu$visit == "post",]
new_ids = rownames(colData_post)[seq_len(5)]
colData_wu$ptid[pre_idx[seq_len(5)]] = new_ids
exprs <- assay(heffron2021_wuhan, "exprs")
pval_res <- calcProbePValuesTPaired(exprs, colData_wu)

Calculate Probe p-values using a differential unpaired t-test

Description

Calculate Probe p-values using a differential unpaired t-test

Usage

calcProbePValuesTUnpaired(probe_mat, colData_in, sd_shift = NA, abs_shift = NA)

Arguments

probe_mat

numeric matrix or data.frame of values

colData_in

design data.frame

sd_shift

standard deviation shift to use when calculating p-values Either sd_shift or abs_shift should be set

abs_shift

absolute shift to use when calculating p-values

Value

matrix of p-values on the post columns defined in the colData matrix

Examples

data(heffron2021_wuhan)
colData_wu <- colData(heffron2021_wuhan)
pval_res <- calcProbePValuesTUnpaired(assay(heffron2021_wuhan), colData_wu)

Calculate Probe p-values using a two-sample wilcoxon test

Description

Calculate Probe p-values using a two-sample wilcoxon test

Usage

calcProbePValuesWUnpaired(probe_mat, colData_in, exact = NULL, abs_shift = 0)

Arguments

probe_mat

numeric matrix or data.frame of values

colData_in

design data.frame

exact

a logical indicating whether an exact p-value should be computed (see wilcox.test for details)

abs_shift

absolute shift to use when calculating p-values

Value

matrix of p-values on the post columns defined in the colData matrix

Examples

data(heffron2021_wuhan)
colData_wu <- colData(heffron2021_wuhan)
pval_res <- calcProbePValuesWUnpaired(assay(heffron2021_wuhan), colData_wu)

Calculate protein-level p-values

Description

Calculate protein-level p-values

Usage

calcProteinPValues(epitope_ds, metap_method = "wmin1", p_adjust_method = "BH")

Arguments

epitope_ds

HERONEpitopeDataSet with the "pvalue" assay

metap_method

meta p-value method to use

p_adjust_method

p.adjust method to use

Details

see calcEpitopePValues for a list of meta p-value methods supported by HERON. the protein should be one that requires at least one of the epitope p-values to be small (e.g. wmax1).

Value

HERONProteinDataSet with the "pvalue" and "padj" assays

See Also

[stats::p.adjust()] for p_adjust_parameter.

[calcEpitopePValues()] for meta p-value methods

Examples

data(heffron2021_wuhan)
pval_seq_res <- calcCombPValues(heffron2021_wuhan)
pval_pr_res <- convertSequenceDSToProbeDS(pval_seq_res)
calls_res <- makeProbeCalls(pval_pr_res)
segments_res <- findEpitopeSegments(calls_res, "unique")
epval_res <- calcEpitopePValues(calls_res, segments_res)
ppval_res <- calcProteinPValues(epval_res)

Concatenate sequences together based upon their start positions. Assumes the probe sequences have an overlap.

Description

Concatenate sequences together based upon their start positions. Assumes the probe sequences have an overlap.

Usage

catSequences(positions, sequences)

Arguments

positions

start positions of probes in protein

sequences

probe sequences of probes

Value

concatenated sequence (character)

Examples

positions <- c(1,2)
sequences <- c("MSGSASFEGGVFSPYL", "SGSASFEGGVFSPYLT")
catSequences(positions, sequences)

Convert HERONSequenceDataSet to HERONProbeDataSet

Description

Convert HERONSequenceDataSet to HERONProbeDataSet

Usage

convertSequenceDSToProbeDS(seq_ds, probe_meta)

Arguments

seq_ds

a HERONSequenceDataSet object

probe_meta

optional data.frame with the PROBE_SEQUENCE, PROBE_ID columns

the probe meta data frame can be provided within the metadata()$probe_meta or as a argument to the function. The argument supersedes the metadata list.

Value

HERONProbeDataSet

Examples

data(heffron2021_wuhan)
probe_ds <- convertSequenceDSToProbeDS(heffron2021_wuhan)
probe_meta <- metadata(heffron2021_wuhan)$probe_meta
probe_ds <- convertSequenceDSToProbeDS(heffron2021_wuhan, probe_meta)

Find Blocks of consecutive probes

Description

This function will find blocks of consecutive probes within the passed probe parameter

Usage

findBlocksProbeT(
  probes,
  protein_tiling,
  proteins = getProteinLabel(probes),
  starts = getProteinStart(probes)
)

Arguments

probes

vector of probe identifiers of the format c(Prot1;1, ... Prot1;10)

protein_tiling

tiling of the associated proteins

proteins

associated proteins to probes (cache speed up)

starts

associated starts from probes (cache speed up)

Value

data.frame with the Protein, Start, Stop, and Number.Of.Probes columns

Examples

findBlocksProbeT(c("A;1", "A;2", "A;3", "B;2", "B;3", "C;10", "A;5", "A;6"))

Find consecutive probes

Description

Find consecutive probes

Usage

findBlocksT(prot_df, protein_tiling)

Arguments

prot_df

data.frame with the Protein and Starting position of the probe

protein_tiling

tiling for information for each protein

Value

data.frame with the Protein, Start, Stop, and Number.Of.Probes columns

Examples

probes = c("A;1","A;2","A;3", "A;5","A;6", "A;8")
prot_df = data.frame(
    Protein = getProteinLabel(probes),
    Pos = getProteinStart(probes)
)
findBlocksT(prot_df)

Find Epitopes from probe stats and calls.

Description

Find Epitopes from probe stats and calls.

Usage

findEpitopeSegments(
  PDS_obj,
  segment_method = "unique",
  segment_score_type = "binary",
  segment_dist_method = "hamming",
  segment_cutoff = "silhouette"
)

Arguments

PDS_obj

HERONProbeDataSet with pvalues and calls in the assay

segment_method

which epitope finding method to use (binary or zscore, applies for hclust or skater)

segment_score_type

which type of scoring to use for probes

segment_dist_method

what kind of distance score method to use

segment_cutoff

for clustering methods, what cutoff to use (either numeric value or 'silhouette')

Value

a vector of epitope identifiers or segments found

Examples

data(heffron2021_wuhan)
seq_pval_res <- calcCombPValues(heffron2021_wuhan)
pr_pval_res <- convertSequenceDSToProbeDS(seq_pval_res)
pr_calls_res <- makeProbeCalls(pr_pval_res)
segments_res <- findEpitopeSegments(pr_calls_res)

Create EpitopeID from protein, first and last probes

Description

Create EpitopeID from protein, first and last probes

Usage

getEpitopeID(protein, start, stop)

Arguments

protein

vector of proteins

start

vector of first probe protein start positions

stop

vector of last probe protein start positions

Value

vector of epitope ids

Examples

getEpitopeID("A", 1, 2)

Get probe ids from a vector of epitope ids

Description

Get probe ids from a vector of epitope ids

Usage

getEpitopeIDsToProbeIDs(epitope_ids, tiling = 1)

Arguments

epitope_ids

vector of epitope identifiers

tiling

tling of probes across proteins

Value

data.frame of epitope_to_probe mappings

Examples

getEpitopeIDsToProbeIDs(c("A_1_5","C_8_12"))

Get the vector of probes from an epitope id

Description

Get the vector of probes from an epitope id

Usage

getEpitopeProbeIDs(epitope_id, tiling = 1)

Arguments

epitope_id

EpitopeID to obtain probes from

tiling

Tiling of the probes across the protein (default 1)

Value

vector of probe_ids that are contained within the epitope

Examples

getEpitopeProbeIDs("A_1_5")

Obtain Protein Id from Epitope ID

Description

Format of EpitopeID is A_B_C, where A is the protein label B is the protein start position of the first probe in the epitope and C is the protein start position of the last probe in the epitope.

Usage

getEpitopeProtein(epitope_ids)

Arguments

epitope_ids

vector of epitope identifier character strings

Value

vector of protein labels

Examples

getEpitopeProtein("Prot1_1_5")

Obtain first probe's protein start position from Epitope ID

Description

Obtain first probe's protein start position from Epitope ID

Usage

getEpitopeStart(epitope_ids)

Arguments

epitope_ids

vector of epitope ids

Value

vector of integers indicating first probe start positions in the epitope(s)

Examples

getEpitopeStart("Prot1_1_5")

Obtain last probe's protein start position from EpitopeID

Description

Obtain last probe's protein start position from EpitopeID

Usage

getEpitopeStop(epitope_ids)

Arguments

epitope_ids

vector of epitope ids

Value

vector of integers indicating the last probe protein start position

Examples

getEpitopeStop("Prot1_1_5")

Get K of N statistics from an experiment with padj and calls

Description

Calculates the number of samples (K), the frequency of samples (F), and the percentage of samples (P) called. If the colData DataFrame contains a condition column with at least two conditions, then a K, F, and P is calculated for each condition and the results are reported as separate columns.

Usage

getKofN(obj)

Arguments

obj

HERON Dataset with a "calls" assay

Value

DataFrame with K (#calls), F (fraction calls), P (

Examples

data(heffron2021_wuhan)
seq_pval_res <- calcCombPValues(heffron2021_wuhan)
pr_pval_res <- convertSequenceDSToProbeDS(seq_pval_res)
pr_calls_res <- makeProbeCalls(pr_pval_res)
getKofN(pr_calls_res)

Get Protein Label from Probe

Description

Get Protein Label from Probe

Usage

getProteinLabel(probes)

Arguments

probes

vector of probes (i.e. c("A;1", "A;2"))

Value

vector of strings indicating the protein associated with the respective probes

Examples

getProteinLabel("A;1")
getProteinLabel("B;2")
getProteinLabel(c("A;1","B;2"))

Get the amino-acid starting position of the probe within the protein.

Description

Get the amino-acid starting position of the probe within the protein.

Usage

getProteinStart(probes)

Arguments

probes

vector of probes (i.e. c("A;1", "A;2"))

Value

starting locations of the probes with their associated proteins

Examples

getProteinStart("A;1")
getProteinStart("B;2")
getProteinStart(c("A;1","B;2"))

Get Protein Tiling

Description

Given a set of probes, estimate the tiling of the probes across the protein. Usually, you will want to calculate this on all the probes available in the dataset.

Usage

getProteinTiling(probes, return.vector = TRUE)

Arguments

probes

vector of probes (i.e. A;1, A;2)

return.vector

Return result as vector or return as data.frame

Value

For each protein, the estimating tiling (spacing) of the probes across the amino acid sequence.

Examples

getProteinTiling(c("A;1","A;2","A;3", "B;2","B;3", "C;1", "C;3"))

SARS CoV-2 Wuhan Peptide Binding Array Data

Description

A subset of data from the paper https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8245122/ publication.

Usage

data(heffron2021_wuhan)

Format

## 'heffron2021_wuhan' A HERONSequenceDataSet with and "exprs" assay DataFrame with 1945 rows and 60 columns. Each column is a pre-processed binding signal from a serum sample peptide array set for the SARS-CoV-2. The matrix is a subset of the full matrix and contains sequences from the membrane, envelope, surface (spike), and nucleocapsid proteins.

The metadata()$probe_meta is a data frame with 1945 rows and 6 columns. The columns are POSITION - starting position of probe within protein, PROBE_SEQUENCE - amino acid sequence of probe, SEQ_ID - protein identifier SEQ_NAME - name of protein, PROBE_ID - combination of protein identifier and starting position, e.g. prot1;5.

The colData() is a DataFrame with 60 rows and 2 columns. The columns are SampleName - name of the sample, visit - either pre or post, ptid - subject id, and condition - all COVID

Value

HERONSequenceDataSet

Source

<https://github.com/Ong-Research/UW_Adult_Covid-19>


HERONEpitopeDataSet object and constructors

Description

HERONEpitopeDataSet is a subclass of SummarizedExperiment used to hold assay information on the epitope-level

Usage

HERONEpitopeDataSet(pvalue, ...)

Arguments

pvalue

calculate epitope p-value matrix

...

arguments provided to SummarizedExperiment, including metadata

Value

HERONEpitopeDataSet object

Examples

pval <- matrix(runif(100),ncol=4)
HERONEpitopeDataSet(pvalue = pval)

HERONProbeDataSet object and constructors

Description

HERONProbeDataSet is a subclass of RangedSummarizedExperiment used to hold assay information on the probe level

Usage

HERONProbeDataSet(...)

Arguments

...

arguments provided to SummarizedExperiment, including metadata.

Value

HERONProbeDataSet object

Examples

pds <- HERONProbeDataSet()

HERONProteinDataSet object and constructors

Description

HERONProteinDataSet is a subclass of SummarizedExperiment used to hold assay information on the protein-level

Usage

HERONProteinDataSet(pvalue, ...)

Arguments

pvalue

calculated protein p-value matrix

...

arguments provided to SummarizedExperiment, including metadata

Value

HERONProteinDataSet object

Examples

pval <- matrix(runif(100), ncol=4)
HERONProteinDataSet(pvalue = pval)

HERONSequenceDataSet object and constructors

Description

HERONSequenceDataSet is a subclass of SummarizedExperiment, used to store the expression values, intermediate calculations, and results of a differential binding code on the seeuqnce-level.

Usage

HERONSequenceDataSet(exprs, ...)

Arguments

exprs

binding values with rows as sequences and columns as samples

...

arguments provided to SummarizedExperiment, including metadata

metadata can contain a probe DataFrame, that maps sequences (column PROBE_SEQUENCE) to probe identifiers ( column PROBE_ID)

Value

HERONSequenceDataSet object

Examples

exprs <- matrix(seq_len(100),ncol=4)
colnames(exprs) <- c("C1", "C2", "C3", "C4")
sds <- HERONSequenceDataSet(exprs = exprs)

log2 transform the "exprs" assay

Description

log2 transform the "exprs" assay

Usage

log2Transform(se)

Arguments

se

SummarizedExperiment with "exprs" assay

Value

SummarizedExperiment with "exprs" assay log2 transformed

Examples

data(heffron2021_wuhan)
assay(heffron2021_wuhan, "exprs") <- 2^assay(heffron2021_wuhan, "exprs")
res <- log2Transform(heffron2021_wuhan)

Make Epitope Calls

Description

Make Epitope Calls

Usage

makeEpitopeCalls(epi_ds, padj_cutoff = 0.05, one_hit_filter = TRUE)

Arguments

epi_ds

HERONEpitopeDataSet with pvalue assay

padj_cutoff

p-value cutoff to use

one_hit_filter

filter one hit epitopes?

Value

HERONEpitopeDataSet with calls assay added

Examples

data(heffron2021_wuhan)
seq_pval_res <- calcCombPValues(heffron2021_wuhan)
pr_pval_res <- convertSequenceDSToProbeDS(seq_pval_res)
pr_calls_res <- makeProbeCalls(pr_pval_res)
epi_segments_uniq_res <- findEpitopeSegments(
    PDS_obj = pr_calls_res,
    segment_method = "unique"
)
epi_padj_uniq <- calcEpitopePValues(
    probe_pds = pr_calls_res,
    epitope_ids = epi_segments_uniq_res,
    metap_method = "wilkinsons_max1"
)
makeEpitopeCalls(epi_padj_uniq)

Making Probe-level Calls

Description

makeProbeCalls returns call information on a HERONProbeDataSet using the "padj" assay

Usage

makeProbeCalls(pds, padj_cutoff = 0.05, one_hit_filter = TRUE)

Arguments

pds

HERONProbeDataSet with the "padj" assay

padj_cutoff

cutoff to use

one_hit_filter

filter out one-hit probes?

Value

HERONProbeDataSet with the "calls" assay added

Examples

data(heffron2021_wuhan)
pval_seq_res <- calcCombPValues(heffron2021_wuhan)
pval_probe_res <- convertSequenceDSToProbeDS(pval_seq_res)
calls_res <- makeProbeCalls(pval_probe_res)

Make Protein-level Calls

Description

Make Protein-level Calls

Usage

makeProteinCalls(prot_ds, padj_cutoff = 0.05, one_hit_filter = FALSE)

Arguments

prot_ds

HERONProteinDataSet with the "padj" assay

padj_cutoff

cutoff to use

one_hit_filter

use the one-hit filter?

Value

HERONProteinDataSet with the "calls" assay added

Examples

data(heffron2021_wuhan)
seq_pval_res <- calcCombPValues(heffron2021_wuhan)
pr_pval_res <- convertSequenceDSToProbeDS(seq_pval_res)
pr_calls_res <- makeProbeCalls(pr_pval_res)
epi_segments_uniq_res <- findEpitopeSegments(
    PDS_obj = pr_calls_res,
    segment_method = "unique"
)
epi_padj_uniq <- calcEpitopePValues(
    probe_pds = pr_calls_res,
    epitope_ids = epi_segments_uniq_res,
    metap_method = "wilkinsons_max1"
)
prot_padj_uniq <- calcProteinPValues(
    epitope_ds = epi_padj_uniq,
    metap_method = "tippetts"
)
prot_calls <- makeProteinCalls(prot_padj_uniq)

Cap vector at minimum/maximum values

Description

Cap vector at minimum/maximum values

Usage

min_max(val, min.value, max.value)

Arguments

val

vector of values to cap

min.value

minimum value

max.value

maximum value

Value

vector of capped values

Examples

min_max(10, 1, 5)

Find One-hit epitopes

Description

Find One-hit epitopes

Usage

oneHitEpitopes(sample_epitopes)

Arguments

sample_epitopes

logical epitope matrix from makeCalls

Value

vector of one-hit, one-probe epitopes

Examples

hit_mat = data.frame(
row.names = c("A_1_1","A_2_2","A_3_3","A_4_4"),
sample1 = c(TRUE, FALSE, FALSE, TRUE),
sample2 = c(TRUE, TRUE, FALSE, FALSE),
sample3 = c(TRUE, TRUE, FALSE, FALSE)
)
oneHitEpitopes(hit_mat)

Find one hit probes

Description

Find one hit probes

Usage

oneHitProbes(sample_probes)

Arguments

sample_probes

logical probe matrix from makeCalls

Value

vector of probes that are one-hits

Examples

hit_mat <- data.frame(
row.names = c("A;1","A;2","A;3","A;4"),
sample1 = c(TRUE, FALSE, FALSE, TRUE),
sample2 = c(TRUE, TRUE, FALSE, FALSE),
sample3 = c(TRUE, TRUE, FALSE, FALSE)
)
oneHitProbes(hit_mat)

Indicate which epitopes are just one probe.

Description

Indicate which epitopes are just one probe.

Usage

oneProbeEpitopes(epitope_ids)

Arguments

epitope_ids

vector of epitope ids

Value

vector of logical indicating epitopes that are one probe

Examples

oneProbeEpitopes(c("A_1_1", "B_1_1","C_1_2"))

Find probe hits with a consecutive probe or another sample

Description

Find probe hits with a consecutive probe or another sample

Usage

probeHitSupported(hit_mat)

Arguments

hit_mat

matrix of logical values that indicate a hit with a TRUE value

Value

matrix of logical values indicate that the TRUE hit is supported by a consecutive probe hit in the sample sample or the within another sample


Convert p-value matrix to a z-score matrix

Description

Convert p-value matrix to a z-score matrix

Usage

pvalue_to_zscore(mat.in, one.sided = TRUE, log.p = FALSE, inf.zscore = 16)

Arguments

mat.in

matrix of p-values

one.sided

p-values one-sided

log.p

are p-values log transformed?

inf.zscore

infinite z-scores are capped to this value

Value

matrix of z-scores

Examples

mat <- matrix(runif(100), nrow=10)
rownames(mat) <- paste0("A;",seq_len(nrow(mat)))
pvalue_to_zscore(mat)

Normalize the exprs assay using quantile normalization

Description

Normalize the exprs assay using quantile normalization

Usage

quantileNormalize(se)

Arguments

se

SummarizedExperiment with exprs assay

Value

SummarizedExperiment with exprs assay normalized

Examples

data(heffron2021_wuhan)
seq_ds_qn <- quantileNormalize(heffron2021_wuhan)

Smooth probes across protein tiling

Description

Smooth probes across protein tiling

Usage

smoothProbeDS(probe_ds, w = 2, eps = 1e-06)

Arguments

probe_ds

HERONProbeDataSet to smooth

w

smoothing width, probes +/- w/2 before and after are used

eps

error tolerance

Value

HERONProbeDataSet with smoothed data in exprs object

Examples

data(heffron2021_wuhan)
probe_ds <- convertSequenceDSToProbeDS(heffron2021_wuhan)
smoothed_ds <- smoothProbeDS(probe_ds)