Title: | Count model based differential expression and normalization on GeoMx RNA data |
---|---|
Description: | A series of statistical models using count generating distributions for background modelling, feature and sample QC, normalization and differential expression analysis on GeoMx RNA data. The application of these methods are demonstrated by example data analysis vignette. |
Authors: | Nicole Ortogero [cre], Lei Yang [aut], Zhi Yang [aut] |
Maintainer: | Nicole Ortogero <[email protected]> |
License: | MIT + file LICENSE |
Version: | 1.13.0 |
Built: | 2024-12-29 07:11:57 UTC |
Source: | https://github.com/bioc/GeoDiff |
Generate Generate aggregated counts of probes for the same target, based on their score test results or correlation
Generate Generate aggregated counts of probes for the same target, based on their score test results or correlation
aggreprobe(object, ...) ## S4 method for signature 'NanoStringGeoMxSet' aggreprobe( object, split, use = c("score", "cor", "both"), corcutoff = 0.85, ... ) ## S4 method for signature 'matrix' aggreprobe( object, probenames, featurenames, negmod, use = c("score", "cor", "both"), corcutoff = 0.85, ... )
aggreprobe(object, ...) ## S4 method for signature 'NanoStringGeoMxSet' aggreprobe( object, split, use = c("score", "cor", "both"), corcutoff = 0.85, ... ) ## S4 method for signature 'matrix' aggreprobe( object, probenames, featurenames, negmod, use = c("score", "cor", "both"), corcutoff = 0.85, ... )
object |
matrix of probes |
... |
additional argument list that might be used |
split |
indicator variable on whether it is for multiple slides (Yes, TRUE; No, FALSE) |
use |
the method to determine outliers including score, cor, and both |
corcutoff |
the cutoff value for correlation |
probenames |
vector of names of probe |
featurenames |
vector of names of features each probe corresponding to |
negmod |
Poisson Background model object for negative probes |
remain, the list of remaining probes of targets
probenum, numerical vector of probe numbers of targets
featuremat, the matrix of features
remain, the list of remaining probes of targets
probenum, numerical vector of probe numbers of targets
featuremat, the matrix of features
data("demoData") demoData <- aggreprobe(demoData, use = "cor")
data("demoData") demoData <- aggreprobe(demoData, use = "cor")
Testing for features above the background using Poisson background model as reference
Testing for features above the background using Poisson background model as reference
BGScoreTest(object, ...) ## S4 method for signature 'NanoStringGeoMxSet' BGScoreTest( object, split = FALSE, adj = 1, removeoutlier = FALSE, useprior = FALSE ) ## S4 method for signature 'matrix' BGScoreTest( object, BGmod, adj = 1, probenum, removeoutlier = FALSE, useprior = FALSE )
BGScoreTest(object, ...) ## S4 method for signature 'NanoStringGeoMxSet' BGScoreTest( object, split = FALSE, adj = 1, removeoutlier = FALSE, useprior = FALSE ) ## S4 method for signature 'matrix' BGScoreTest( object, BGmod, adj = 1, probenum, removeoutlier = FALSE, useprior = FALSE )
object |
count matrix with features in rows and samples in columns |
... |
additional argument list that might be used |
split |
indicator variable on whether it is for multiple slides (Yes, TRUE; No, FALSE) |
adj |
adjustment factor for the number of feature in each gene, default =1 i.e. each target only consists of one probe |
removeoutlier |
whether to remove outlier |
useprior |
whether to use the prior that the expression level of background follows a Beta distribution, leading to a more conservative test |
BGmod |
a list of sizefact, sizefact, and countmat |
probenum |
a vector of numbers of probes in each gene |
a valid GeoMx S4 object including the following items
pvalues - Background score test pvalues, in featureData
scores - Background score test statistics, in featureData
if split is TRUE, a valid GeoMx S4 object including the following items
pvalues_XX - Background score test pvalues vector, column name (denoted as XX) the same as slide names, in featureData
scores_XX - Background score test statistics vector, column name (denoted as XX) the same as slide names, in featureData
a list of following items
pvalues - Background score test pvalues
scores - Background score test statistics
data(demoData) demoData <- fitPoisBG(demoData, size_scale = "sum") demoData <- aggreprobe(demoData, use = "cor") demoData <- BGScoreTest(demoData, adj = 1, useprior = FALSE) demoData <- fitPoisBG(demoData, size_scale = "sum", groupvar = "slide name") demoData <- BGScoreTest(demoData, adj = 1, useprior = TRUE, split = TRUE)
data(demoData) demoData <- fitPoisBG(demoData, size_scale = "sum") demoData <- aggreprobe(demoData, use = "cor") demoData <- BGScoreTest(demoData, adj = 1, useprior = FALSE) demoData <- fitPoisBG(demoData, size_scale = "sum", groupvar = "slide name") demoData <- BGScoreTest(demoData, adj = 1, useprior = TRUE, split = TRUE)
Testing for features above the background using Poisson background model as reference, multiple slides case
BGScoreTest_sp(object, ...) ## S4 method for signature 'matrix' BGScoreTest_sp( object, BGmod, adj = 1, probenum, removeoutlier = FALSE, useprior = FALSE )
BGScoreTest_sp(object, ...) ## S4 method for signature 'matrix' BGScoreTest_sp( object, BGmod, adj = 1, probenum, removeoutlier = FALSE, useprior = FALSE )
object |
count matrix with features in rows and samples in columns |
... |
additional argument list that might be used |
BGmod |
fitted background model, multiple slides case |
adj |
adjustment factor for the number of probes in each feature, default =1 i.e. each target only consists of one probe |
probenum |
a vector of numbers of probes in each gene |
removeoutlier |
whether to remove outlier |
useprior |
whether to use the prior that the expression level of background follows the Beta distribution, leading to a more conservative test |
a list of following items
pvalues - Background score test pvalues matrix, columns the same as slide names
scores_sp - Background score test statistics matrix, columns the same as slide names
Generate list of Wald test inference results including parameter estimation and p value
coefNBth(object, ...) ## S4 method for signature 'list' coefNBth(object, fullpara = FALSE)
coefNBth(object, ...) ## S4 method for signature 'list' coefNBth(object, fullpara = FALSE)
object |
DE model, output by fitNBthDE or fitNBthmDE |
... |
additional argument list that might be used |
fullpara |
whether to generate results on all parameters |
estimate, coefficients estimate
wald_stat, Wald test statistics
p_value, p value of Wald test
se, standard error
data(NBthmDEmod2) coeff <- coefNBth(NBthmDEmod2)
data(NBthmDEmod2) coeff <- coefNBth(NBthmDEmod2)
Generate list of Wald test inference results including contrast estimation and p value
contrastNBth(object, ...) ## S4 method for signature 'list' contrastNBth( object, test = c("two-sided", ">", "<"), method = diag(1, ncol(object$X)), baseline = rep(0, ncol(method)) )
contrastNBth(object, ...) ## S4 method for signature 'list' contrastNBth( object, test = c("two-sided", ">", "<"), method = diag(1, ncol(object$X)), baseline = rep(0, ncol(method)) )
object |
DE model, output by fitNBthDE or fitNBthmDE |
... |
additional argument list that might be used |
test |
type of statistical test, choose from c("two-sided", ">", "<") |
method |
contrasts methods, only matrix of contrast vector is allowed for now, default=diag(1,ncol(object$X)), i.e. testing the regression coefficients |
baseline |
testing baseline, default=0. |
estimate, contrasts estimate
wald_stat, Wald test statistics
p_value, p value of Wald test
se, standard error
data(NBthmDEmod2) coeff <- contrastNBth(NBthmDEmod2)
data(NBthmDEmod2) coeff <- contrastNBth(NBthmDEmod2)
A demo dataset contains 88 ROIs and 8707 features
data(demoData)
data(demoData)
A NanoStringGeoMxSet S4 object with 8707 features and 88 samples
data(demoData)
data(demoData)
Generate DE table using the inference list generated by coefNBth or contrastNBth
DENBth(object, ...) ## S4 method for signature 'list' DENBth(object, variable, NAto1 = TRUE, padj = TRUE, padj_method = "BH")
DENBth(object, ...) ## S4 method for signature 'list' DENBth(object, variable, NAto1 = TRUE, padj = TRUE, padj_method = "BH")
object |
inference list from coefNBth or contrastNBth |
... |
additional argument list that might be used |
variable |
needed to construct |
NAto1 |
whether to replace NA in pvalue by 1 |
padj |
whether to adjust p value |
padj_method |
p value adjustment method, default="BH" |
DEtab, DE table
data(NBthmDEmod2) coeff <- coefNBth(NBthmDEmod2) DEtab <- DENBth(coeff, variable = "regiontubule")
data(NBthmDEmod2) coeff <- coefNBth(NBthmDEmod2) DEtab <- DENBth(coeff, variable = "regiontubule")
Perform diagnosis on Poisson background model
Perform diagnosis on Poisson background model
diagPoisBG(object, ...) ## S4 method for signature 'NanoStringGeoMxSet' diagPoisBG( object, split = FALSE, padj = FALSE, padj_method = "BH", cutoff = 1e-06, generate_ppplot = TRUE ) ## S4 method for signature 'list' diagPoisBG( object, padj = FALSE, padj_method = "BH", cutoff = 1e-06, generate_ppplot = TRUE )
diagPoisBG(object, ...) ## S4 method for signature 'NanoStringGeoMxSet' diagPoisBG( object, split = FALSE, padj = FALSE, padj_method = "BH", cutoff = 1e-06, generate_ppplot = TRUE ) ## S4 method for signature 'list' diagPoisBG( object, padj = FALSE, padj_method = "BH", cutoff = 1e-06, generate_ppplot = TRUE )
object |
a list of sizefact, featfact, countmat, or id (if it is for mutliple slides) |
... |
additional argument list that might be used |
split |
indicator variable on whether it is for multiple slides (Yes, TRUE; No, FALSE) |
padj |
whether to adjust p value for outlier detection, default =TRUE |
padj_method |
p value adjustment method, default ="BH" |
cutoff |
p value(or adjusted p value) cutoff to determine outliers |
generate_ppplot |
whether to generate ppplot, default =TRUE |
a valid S4 object
lowtail - A matrix of lower tail probabilty, in assay slot
uptail - A matrix of upper tail probability, in assay slot
disper (or disper_sp if non single-valued groupvar is provided) - dispersion parameter in experimenetData
low_outlier - A matrix to indicate lower outliers (0:False, 1:True) in assay slot
upper_outlier - A matrix to indicate upper outliers (0:False, 1:True) in assay slot
a list of following items
lowtail - A matrix of lower tail probabilty
uptail - A matrix of upper tail probability
disper - dispersion parameter
outlier - A list of coodinates of lower and upper outliers
data(demoData) demoData <- fitPoisBG(demoData, size_scale = "sum") demoData <- diagPoisBG(demoData) Biobase::notes(demoData)$disper demoData <- fitPoisBG(demoData, groupvar = "slide name") demoData <- diagPoisBG(demoData, split = TRUE) Biobase::notes(demoData)$disper_sp
data(demoData) demoData <- fitPoisBG(demoData, size_scale = "sum") demoData <- diagPoisBG(demoData) Biobase::notes(demoData)$disper demoData <- fitPoisBG(demoData, groupvar = "slide name") demoData <- diagPoisBG(demoData, split = TRUE) Biobase::notes(demoData)$disper_sp
Estimate the signal size factor for features above the background
Estimate the signal size factor for features above the background
fitNBth(object, ...) ## S4 method for signature 'NanoStringGeoMxSet' fitNBth( object, split = TRUE, features_high = NULL, sizefact_BG = NULL, sizefact_start = sizefact_BG, size_scale = c("sum", "first"), threshold_start = NULL, threshold_fix = FALSE, tol = 1e-07, iterations = 8, start_para = c(threshold_start, 0.5), lower_sizefact = 0, lower_threshold = threshold_start/5 ) ## S4 method for signature 'matrix' fitNBth( object, features_high, probenum, sizefact_BG, sizefact_start = sizefact_BG, size_scale = c("sum", "first"), threshold_start, threshold_fix = FALSE, tol = 1e-07, iterations = 8, start_para = c(threshold_start, 1), lower_sizefact = 0, lower_threshold = threshold_start/5 )
fitNBth(object, ...) ## S4 method for signature 'NanoStringGeoMxSet' fitNBth( object, split = TRUE, features_high = NULL, sizefact_BG = NULL, sizefact_start = sizefact_BG, size_scale = c("sum", "first"), threshold_start = NULL, threshold_fix = FALSE, tol = 1e-07, iterations = 8, start_para = c(threshold_start, 0.5), lower_sizefact = 0, lower_threshold = threshold_start/5 ) ## S4 method for signature 'matrix' fitNBth( object, features_high, probenum, sizefact_BG, sizefact_start = sizefact_BG, size_scale = c("sum", "first"), threshold_start, threshold_fix = FALSE, tol = 1e-07, iterations = 8, start_para = c(threshold_start, 1), lower_sizefact = 0, lower_threshold = threshold_start/5 )
object |
count matrix with features in rows and samples in columns |
... |
additional argument list that might be used |
split |
indicator variable on whether it is for multiple slides (Yes, TRUE; No, FALSE) |
features_high |
subset of features which are well above the background |
sizefact_BG |
size factors for the background |
sizefact_start |
initial value for size factors |
size_scale |
method to scale the sizefact, sum(sizefact)=1 when size_scale="sum", sizefact[1]=1 when size_scale="first" |
threshold_start |
initial value for threshold |
threshold_fix |
whether to fix the threshold, default=FALSE |
tol |
tolerance to determine convergence, default=1e-3 |
iterations |
maximum iterations to be run, default=5 |
start_para |
starting values for parameter estimation, default=c(threshold_start, 1) |
lower_sizefact |
lower limit for sizefact, default=0 |
lower_threshold |
lower limit for threshold |
probenum |
a vector of numbers of probes in each gene |
a valid GeoMx S4 object
para0 = "NA", in experimentData
para, estimated parameters, "signal" "r" in rows and features in columns, in featureData
sizefact, estimated size factor, in phenoData
preci1 = "NA", in experimentData
conv0 = "NA", in experimentData
conv = "NA", in experimentData
Im = "NA", in experimentData
features_high, a vector of indicators, in featureData (0: No; 1: Yes; NA: not included in features_high)
features_all = "NA", in experimentData
threshold, estimated threshold, when threshold_fix, equals to threshold_start, in experimentData
a list of following items, some items are place holders = NA
para0 = NA,
para, estimated parameters, "signal" "r" in rows and features in columns
sizefact, estimated size factor
preci1 = NA
conv0 = NA
conv = NA
Im = NA
features_high = features_high
features_all = NA
threshold, estimated threshold, when threshold_fix, equals to threshold_start
library(Biobase) library(dplyr) data(demoData) demoData <- fitPoisBG(demoData, size_scale = "sum") demoData <- aggreprobe(demoData, use = "cor") demoData <- BGScoreTest(demoData) thmean <- 1 * mean(fData(demoData)$featfact, na.rm = TRUE) demo_pos <- demoData[which(!fData(demoData)$CodeClass == "Negative"), ] demo_neg <- demoData[which(fData(demoData)$CodeClass == "Negative"), ] sc1_scores <- fData(demo_pos)[, "scores"] names(sc1_scores) <- fData(demo_pos)[, "TargetName"] features_high <- ((sc1_scores > quantile(sc1_scores, probs = 0.4)) & (sc1_scores < quantile(sc1_scores, probs = 0.95))) |> which() |> names() set.seed(123) features_high <- sample(features_high, 100) demoData <- fitNBth(demoData, features_high = features_high, sizefact_BG = demo_neg$sizefact, threshold_start = thmean, iterations = 5, start_para = c(200, 1), lower_sizefact = 0, lower_threshold = 100, tol = 1e-8)
library(Biobase) library(dplyr) data(demoData) demoData <- fitPoisBG(demoData, size_scale = "sum") demoData <- aggreprobe(demoData, use = "cor") demoData <- BGScoreTest(demoData) thmean <- 1 * mean(fData(demoData)$featfact, na.rm = TRUE) demo_pos <- demoData[which(!fData(demoData)$CodeClass == "Negative"), ] demo_neg <- demoData[which(fData(demoData)$CodeClass == "Negative"), ] sc1_scores <- fData(demo_pos)[, "scores"] names(sc1_scores) <- fData(demo_pos)[, "TargetName"] features_high <- ((sc1_scores > quantile(sc1_scores, probs = 0.4)) & (sc1_scores < quantile(sc1_scores, probs = 0.95))) |> which() |> names() set.seed(123) features_high <- sample(features_high, 100) demoData <- fitNBth(demoData, features_high = features_high, sizefact_BG = demo_neg$sizefact, threshold_start = thmean, iterations = 5, start_para = c(200, 1), lower_sizefact = 0, lower_threshold = 100, tol = 1e-8)
Negative Binomial threshold model for differential expression analysis
Negative Binomial threshold model for differential expression analysis
fitNBthDE(object, ...) ## S4 method for signature 'NanoStringGeoMxSet' fitNBthDE( object, form, split, ROIs_high = NULL, features_high = NULL, features_all = NULL, sizefact_start = NULL, sizefact_BG = NULL, threshold_mean = NULL, preci2 = 10000, lower_threshold = 0.01, prior_type = c("contrast", "equal"), sizefactrec = TRUE, size_scale = c("sum", "first"), sizescalebythreshold = FALSE, iterations = 2, covrob = FALSE, preci1con = 1/25, cutoff = 10, confac = 1 ) ## S4 method for signature 'matrix' fitNBthDE( form, annot, object, probenum, features_high, features_all, sizefact_start, sizefact_BG, threshold_mean, preci2 = 10000, lower_threshold = 0.01, prior_type = c("contrast", "equal"), sizefactrec = TRUE, size_scale = c("sum", "first"), sizescalebythreshold = FALSE, iterations = 2, covrob = FALSE, preci1con = 1/25, cutoff = 10, confac = 1 )
fitNBthDE(object, ...) ## S4 method for signature 'NanoStringGeoMxSet' fitNBthDE( object, form, split, ROIs_high = NULL, features_high = NULL, features_all = NULL, sizefact_start = NULL, sizefact_BG = NULL, threshold_mean = NULL, preci2 = 10000, lower_threshold = 0.01, prior_type = c("contrast", "equal"), sizefactrec = TRUE, size_scale = c("sum", "first"), sizescalebythreshold = FALSE, iterations = 2, covrob = FALSE, preci1con = 1/25, cutoff = 10, confac = 1 ) ## S4 method for signature 'matrix' fitNBthDE( form, annot, object, probenum, features_high, features_all, sizefact_start, sizefact_BG, threshold_mean, preci2 = 10000, lower_threshold = 0.01, prior_type = c("contrast", "equal"), sizefactrec = TRUE, size_scale = c("sum", "first"), sizescalebythreshold = FALSE, iterations = 2, covrob = FALSE, preci1con = 1/25, cutoff = 10, confac = 1 )
object |
count matrix with features in rows and samples in columns |
... |
additional argument list that might be used |
form |
model formula |
split |
indicator variable on whether it is for multiple slides (Yes, TRUE; No, FALSE) |
ROIs_high |
ROIs with high expressions defined based on featfact and featfact |
features_high |
subset of features which are well above the background |
features_all |
full list of features |
sizefact_start |
initial value for size factors |
sizefact_BG |
size factor for background |
threshold_mean |
average threshold level |
preci2 |
precision for the background, default=10000 |
lower_threshold |
lower limit for the threshold, default=0.01 |
prior_type |
empirical bayes prior type, choose from c("contrast", "equal") |
sizefactrec |
whether to recalculate sizefact, default=TRUE |
size_scale |
method to scale the sizefact, sum(sizefact)=1 when size_scale="sum", sizefact[1]=1 when size_scale="first" |
sizescalebythreshold |
XXXX, default = FALSE |
iterations |
how many iterations need to run to get final results, default=2, the first iteration apply the model only on features_high and construct the prior then refit the model using this prior for all genes. |
covrob |
whether to use robust covariance in calculating covariance. default=FALSE |
preci1con |
The user input constant term in specifying precision matrix 1, default=1/25 |
cutoff |
term in calculating precision matrix 1, default=10 |
confac |
The user input factor for contrast in precision matrix 1, default=1 |
annot |
annotations files with variables in the formula |
probenum |
a vector of numbers of probes in each gene, default = rep(1, NROW(object)) |
a list of
X, design matrix
para0, estimated parameters for the first iteration, including regression coefficients, r and threshold in rows and features in columns
para, estimated parameters, including regression coefficients, r and threshold in rows and features in columns
sizefact, estimated sizefact
sizefact0, estimated sizefact in iter=1
preci1, precision matrix for regression coefficients estimated in iter=1
Im0, Information matrix of parameters in iter=1
Im, Information matrix of parameters in iter=2
conv0, vector of convergence for iter=1, 0 converged, 1 not converged
conv, vector of convergence for iter=2, 0 converged, 1 not converged
features_high, same as the input features_high
features_all, same as the input features_all
a list of
X, design matrix
para0, estimated parameters for the first iteration, including regression coefficients, r and threshold in rows and features in columns
para, estimated parameters, including regression coefficients, r and threshold in rows and features in columns
sizefact, estimated sizefact
sizefact0, estimated sizefact in iter=1
preci1, precision matrix for regression coefficients estimated in iter=1
Im0, Information matrix of parameters in iter=1
Im, Information matrix of parameters in iter=2
conv0, vector of convergence for iter=1, 0 converged, 1 not converged
conv, vector of convergence for iter=2, 0 converged, 1 not converged
features_high, same as the input features_high
features_all, same as the input features_all
library(Biobase) library(dplyr) data(demoData) demoData <- demoData[, c(1:5, 33:37)] demoData <- fitPoisBG(demoData, size_scale = "sum") demoData <- aggreprobe(demoData, use = "cor") demoData <- BGScoreTest(demoData) demoData$slidename <- substr(demoData[["slide name"]], 12, 17) thmean <- 1 * mean(fData(demoData)$featfact, na.rm = TRUE) demo_pos <- demoData[which(!fData(demoData)$CodeClass == "Negative"), ] demo_neg <- demoData[which(fData(demoData)$CodeClass == "Negative"), ] sc1_scores <- fData(demo_pos)[, "scores"] names(sc1_scores) <- fData(demo_pos)[, "TargetName"] features_high <- ((sc1_scores > quantile(sc1_scores, probs = 0.4)) & (sc1_scores < quantile(sc1_scores, probs = 0.95))) |> which() |> names() set.seed(123) demoData <- fitNBth(demoData, features_high = features_high, sizefact_BG = demo_neg$sizefact, threshold_start = thmean, iterations = 5, start_para = c(200, 1), lower_sizefact = 0, lower_threshold = 100, tol = 1e-8) ROIs_high <- sampleNames(demoData)[which(demoData$sizefact_fitNBth * thmean > 2)] features_all <- rownames(demo_pos) pData(demoData)$group <- c(rep(1, 5), rep(2, 5)) NBthDEmod1 <- fitNBthDE( form = ~group, split = FALSE, object = demoData, ROIs_high = ROIs_high, features_high = features_high, features_all = features_all, sizefact_start = demoData[, ROIs_high][["sizefact_fitNBth"]], sizefact_BG = demoData[, ROIs_high][["sizefact"]], preci2 = 10000, prior_type = "contrast", covrob = FALSE, preci1con = 1/25, sizescalebythreshold = TRUE )
library(Biobase) library(dplyr) data(demoData) demoData <- demoData[, c(1:5, 33:37)] demoData <- fitPoisBG(demoData, size_scale = "sum") demoData <- aggreprobe(demoData, use = "cor") demoData <- BGScoreTest(demoData) demoData$slidename <- substr(demoData[["slide name"]], 12, 17) thmean <- 1 * mean(fData(demoData)$featfact, na.rm = TRUE) demo_pos <- demoData[which(!fData(demoData)$CodeClass == "Negative"), ] demo_neg <- demoData[which(fData(demoData)$CodeClass == "Negative"), ] sc1_scores <- fData(demo_pos)[, "scores"] names(sc1_scores) <- fData(demo_pos)[, "TargetName"] features_high <- ((sc1_scores > quantile(sc1_scores, probs = 0.4)) & (sc1_scores < quantile(sc1_scores, probs = 0.95))) |> which() |> names() set.seed(123) demoData <- fitNBth(demoData, features_high = features_high, sizefact_BG = demo_neg$sizefact, threshold_start = thmean, iterations = 5, start_para = c(200, 1), lower_sizefact = 0, lower_threshold = 100, tol = 1e-8) ROIs_high <- sampleNames(demoData)[which(demoData$sizefact_fitNBth * thmean > 2)] features_all <- rownames(demo_pos) pData(demoData)$group <- c(rep(1, 5), rep(2, 5)) NBthDEmod1 <- fitNBthDE( form = ~group, split = FALSE, object = demoData, ROIs_high = ROIs_high, features_high = features_high, features_all = features_all, sizefact_start = demoData[, ROIs_high][["sizefact_fitNBth"]], sizefact_BG = demoData[, ROIs_high][["sizefact"]], preci2 = 10000, prior_type = "contrast", covrob = FALSE, preci1con = 1/25, sizescalebythreshold = TRUE )
Negative Binomial threshold mixed model for differential expression analysis
Negative Binomial threshold mixed model for differential expression analysis
fitNBthmDE(object, ...) ## S4 method for signature 'NanoStringGeoMxSet' fitNBthmDE( object, form, split, ROIs_high = NULL, features_all = NULL, sizefact = NULL, sizefact_BG = NULL, preci1, threshold_mean = NULL, preci2 = 10000, sizescalebythreshold = TRUE, controlRandom = list() ) ## S4 method for signature 'matrix' fitNBthmDE( form, annot, object, probenum = rep(1, NROW(object)), features_all, sizefact, sizefact_BG, preci1, threshold_mean = NULL, preci2 = 10000, sizescalebythreshold = TRUE, controlRandom = list() )
fitNBthmDE(object, ...) ## S4 method for signature 'NanoStringGeoMxSet' fitNBthmDE( object, form, split, ROIs_high = NULL, features_all = NULL, sizefact = NULL, sizefact_BG = NULL, preci1, threshold_mean = NULL, preci2 = 10000, sizescalebythreshold = TRUE, controlRandom = list() ) ## S4 method for signature 'matrix' fitNBthmDE( form, annot, object, probenum = rep(1, NROW(object)), features_all, sizefact, sizefact_BG, preci1, threshold_mean = NULL, preci2 = 10000, sizescalebythreshold = TRUE, controlRandom = list() )
object |
count matrix with features in rows and samples in columns |
... |
additional argument list that might be used |
form |
model formula |
split |
indicator variable on whether it is for multiple slides (Yes, TRUE; No, FALSE) |
ROIs_high |
ROIs with high expressions defined based on featfact and featfact |
features_all |
vector of all features to be run |
sizefact |
size factor |
sizefact_BG |
size factor for background |
preci1 |
precision matrix for regression coefficients |
threshold_mean |
average background level |
preci2 |
precision for the background, default=10000 |
sizescalebythreshold |
whether to scale the size factor, default=TRUE |
controlRandom |
list of random effect control parameters |
annot |
annotations files with variables in the formula |
probenum |
a vector of numbers of probes in each gene, default = rep(1, NROW(object)) |
a list with parameter estimation #'
X, design matrix for fixed effect
Z, design matrix for random effect
rt, random effect terms
para0, =NA
para, estimated parameters, including regression coefficients, r and threshold in rows and features in columns
sizefact, same as input sizefact
sizefact0, NA
preci1, input precision matrix for regression coefficients
Im0, NA
Im, Information matrix of parameters
conv0, NA
conv, vector of convergence, 0 converged, 1 not converged
features_high, NA
features_all, same as the input features_all
theta, list of estimated random effect parameters
MAP random effect
a list with parameter estimation #'
X, design matrix for fixed effect
Z, design matrix for random effect
rt, random effect terms
para0, =NA
para, estimated parameters, including regression coefficients, r and threshold in rows and features in columns
sizefact, same as input sizefact
sizefact0, NA
preci1, input precision matrix for regression coefficients
Im0, NA
Im, Information matrix of parameters
conv0, NA
conv, vector of convergence, 0 converged, 1 not converged
features_high, NA
features_all, same as the input features_all
theta, list of estimated random effect parameters(for relative covariance matrix)
varcov, list of estimated variance covariance parameter estimation
MAP random effect
library(Biobase) library(dplyr) data(demoData) demoData <- demoData[, c(1:5, 33:37)] demoData <- fitPoisBG(demoData, size_scale = "sum") demoData <- aggreprobe(demoData, use = "cor") demoData <- BGScoreTest(demoData) demoData$slidename <- substr(demoData[["slide name"]], 12, 17) thmean <- 1 * mean(fData(demoData)$featfact, na.rm = TRUE) demo_pos <- demoData[which(!fData(demoData)$CodeClass == "Negative"), ] demo_neg <- demoData[which(fData(demoData)$CodeClass == "Negative"), ] sc1_scores <- fData(demo_pos)[, "scores"] names(sc1_scores) <- fData(demo_pos)[, "TargetName"] features_high <- ((sc1_scores > quantile(sc1_scores, probs = 0.4)) & (sc1_scores < quantile(sc1_scores, probs = 0.95))) |> which() |> names() set.seed(123) demoData <- fitNBth(demoData, features_high = features_high, sizefact_BG = demo_neg$sizefact, threshold_start = thmean, iterations = 5, start_para = c(200, 1), lower_sizefact = 0, lower_threshold = 100, tol = 1e-8) ROIs_high <- sampleNames(demoData)[which(demoData$sizefact_fitNBth * thmean > 2)] features_all <- rownames(demo_pos) pData(demoData)$group <- c(rep(1, 5), rep(2, 5)) NBthDEmod2 <- fitNBthDE(form = ~group, split = FALSE, object = demoData, ROIs_high = ROIs_high, features_high = features_high, features_all = features_all, sizefact_start = demoData[, ROIs_high][['sizefact_fitNBth']], sizefact_BG = demoData[, ROIs_high][['sizefact']], threshold_mean = notes(demoData)[["threshold"]], preci2=10000, prior_type="contrast", covrob=FALSE, preci1con=1/25, sizescalebythreshold=TRUE) set.seed(123) NBthmDEmod1 <- fitNBthmDE( form = ~ group + (1 | `slide name`), split = FALSE, object = demoData, ROIs_high = ROIs_high, features_all = features_all[1:5], sizefact = demoData[, ROIs_high][["sizefact_fitNBth"]], sizefact_BG = demoData[, ROIs_high][["sizefact"]], preci1=NBthDEmod2$preci1, threshold_mean = thmean, preci2=10000, sizescale = TRUE, controlRandom=list(nu=12, nmh_e=400, thin_e=60))
library(Biobase) library(dplyr) data(demoData) demoData <- demoData[, c(1:5, 33:37)] demoData <- fitPoisBG(demoData, size_scale = "sum") demoData <- aggreprobe(demoData, use = "cor") demoData <- BGScoreTest(demoData) demoData$slidename <- substr(demoData[["slide name"]], 12, 17) thmean <- 1 * mean(fData(demoData)$featfact, na.rm = TRUE) demo_pos <- demoData[which(!fData(demoData)$CodeClass == "Negative"), ] demo_neg <- demoData[which(fData(demoData)$CodeClass == "Negative"), ] sc1_scores <- fData(demo_pos)[, "scores"] names(sc1_scores) <- fData(demo_pos)[, "TargetName"] features_high <- ((sc1_scores > quantile(sc1_scores, probs = 0.4)) & (sc1_scores < quantile(sc1_scores, probs = 0.95))) |> which() |> names() set.seed(123) demoData <- fitNBth(demoData, features_high = features_high, sizefact_BG = demo_neg$sizefact, threshold_start = thmean, iterations = 5, start_para = c(200, 1), lower_sizefact = 0, lower_threshold = 100, tol = 1e-8) ROIs_high <- sampleNames(demoData)[which(demoData$sizefact_fitNBth * thmean > 2)] features_all <- rownames(demo_pos) pData(demoData)$group <- c(rep(1, 5), rep(2, 5)) NBthDEmod2 <- fitNBthDE(form = ~group, split = FALSE, object = demoData, ROIs_high = ROIs_high, features_high = features_high, features_all = features_all, sizefact_start = demoData[, ROIs_high][['sizefact_fitNBth']], sizefact_BG = demoData[, ROIs_high][['sizefact']], threshold_mean = notes(demoData)[["threshold"]], preci2=10000, prior_type="contrast", covrob=FALSE, preci1con=1/25, sizescalebythreshold=TRUE) set.seed(123) NBthmDEmod1 <- fitNBthmDE( form = ~ group + (1 | `slide name`), split = FALSE, object = demoData, ROIs_high = ROIs_high, features_all = features_all[1:5], sizefact = demoData[, ROIs_high][["sizefact_fitNBth"]], sizefact_BG = demoData[, ROIs_high][["sizefact"]], preci1=NBthDEmod2$preci1, threshold_mean = thmean, preci2=10000, sizescale = TRUE, controlRandom=list(nu=12, nmh_e=400, thin_e=60))
Estimate Poisson background model for either single slide or multiple slides
Estimate Poisson background model:
fitPoisBG(object, ...) ## S4 method for signature 'NanoStringGeoMxSet' fitPoisBG( object, groupvar = NULL, iterations = 10, tol = 0.001, size_scale = c("sum", "first"), ... ) ## S4 method for signature 'matrix' fitPoisBG(object, iterations = 10, tol = 0.001, size_scale = c("sum", "first"))
fitPoisBG(object, ...) ## S4 method for signature 'NanoStringGeoMxSet' fitPoisBG( object, groupvar = NULL, iterations = 10, tol = 0.001, size_scale = c("sum", "first"), ... ) ## S4 method for signature 'matrix' fitPoisBG(object, iterations = 10, tol = 0.001, size_scale = c("sum", "first"))
object |
count matrix with features in rows and samples in columns |
... |
additional argument list that might be used |
groupvar |
the group variable name for slide |
iterations |
maximum iterations to be run, default=10 |
tol |
tolerance to determine convergence, default = 1e-3 |
size_scale |
method to scale the sizefact, sum(sizefact)=1 when size_scale="sum", sizefact[1]=1 when size_scale="first" |
a valid GeoMx S4 object if split is FALSE
sizefact - estimated size factor in phenoData
featfact - estimated feature factor in featureData
a valid GeoMx S4 object if split is TRUE,
sizefact - estimated size factor in phenoData
featfact_XX - estimated feature factor vector, column name (denoted as XX) the same as the slide id, in featureData for each unique slide
fitPoisBG_sp_var - the column name for slide, in experimentData
a list of following items
sizefact - estimated size factor
featfact - estimated feature factor
countmat - the input count matrix
data(demoData) demoData <- fitPoisBG(demoData, size_scale = "sum") data(demoData) demoData <- fitPoisBG(demoData, groupvar = "slide name", size_scale = "sum")
data(demoData) demoData <- fitPoisBG(demoData, size_scale = "sum") data(demoData) demoData <- fitPoisBG(demoData, groupvar = "slide name", size_scale = "sum")
Estimate Poisson background model for multiple slides:
fitPoisBG_sp(object, ...) ## S4 method for signature 'matrix' fitPoisBG_sp( object, id, iterations = 10, tol = 0.001, size_scale = c("sum", "first") )
fitPoisBG_sp(object, ...) ## S4 method for signature 'matrix' fitPoisBG_sp( object, id, iterations = 10, tol = 0.001, size_scale = c("sum", "first") )
object |
count matrix with features in rows and samples in columns |
... |
additional argument list that might be used |
id |
character vector same size as sample size representing slide names of each sample |
iterations |
maximum iterations to be run, default=10 |
tol |
tolerance to determine convergence, default = 1e-3 |
size_scale |
method to scale the sizefact, sum(sizefact)=1 when size_scale="sum", sizefact[1]=1 when size_scale="first" |
a list of following items
sizefact - estimated size factor
featfact - estimated feature factor matrix, column names the same as the slide id
countmat - the input count matrix
id - the input id
Poisson threshold model based normalization-log2 transformation for single slide or for multiple slides
fitPoisthNorm(object, ...) ## S4 method for signature 'NanoStringGeoMxSet' fitPoisthNorm( object, split = FALSE, ROIs_high = NULL, features_high = NULL, features_all = NULL, sizefact_start = NULL, sizefact_BG = NULL, threshold_mean = NULL, preci2 = 10000, iterations = 2, prior_type = c("contrast", "equal"), sizefactrec = TRUE, size_scale = c("sum", "first"), sizescalebythreshold = FALSE, covrob = FALSE, preci1con = 1/25, cutoff = 15, confac = 1, calhes = FALSE ) ## S4 method for signature 'matrix' fitPoisthNorm( object, probenum = rep(1, NROW(object)), features_high, features_all, sizefact_start, sizefact_BG, threshold_mean, preci2 = 10000, iterations = 2, prior_type = c("contrast", "equal"), sizefactrec = TRUE, size_scale = c("sum", "first"), sizescalebythreshold = FALSE, covrob = FALSE, preci1con = 1/25, cutoff = 15, confac = 1, calhes = FALSE )
fitPoisthNorm(object, ...) ## S4 method for signature 'NanoStringGeoMxSet' fitPoisthNorm( object, split = FALSE, ROIs_high = NULL, features_high = NULL, features_all = NULL, sizefact_start = NULL, sizefact_BG = NULL, threshold_mean = NULL, preci2 = 10000, iterations = 2, prior_type = c("contrast", "equal"), sizefactrec = TRUE, size_scale = c("sum", "first"), sizescalebythreshold = FALSE, covrob = FALSE, preci1con = 1/25, cutoff = 15, confac = 1, calhes = FALSE ) ## S4 method for signature 'matrix' fitPoisthNorm( object, probenum = rep(1, NROW(object)), features_high, features_all, sizefact_start, sizefact_BG, threshold_mean, preci2 = 10000, iterations = 2, prior_type = c("contrast", "equal"), sizefactrec = TRUE, size_scale = c("sum", "first"), sizescalebythreshold = FALSE, covrob = FALSE, preci1con = 1/25, cutoff = 15, confac = 1, calhes = FALSE )
object |
count matrix with features in rows and samples in columns |
... |
additional argument list that might be used |
split |
indicator variable on whether it is for multiple slides (Yes, TRUE; No, FALSE) |
ROIs_high |
ROIs with high expressions defined based on featfact and featfact |
features_high |
subset of features which are well above the background |
features_all |
full feature vector to apply the normalization on |
sizefact_start |
initial value for size factors |
sizefact_BG |
size factor for background |
threshold_mean |
average threshold level |
preci2 |
precision for threshold, default=10000 |
iterations |
iteration number, default=2, the first iteration using the features_high to construct the prior for parameters then refit the model on all features. precision matrix for threshold: preci2 |
prior_type |
prior type for preci1, "equal" or "contrast", default="contrast" |
sizefactrec |
XXXX, default = TRUE |
size_scale |
method to scale the sizefact, sum(sizefact)=1 when size_scale="sum", sizefact[1]=1 when size_scale="first" |
sizescalebythreshold |
XXXX, default = FALSE |
covrob |
whether to use robust covariance in calculating the prior precision matrix 1, default = FALSE |
preci1con |
The user input constant term in specifying precision matrix 1, default=1/25 |
cutoff |
term in calculating precision matrix 1, default=15 |
confac |
The user input factor for contrast in precision matrix 1, default=1 |
calhes |
The user input whether to calculate hessian: calhes, default=FALSE |
probenum |
a vector of numbers of probes in each gene |
if split is FALSE, a valid GeoMx S4 object including the following items
para0_norm, matrix of estimated parameters for iter=1, features in columns and parameters(log2 expression, threshold) in rows, in featureData.
para_norm, matrix of estimated parameters for iter=2, features in columns and parameters(log2 expression, threshold) in rows, in featureData.
normmat0, matrix of log2 expression for iter=1, features in columns and log2 expression in rows, in assay slot.
normmat, matrix of log2 expression for iter=2, features in columns and log2 expression in rows, in assay lot.
sizefact_norm, estimated sizefact, in phenoData.
sizefact0_norm, estimated sizefact in iter=1, in phenoData.
preci1, precision matrix 1, in experimentData.
conv0, vector of convergence for iter=1, 0 converged, 1 not converged, in featureData
conv, vector of convergence for iter=2, 0 converged, 1 not converged, in featureData
features_high, same as the input features_high, in featureData
features_all, same as the input features_all, in featureData
if split is TRUE, a valid GeoMx S4 object with the following items appended.
threshold0, matrix of estimated threshold for iter=1, features in columns and threshold for different slides in rows, in featureData.
threshold, matrix of estimated threshold for iter=2, features in columns and threshold for different slides in rows, in featureData.
normmat0_sp, matrix of log2 expression for iter=1, features in columns and log2 expression in rows, in assay slot.
normmat_sp, matrix of log2 expression for iter=2, features in columns and log2 expression in rows, in assay slot.
sizefact_norm_sp, estimated sizefact, in phenoData
sizefact0_norm_sp, estimated sizefact in iter=1, in phenoData
preci1, precision matrix 1, in experimentData
conv0_sp_XX, vector of convergence for each unique slide value for iter=1, 0 converged, 1 not converged, in featureData for each unique slide.
conv_sp_XX, vector of convergence for each unique slide value for iter=2, 0 converged, 1 not converged, in featureData for each unique slide.
features_high_sp, same as the input features_high, in featureData.
features_all_sp, same as the input features_all, in featureData.
a list of following items
para0, matrix of estimated parameters for iter=1, features in columns and parameters(log2 expression, threshold) in rows.
para, matrix of estimated parameters for iter=2, features in columns and parameters(log2 expression, threshold) in rows.
normmat0, matrix of log2 expression for iter=1, features in columns and log2 expression in rows.
normmat, matrix of log2 expression for iter=2, features in columns and log2 expression in rows.
sizefact, estimated sizefact
sizefact0, estimated sizefact in iter=1
preci1, precision matrix 1
Im0, Information matrix of parameters in iter=1
Im, Information matrix of parameters in iter=2
conv0, vector of convergence for iter=1, 0 converged, 1 not converged
conv, vector of convergence for iter=2, 0 converged, 1 not converged
features_high, same as the input features_high
features_all, same as the input features_all
library(Biobase) library(dplyr) data(demoData) demoData <- fitPoisBG(demoData, size_scale = "sum") demoData <- aggreprobe(demoData, use = "cor") demoData <- BGScoreTest(demoData) thmean <- 1 * mean(fData(demoData)$featfact, na.rm = TRUE) demo_pos <- demoData[which(!fData(demoData)$CodeClass == "Negative"), ] demo_neg <- demoData[which(fData(demoData)$CodeClass == "Negative"), ] sc1_scores <- fData(demo_pos)[, "scores"] names(sc1_scores) <- fData(demo_pos)[, "TargetName"] features_high <- ((sc1_scores > quantile(sc1_scores, probs = 0.4)) & (sc1_scores < quantile(sc1_scores, probs = 0.95))) |> which() |> names() set.seed(123) features_high <- sample(features_high, 100) demoData <- fitNBth(demoData, features_high = features_high, sizefact_BG = demo_neg$sizefact, threshold_start = thmean, iterations = 5, start_para = c(200, 1), lower_sizefact = 0, lower_threshold = 100, tol = 1e-8) ROIs_high <- sampleNames(demoData)[which((quantile(fData(demoData)[["para"]][, 1], probs = 0.90, na.rm = TRUE) - notes(demoData)[["threshold"]]) * demoData$sizefact_fitNBth > 2)] features_all <- rownames(demo_pos) thmean <- mean(fData(demo_neg)[["featfact"]]) demoData <- fitPoisthNorm( object = demoData, split = FALSE, ROIs_high = ROIs_high, features_high = features_high, features_all = features_all, sizefact_start = demoData[, ROIs_high][["sizefact_fitNBth"]], sizefact_BG = demoData[, ROIs_high][["sizefact"]], threshold_mean = thmean, preci2 = 10000, prior_type = "contrast", covrob = FALSE, preci1con = 1 / 25 )
library(Biobase) library(dplyr) data(demoData) demoData <- fitPoisBG(demoData, size_scale = "sum") demoData <- aggreprobe(demoData, use = "cor") demoData <- BGScoreTest(demoData) thmean <- 1 * mean(fData(demoData)$featfact, na.rm = TRUE) demo_pos <- demoData[which(!fData(demoData)$CodeClass == "Negative"), ] demo_neg <- demoData[which(fData(demoData)$CodeClass == "Negative"), ] sc1_scores <- fData(demo_pos)[, "scores"] names(sc1_scores) <- fData(demo_pos)[, "TargetName"] features_high <- ((sc1_scores > quantile(sc1_scores, probs = 0.4)) & (sc1_scores < quantile(sc1_scores, probs = 0.95))) |> which() |> names() set.seed(123) features_high <- sample(features_high, 100) demoData <- fitNBth(demoData, features_high = features_high, sizefact_BG = demo_neg$sizefact, threshold_start = thmean, iterations = 5, start_para = c(200, 1), lower_sizefact = 0, lower_threshold = 100, tol = 1e-8) ROIs_high <- sampleNames(demoData)[which((quantile(fData(demoData)[["para"]][, 1], probs = 0.90, na.rm = TRUE) - notes(demoData)[["threshold"]]) * demoData$sizefact_fitNBth > 2)] features_all <- rownames(demo_pos) thmean <- mean(fData(demo_neg)[["featfact"]]) demoData <- fitPoisthNorm( object = demoData, split = FALSE, ROIs_high = ROIs_high, features_high = features_high, features_all = features_all, sizefact_start = demoData[, ROIs_high][["sizefact_fitNBth"]], sizefact_BG = demoData[, ROIs_high][["sizefact"]], threshold_mean = thmean, preci2 = 10000, prior_type = "contrast", covrob = FALSE, preci1con = 1 / 25 )
Poisson threshold model based normalization-log2 transformation for multiple slides
fitPoisthNorm_sp(object, ...) ## S4 method for signature 'matrix' fitPoisthNorm_sp( object, probenum, features_high, features_all = colnames(object), sizefact_start, sizefact_BG, threshold_mean, preci2 = 10000, id, iterations = 2, prior_type = c("contrast", "equal"), sizefactrec = TRUE, size_scale = c("sum", "first"), sizescalebythreshold = FALSE, covrob = FALSE, preci1con = 1/25, cutoff = 15, confac = 1 )
fitPoisthNorm_sp(object, ...) ## S4 method for signature 'matrix' fitPoisthNorm_sp( object, probenum, features_high, features_all = colnames(object), sizefact_start, sizefact_BG, threshold_mean, preci2 = 10000, id, iterations = 2, prior_type = c("contrast", "equal"), sizefactrec = TRUE, size_scale = c("sum", "first"), sizescalebythreshold = FALSE, covrob = FALSE, preci1con = 1/25, cutoff = 15, confac = 1 )
object |
count matrix with features in rows and samples in columns |
... |
additional argument list that might be used |
probenum |
a vector of numbers of probes in each gene |
features_high |
subset of features which are well above the background |
features_all |
full feature vector to apply the normalization on |
sizefact_start |
initial value for size factors |
sizefact_BG |
size factor for background |
threshold_mean |
average threshold level |
preci2 |
precision for threshold, default=10000 |
id |
character vector of slide name of each sample |
iterations |
iteration number, default=2, the first iteration using the features_high to construct the prior for parameters then refit the model on all features. precision matrix for threshold: preci2 |
prior_type |
prior type for preci1, "equal" or "contrast", default="contrast" |
sizefactrec |
XXXX, default = TRUE |
size_scale |
method to scale the sizefact, sum(sizefact)=1 when size_scale="sum", sizefact[1]=1 when size_scale="first" |
sizescalebythreshold |
XXXX, default = FALSE |
covrob |
whether to use robust covariance in calculating the prior precision matrix 1, default = FALSE |
preci1con |
The user input constant term in specifying precision matrix 1, default=1/25 |
cutoff |
term in calculating precision matrix 1, default=15 |
confac |
The user input factor for contrast in precision matrix 1, default=1 |
a list of following items
threshold0, matrix of estimated threshold for iter=1, features in columns and threshold for different slides in rows.
threshold, matrix of estimated threshold for iter=2, features in columns and threshold for different slides in rows.
normmat0, matrix of log2 expression for iter=1, features in columns and log2 expression in rows.
normmat, matrix of log2 expression for iter=2, features in columns and log2 expression in rows.
sizefact, estimated sizefact
sizefact0, estimated sizefact in iter=1
preci1, precision matrix 1
Im0, Information matrix in iter=1
Im, Information matrix in iter=2
conv0, vector of convergence for iter=1, 0 converged, 1 not converged
conv, vector of convergence for iter=2, 0 converged, 1 not converged
features_high, same as the input features_high
features_all, same as the input features_all
A demo dataset contains 276 ROIs and 18642 features
data(kidney)
data(kidney)
A NanoStringGeoMxSet S4 object with 18642 features and 276 samples
data(kidney)
data(kidney)
A list used to demonstrate the function coefNBth
data(NBthDEmod2)
data(NBthDEmod2)
A list
data(NBthDEmod2)
data(NBthDEmod2)
A list used to demonstrate the function coefNBth
data(NBthmDEmod2)
data(NBthmDEmod2)
A list
data(NBthmDEmod2)
data(NBthmDEmod2)
A list used to demonstrate the function coefNBth
data(NBthmDEmod2slope)
data(NBthmDEmod2slope)
A list
data(NBthmDEmod2slope)
data(NBthmDEmod2slope)
Compute Quantile Range, a metric representing signal strength for QC purpose
Compute Quantile Range, a metric representing signal strength for QC purpose
QuanRange(object, ...) ## S4 method for signature 'NanoStringGeoMxSet' QuanRange(object, split = FALSE, probs, removeoutlier = FALSE, ...) ## S4 method for signature 'matrix' QuanRange(object, probenum, BGmod, probs, removeoutlier = FALSE)
QuanRange(object, ...) ## S4 method for signature 'NanoStringGeoMxSet' QuanRange(object, split = FALSE, probs, removeoutlier = FALSE, ...) ## S4 method for signature 'matrix' QuanRange(object, probenum, BGmod, probs, removeoutlier = FALSE)
object |
count matrix with features in rows and samples in columns |
... |
additional argument list that might be used |
split |
indicator variable on whether it is for multiple slides |
probs |
numeric vector of probabilities with values in [0,1] passed to quantile |
removeoutlier |
indicator on whether to remove outliers, default: FALSE |
probenum |
a vector of numbers of probes in each gene |
BGmod |
a list of sizefact, sizefact, countmat, and id (if it is for multiple slides) |
a valid S4 object with probabilities in phenoData
a matrix of quantile range in rows and probs in columns
data(demoData) demoData <- fitPoisBG(demoData, size_scale = "sum") demoData <- diagPoisBG(demoData) demoData <- aggreprobe(demoData, use = "cor") Biobase::notes(demoData)$disper demoData <- QuanRange(demoData, split = FALSE, probs = c(0.75, 0.8, 0.9, 0.95)) data(demoData) demoData <- fitPoisBG(demoData, groupvar = "slide name") demoData <- diagPoisBG(demoData, split = TRUE) demoData <- aggreprobe(demoData, use = "cor") Biobase::notes(demoData)$disper_sp demoData <- QuanRange(demoData, split = TRUE, probs = c(0.75, 0.8, 0.9, 0.95))
data(demoData) demoData <- fitPoisBG(demoData, size_scale = "sum") demoData <- diagPoisBG(demoData) demoData <- aggreprobe(demoData, use = "cor") Biobase::notes(demoData)$disper demoData <- QuanRange(demoData, split = FALSE, probs = c(0.75, 0.8, 0.9, 0.95)) data(demoData) demoData <- fitPoisBG(demoData, groupvar = "slide name") demoData <- diagPoisBG(demoData, split = TRUE) demoData <- aggreprobe(demoData, use = "cor") Biobase::notes(demoData)$disper_sp demoData <- QuanRange(demoData, split = TRUE, probs = c(0.75, 0.8, 0.9, 0.95))