Title: | Plot profiles of next generation sequencing data in genomic features |
---|---|
Description: | Visualization of next generation sequencing (NGS) data is essential for interpreting high-throughput genomics experiment results. 'GenomicPlot' facilitates plotting of NGS data in various formats (bam, bed, wig and bigwig); both coverage and enrichment over input can be computed and displayed with respect to genomic features (such as UTR, CDS, enhancer), and user defined genomic loci or regions. Statistical tests on signal intensity within user defined regions of interest can be performed and represented as boxplots or bar graphs. Parallel processing is used to speed up computation on multicore platforms. In addition to genomic plots which is suitable for displaying of coverage of genomic DNA (such as ChIPseq data), metagenomic (without introns) plots can also be made for RNAseq or CLIPseq data as well. |
Authors: | Shuye Pu [aut, cre] |
Maintainer: | Shuye Pu <[email protected]> |
License: | GPL-2 |
Version: | 1.5.2 |
Built: | 2024-12-20 03:35:48 UTC |
Source: | https://github.com/bioc/GenomicPlot |
This is a helper function for performing one-way ANOVA analysis and post hoc Tukey's Honest Significant Differences tests
aov_TukeyHSD(df, xc = "Group", yc = "Intensity", op = NULL, verbose = FALSE)
aov_TukeyHSD(df, xc = "Group", yc = "Intensity", op = NULL, verbose = FALSE)
df |
a dataframe |
xc |
a string denoting column name for grouping |
yc |
a string denoting column name for numeric data to be plotted |
op |
output prefix for statistical analysis results |
verbose |
logical, to indicate whether a file should be produced to save the test results |
a list of two elements, the first is the p-value of ANOVA test and the second is a matrix of the output of TukeyHSD tests
used in plot_locus
Shuye Pu
stat_df <- data.frame( Feature = rep(c("A", "B"), c(20, 30)), Intensity = c(rnorm(20, mean = 2, sd = 1), rnorm(30, mean = 3, sd = 1)) ) out <- aov_TukeyHSD(stat_df, xc = "Feature") out
stat_df <- data.frame( Feature = rep(c("A", "B"), c(20, 30)), Intensity = c(rnorm(20, mean = 2, sd = 1), rnorm(30, mean = 3, sd = 1)) ) out <- aov_TukeyHSD(stat_df, xc = "Feature") out
Make sure the coordinates of GRanges are within the boundaries of chromosomes, and trim anything that goes beyond. Also, remove entries whose seqname is not in the seqname of a query GRanges.
check_constraints(gr, genome, queryRle = NULL)
check_constraints(gr, genome, queryRle = NULL)
gr |
a GenomicRanges object |
genome |
genomic version name such as "hg19" |
queryRle |
a RleList object used as a query against gr |
a GRanges object
Shuye Pu
subject <- GRanges("chr19", IRanges(rep(c(10, 15), 2), width = c(1, 20, 400, 2e+8)), strand = c("+", "+", "-", "-") ) g <- check_constraints(gr = subject, genome = "hg19") identical(g, subject) subject1 <- GRanges("chr19", IRanges(rep(c(10, 15), 2), width = c(1, 20, 400, 28)), strand = c("+", "+", "-", "-") ) g1 <- check_constraints(gr = subject1, genome = "hg19") identical(g1, subject1)
subject <- GRanges("chr19", IRanges(rep(c(10, 15), 2), width = c(1, 20, 400, 2e+8)), strand = c("+", "+", "-", "-") ) g <- check_constraints(gr = subject, genome = "hg19") identical(g, subject) subject1 <- GRanges("chr19", IRanges(rep(c(10, 15), 2), width = c(1, 20, 400, 28)), strand = c("+", "+", "-", "-") ) g1 <- check_constraints(gr = subject1, genome = "hg19") identical(g1, subject1)
This is a helper function for creating custom TxDb object from a GTF/GFF file. Mitochondrial chromosome is excluded.
custom_TxDb_from_GTF(gtfFile, genome = "hg19")
custom_TxDb_from_GTF(gtfFile, genome = "hg19")
gtfFile |
path to a gene annotation gtf file |
genome |
a string denoting the genome name and version |
a TxDb object defined in the GenomicFeatures package.
Shuye Pu
gtfFile <- system.file("extdata", "gencode.v19.annotation_chr19.gtf", package = "GenomicPlot" ) txdb <- custom_TxDb_from_GTF(gtfFile, genome = "hg19")
gtfFile <- system.file("extdata", "gencode.v19.annotation_chr19.gtf", package = "GenomicPlot" ) txdb <- custom_TxDb_from_GTF(gtfFile, genome = "hg19")
Plot violin plot with boxplot components for data with one or two factors, p-value significance levels are displayed, "***" = 0.001, "**" = 0.01, "*" = 0.05.
draw_boxplot_by_factor( stat_df, xc = "Feature", yc = "Intensity", fc = xc, comp = list(c(1, 2)), stats = "wilcox.test", Xlab = xc, Ylab = yc, nf = 1 )
draw_boxplot_by_factor( stat_df, xc = "Feature", yc = "Intensity", fc = xc, comp = list(c(1, 2)), stats = "wilcox.test", Xlab = xc, Ylab = yc, nf = 1 )
stat_df |
a dataframe with column names c(xc, yc) |
xc |
a string denoting column name for grouping |
yc |
a string denoting column name for numeric data to be plotted |
fc |
a string denoting column name for sub-grouping based on an additional factor |
comp |
a list of vectors denoting pair-wise comparisons to be performed between groups |
stats |
the name of pair-wise statistical tests, like t.test or wilcox.test |
Xlab |
a string for x-axis label |
Ylab |
a string for y-axis label |
nf |
a integer normalizing factor for correct count of observations when the data table has two factors, such as those produced by 'pivot_longer', equals to the number of factors |
a ggplot object
used by plot_locus
, plot_locus_with_random
,
plot_region
Shuye Pu
stat_df <- data.frame( Feature = rep(c("A", "B"), c(20, 30)), Intensity = c(rnorm(20, 2, 0.5), rnorm(30, 3, 0.6)) ) p <- draw_boxplot_by_factor(stat_df, xc = "Feature", yc = "Intensity", Ylab = "Signal Intensity" ) p
stat_df <- data.frame( Feature = rep(c("A", "B"), c(20, 30)), Intensity = c(rnorm(20, 2, 0.5), rnorm(30, 3, 0.6)) ) p <- draw_boxplot_by_factor(stat_df, xc = "Feature", yc = "Intensity", Ylab = "Signal Intensity" ) p
Plot boxplot without outliers, useful when outliers have a wide
range and the median is squeezed at the bottom of the plot. The p-value
significance level is the same as those in
draw_boxplot_by_factor
, but not displayed.
draw_boxplot_wo_outlier( stat_df, xc = "Feature", yc = "Intensity", fc = xc, comp = list(c(1, 2)), stats = "wilcox.test", Xlab = xc, Ylab = yc, nf = 1 )
draw_boxplot_wo_outlier( stat_df, xc = "Feature", yc = "Intensity", fc = xc, comp = list(c(1, 2)), stats = "wilcox.test", Xlab = xc, Ylab = yc, nf = 1 )
stat_df |
a dataframe with column names c(xc, yc) |
xc |
a string denoting column name for grouping |
yc |
a string denoting column name for numeric data to be plotted |
fc |
a string denoting column name for sub-grouping |
comp |
a list of vectors denoting pair-wise comparisons to be performed between groups |
stats |
the name of pair-wise statistical tests, like t.test or wilcox.test |
Xlab |
a string for x-axis label |
Ylab |
a string for y-axis label |
nf |
a integer normalizing factor for correct count of observations when the data table has two factors, such as those produced by 'pivot_longer', equals to the number of factors |
a ggplot object
stat_df <- data.frame( Feature = rep(c("A", "B"), c(20, 30)), Intensity = c(rnorm(20, 2), rnorm(30, 3)) ) p <- draw_boxplot_wo_outlier(stat_df, xc = "Feature", yc = "Intensity", Ylab = "Signal Intensity" ) p
stat_df <- data.frame( Feature = rep(c("A", "B"), c(20, 30)), Intensity = c(rnorm(20, 2), rnorm(30, 3)) ) p <- draw_boxplot_wo_outlier(stat_df, xc = "Feature", yc = "Intensity", Ylab = "Signal Intensity" ) p
Place violin plot, boxplot without outliers, mean+se barplot and quantile plot on the same page
draw_combo_plot( stat_df, xc = "Feature", yc = "Intensity", comp = list(c(1, 2)), Xlab = xc, Ylab = yc, stats = "wilcox.test", fc = xc, Ylim = NULL, title = "", nf = 1 )
draw_combo_plot( stat_df, xc = "Feature", yc = "Intensity", comp = list(c(1, 2)), Xlab = xc, Ylab = yc, stats = "wilcox.test", fc = xc, Ylim = NULL, title = "", nf = 1 )
stat_df |
a dataframe with column names c(xc, yc) |
xc |
a string denoting column name for grouping |
yc |
a string denoting column name for numeric data to be plotted |
comp |
a list of vectors denoting pair-wise comparisons to be performed between groups |
Xlab |
a string for x-axis label |
Ylab |
a string for y-axis label |
stats |
the name of pair-wise statistical tests, like t.test or wilcox.test |
fc |
a string denoting column name for sub-grouping based on an additional factor |
Ylim |
a numeric vector of two elements, defining custom limits of y-axis |
title |
a string for plot title |
nf |
a integer normalizing factor for correct count of observations when the data table has two factors, such as those produced by pivot_longer, equals to the number of factors |
a ggplot object
Shuye Pu
stat_df <- data.frame( Feature = rep(c("A", "B"), c(200, 300)), Intensity = c(rnorm(200, 2, 5), rnorm(300, 3, 5)), Height = c(rnorm(200, 5, 5), rnorm(300, 1, 5)) ) stat_df_long <- tidyr::pivot_longer(stat_df, cols = c(Intensity, Height), names_to = "type", values_to = "value" ) print(draw_combo_plot(stat_df_long, xc = "Feature", yc = "value", fc = "type", Ylab = "value", comp = list(c(1, 2), c(3, 4), c(1, 3), c(2, 4)), nf = 2 ))
stat_df <- data.frame( Feature = rep(c("A", "B"), c(200, 300)), Intensity = c(rnorm(200, 2, 5), rnorm(300, 3, 5)), Height = c(rnorm(200, 5, 5), rnorm(300, 1, 5)) ) stat_df_long <- tidyr::pivot_longer(stat_df, cols = c(Intensity, Height), names_to = "type", values_to = "value" ) print(draw_combo_plot(stat_df_long, xc = "Feature", yc = "value", fc = "type", Ylab = "value", comp = list(c(1, 2), c(3, 4), c(1, 3), c(2, 4)), nf = 2 ))
Plot lines with standard error as the error band
draw_locus_profile( plot_df, xc = "Position", yc = "Intensity", cn = "Query", sn = NULL, Xlab = "Center", Ylab = "Signal Intensity", shade = FALSE, hl = c(0, 0) )
draw_locus_profile( plot_df, xc = "Position", yc = "Intensity", cn = "Query", sn = NULL, Xlab = "Center", Ylab = "Signal Intensity", shade = FALSE, hl = c(0, 0) )
plot_df |
a dataframe with column names c(xc, yc, cn, "lower", "upper") |
xc |
a string denoting column name for values on x-axis |
yc |
a string denoting column name for numeric data to be plotted |
cn |
a string denoting column name for sample grouping, like 'Query' or 'Reference' |
sn |
a string denoting column name for the subject of sample grouping, if 'cn' is 'Query', then 'sn' will be 'Reference' |
Xlab |
a string for x-axis label |
Ylab |
a string for y-axis label |
shade |
logical indicating whether to place a shaded rectangle around the loci bounded by hl |
hl |
a vector of two integers defining upstream and downstream boundaries of the rectangle |
a ggplot object
used by plot_locus
, plot_locus_with_random
Shuye Pu
library(dplyr) Reference <- rep(rep(c("Ref1", "Ref2"), each = 100), 2) Query <- rep(c("Query1", "Query2"), each = 200) Position <- rep(seq(-50, 49), 4) Intensity <- rlnorm(400) se <- runif(400) df <- data.frame(Intensity, se, Position, Query, Reference) %>% mutate(lower = Intensity - se, upper = Intensity + se) %>% mutate(Group = paste(Query, Reference, sep = ":")) p <- draw_locus_profile(df, cn = "Group", shade = TRUE, hl = c(-10, 20)) p
library(dplyr) Reference <- rep(rep(c("Ref1", "Ref2"), each = 100), 2) Query <- rep(c("Query1", "Query2"), each = 200) Position <- rep(seq(-50, 49), 4) Intensity <- rlnorm(400) se <- runif(400) df <- data.frame(Intensity, se, Position, Query, Reference) %>% mutate(lower = Intensity - se, upper = Intensity + se) %>% mutate(Group = paste(Query, Reference, sep = ":")) p <- draw_locus_profile(df, cn = "Group", shade = TRUE, hl = c(-10, 20)) p
Make a complex heatmap with column annotations
draw_matrix_heatmap( fullMatrix, dataName = "geneData", labels_col = NULL, levels_col = NULL, ranking = "Sum", ranges = NULL, verbose = FALSE )
draw_matrix_heatmap( fullMatrix, dataName = "geneData", labels_col = NULL, levels_col = NULL, ranking = "Sum", ranges = NULL, verbose = FALSE )
fullMatrix |
a numeric matrix |
dataName |
the nature of the numeric data |
labels_col |
a named vector for column annotation |
levels_col |
factor levels for names of labels_col, specifying the order of labels_col |
ranking |
method for ranking the rows of the input matrix, options are c("Sum", "Max", "Hierarchical", "None") |
ranges |
a numeric vector with three elements, defining custom range for color ramp, default=NULL, i.e. the range is defined automatically based on the c(minimun, median, maximum) of fullMatrix |
verbose |
logical, whether to output the input matrix for inspection |
a grob object
Shuye Pu
fullMatrix <- matrix(rnorm(10000), ncol = 100) for (i in seq_len(80)) { fullMatrix[i, 16:75] <- runif(60) + i } labels_col <- as.character(seq_len(100)) levels_col <- c("start", "center", "end") names(labels_col) <- rep(levels_col, c(15, 60, 25)) draw_matrix_heatmap(fullMatrix, dataName = "test", labels_col, levels_col, ranges = c(-2, 0, 20))
fullMatrix <- matrix(rnorm(10000), ncol = 100) for (i in seq_len(80)) { fullMatrix[i, 16:75] <- runif(60) + i } labels_col <- as.character(seq_len(100)) levels_col <- c("start", "center", "end") names(labels_col) <- rep(levels_col, c(15, 60, 25)) draw_matrix_heatmap(fullMatrix, dataName = "test", labels_col, levels_col, ranges = c(-2, 0, 20))
Plot barplot for mean with standard error bars, no p-value significance levels are displayed, but ANOVA p-value is provided as tag and TukeyHSD test are displayed as caption.
draw_mean_se_barplot( stat_df, xc = "Feature", yc = "Intensity", fc = xc, comp = list(c(1, 2)), Xlab = xc, Ylab = yc, Ylim = NULL, nf = 1 )
draw_mean_se_barplot( stat_df, xc = "Feature", yc = "Intensity", fc = xc, comp = list(c(1, 2)), Xlab = xc, Ylab = yc, Ylim = NULL, nf = 1 )
stat_df |
a dataframe with column names c(xc, yc) |
xc |
a string denoting column name for grouping |
yc |
a string denoting column name for numeric data to be plotted |
fc |
a string denoting column name for sub-grouping based on an additional factor |
comp |
a list of vectors denoting pair-wise comparisons to be performed between groups |
Xlab |
a string for x-axis label |
Ylab |
a string for y-axis label |
Ylim |
a numeric vector of two elements, defining custom limits of y-axis |
nf |
a integer normalizing factor for correct count of observations when the data table has two factors, such as those produced by pivot_longer, equals to the number of factors |
a ggplot object
used by plot_locus
, plot_locus_with_random
Shuye Pu
stat_df <- data.frame( Feature = rep(c("A", "B"), c(20, 30)), Intensity = c(rnorm(20, 2), rnorm(30, 3)) ) p <- draw_mean_se_barplot(stat_df, xc = "Feature", yc = "Intensity", Ylab = "Intensity" ) p
stat_df <- data.frame( Feature = rep(c("A", "B"), c(20, 30)), Intensity = c(rnorm(20, 2), rnorm(30, 3)) ) p <- draw_mean_se_barplot(stat_df, xc = "Feature", yc = "Intensity", Ylab = "Intensity" ) p
Plot quantiles as y-axis, and values as x-axis. Same as 'geom_ecdf', but allows sub-grouping by a second factor.
draw_quantile_plot( stat_df, xc = "Feature", yc = "Intensity", Ylab = yc, fc = xc )
draw_quantile_plot( stat_df, xc = "Feature", yc = "Intensity", Ylab = yc, fc = xc )
stat_df |
a dataframe with column names c(xc, yc) |
xc |
a string denoting column name for grouping |
yc |
a string denoting column name for numeric data to be plotted |
Ylab |
a string for y-axis label |
fc |
a string denoting column name for sub-grouping based on an additional factor |
a ggplot object
used by plot_locus
, plot_locus_with_random
Shuye Pu
stat_df <- data.frame( Feature = rep(c("A", "B"), c(20, 30)), Intensity = c(rnorm(20, 2, 5), rnorm(30, 3, 5)), Height = c(rnorm(20, 5, 5), rnorm(30, 1, 5)) ) stat_df_long <- tidyr::pivot_longer(stat_df, cols = c(Intensity, Height), names_to = "type", values_to = "value" ) print(draw_quantile_plot(stat_df, xc = "Feature", yc = "Intensity")) print(draw_quantile_plot(stat_df, xc = "Feature", yc = "Height")) print(draw_quantile_plot(stat_df_long, xc = "Feature", yc = "value", fc = "type", Ylab = "value" ))
stat_df <- data.frame( Feature = rep(c("A", "B"), c(20, 30)), Intensity = c(rnorm(20, 2, 5), rnorm(30, 3, 5)), Height = c(rnorm(20, 5, 5), rnorm(30, 1, 5)) ) stat_df_long <- tidyr::pivot_longer(stat_df, cols = c(Intensity, Height), names_to = "type", values_to = "value" ) print(draw_quantile_plot(stat_df, xc = "Feature", yc = "Intensity")) print(draw_quantile_plot(stat_df, xc = "Feature", yc = "Height")) print(draw_quantile_plot(stat_df_long, xc = "Feature", yc = "value", fc = "type", Ylab = "value" ))
Plot cumulative sum over rank as line plot, both cumulative sum and rank are scaled between 0 and 1. This is the same as the fingerprint plot of the deepTools.
draw_rank_plot(stat_df, xc = "Feature", yc = "Intensity", Ylab = yc)
draw_rank_plot(stat_df, xc = "Feature", yc = "Intensity", Ylab = yc)
stat_df |
a dataframe with column names c(xc, yc) |
xc |
a string denoting column name for grouping |
yc |
a string denoting column name for numeric data to be plotted |
Ylab |
a string for y-axis label |
a ggplot object
Shuye Pu
stat_df <- data.frame( Feature = rep(c("A", "B"), c(20, 30)), Intensity = c(rlnorm(20, 5, 5), rlnorm(30, 1, 5)) ) stat_df1 <- data.frame( Feature = rep(c("A", "B"), c(20, 30)), Height = c(rnorm(20, 5, 5), rnorm(30, 1, 5)) ) print(draw_rank_plot(stat_df, xc = "Feature", yc = "Intensity", Ylab = "Intensity" )) print(draw_rank_plot(stat_df1, xc = "Feature", yc = "Height", Ylab = "Height" ))
stat_df <- data.frame( Feature = rep(c("A", "B"), c(20, 30)), Intensity = c(rlnorm(20, 5, 5), rlnorm(30, 1, 5)) ) stat_df1 <- data.frame( Feature = rep(c("A", "B"), c(20, 30)), Height = c(rnorm(20, 5, 5), rnorm(30, 1, 5)) ) print(draw_rank_plot(stat_df, xc = "Feature", yc = "Intensity", Ylab = "Intensity" )) print(draw_rank_plot(stat_df1, xc = "Feature", yc = "Height", Ylab = "Height" ))
Plot a gene centered polygon for demarcating gene and its upstream and downstream regions
draw_region_landmark(featureNames, vx, xmax)
draw_region_landmark(featureNames, vx, xmax)
featureNames |
a string vector giving names of sub-regions |
vx |
a vector on integers denoting the x coordinates of start of each sub-region |
xmax |
an integer denoting the left most boundary |
a ggplot object
used by plot_5parts_metagene
, plot_region
Shuye Pu
fn <- c("5'UTR", "CDS", "3'UTR") mark <- c(1, 5, 20) xmax <- 25 p <- draw_region_landmark(featureNames = fn, vx = mark, xmax = xmax)
fn <- c("5'UTR", "CDS", "3'UTR") mark <- c(1, 5, 20) xmax <- 25 p <- draw_region_landmark(featureNames = fn, vx = mark, xmax = xmax)
Plot sub-region labels under the landmark
draw_region_name(featureNames, scaled_bins, xmax)
draw_region_name(featureNames, scaled_bins, xmax)
featureNames |
a string vector giving names of sub-regions |
scaled_bins |
a vector of integers denoting the lengths of each sub-region |
xmax |
an integer denoting the right most boundary |
a ggplot object
used by plot_5parts_metagene
, plot_region
Shuye Pu
fn <- c("5'UTR", "CDS", "3'UTR") bins <- c(5, 15, 5) xmax <- 25 p <- draw_region_name(featureNames = fn, scaled_bins = bins, xmax = xmax)
fn <- c("5'UTR", "CDS", "3'UTR") bins <- c(5, 15, 5) xmax <- 25 p <- draw_region_name(featureNames = fn, scaled_bins = bins, xmax = xmax)
Plot lines with standard error as the error band
draw_region_profile( plot_df, xc = "Position", yc = "Intensity", cn = "Query", sn = NULL, Ylab = "Signal Intensity", vx )
draw_region_profile( plot_df, xc = "Position", yc = "Intensity", cn = "Query", sn = NULL, Ylab = "Signal Intensity", vx )
plot_df |
a dataframe with column names c(xc, yc, cn, "lower", "upper") |
xc |
a string denoting column name for values on x-axis |
yc |
a string denoting column name for numeric data to be plotted |
cn |
column name in plot_df for query samples grouping |
sn |
column name in plot_df for subject name to be shown in the plot title |
Ylab |
a string for Y-axis label |
vx |
a vector on integers denoting the x coordinates of start of each sub-region |
a ggplot object
used by plot_5parts_metagene
, plot_region
Shuye Pu
library(dplyr) Reference <- rep(rep(c("Ref1", "Ref2"), each = 100), 2) Query <- rep(c("Query1", "Query2"), each = 200) Position <- rep(seq_len(100), 4) Intensity <- rlnorm(400) se <- runif(400) df <- data.frame(Intensity, se, Position, Query, Reference) %>% mutate(lower = Intensity - se, upper = Intensity + se) %>% mutate(Group = paste(Query, Reference, sep = ":")) vx <- c(1, 23, 70) p <- draw_region_profile(df, cn = "Group", vx = vx) p
library(dplyr) Reference <- rep(rep(c("Ref1", "Ref2"), each = 100), 2) Query <- rep(c("Query1", "Query2"), each = 200) Position <- rep(seq_len(100), 4) Intensity <- rlnorm(400) se <- runif(400) df <- data.frame(Intensity, se, Position, Query, Reference) %>% mutate(lower = Intensity - se, upper = Intensity + se) %>% mutate(Group = paste(Query, Reference, sep = ":")) vx <- c(1, 23, 70) p <- draw_region_profile(df, cn = "Group", vx = vx) p
Plot profile on top of heatmap, and align feature labels.
draw_stacked_plot(plot_list, heatmap_list)
draw_stacked_plot(plot_list, heatmap_list)
plot_list |
a list of profile plots |
heatmap_list |
a list of heatmaps |
a null value
used by plot_locus
, plot_5parts_metagene
,
plot_region
Shuye Pu
Plot lines with standard error as the error band, also plots number of regions having non-zero signals
draw_stacked_profile( plot_df, xc = "Position", yc = "Intensity", cn = "Query", ext = c(0, 0, 0, 0), hl = c(0, 0, 0, 0), atitle = "title", insert = 0, Ylab = "Signal Intensity", shade = FALSE, stack = TRUE )
draw_stacked_profile( plot_df, xc = "Position", yc = "Intensity", cn = "Query", ext = c(0, 0, 0, 0), hl = c(0, 0, 0, 0), atitle = "title", insert = 0, Ylab = "Signal Intensity", shade = FALSE, stack = TRUE )
plot_df |
a dataframe with column names c(xc, yc, cn, "Interval", "lower", "upper") |
xc |
a string denoting column name for values on x-axis |
yc |
a string denoting column name for numeric data to be plotted |
cn |
a string denoting column name for grouping |
ext |
a vector of 4 integers denoting upstream and downstream extension around start and end, the range of extensions must be within the range of 'xc' of the 'plot_df' |
hl |
a vector of 4 integers defining upstream and downstream boundaries of the rectangle for start and end |
atitle |
a string for the title of the plot |
insert |
a integer denoting the width of the center region |
Ylab |
a string for y-axis label |
shade |
logical, indicating whether to place a shaded rectangle around the point of interest |
stack |
logical, indicating whether to plot the number of valid (non-zero) data points in each bin |
a ggplot object
used by plot_start_end
,
plot_start_end_with_random
Shuye Pu
library(dplyr) Reference <- rep(rep(c("Ref1", "Ref2"), each = 100), 2) Query <- rep(c("Query1", "Query2"), each = 200) Position <- rep(seq(-50, 49), 4) Intensity <- rlnorm(400) se <- runif(400) start_df <- data.frame(Intensity, se, Position, Query, Reference) %>% mutate(lower = Intensity - se, upper = Intensity + se) %>% mutate(Group = paste(Query, Reference, sep = ":")) %>% mutate(Location = rep("Start", 400)) %>% mutate(Interval = sample.int(1000, 400)) Intensity <- rlnorm(400, meanlog = 1.5) se <- runif(400) center_df <- data.frame(Intensity, se, Position, Query, Reference) %>% mutate(lower = Intensity - se, upper = Intensity + se) %>% mutate(Group = paste(Query, Reference, sep = ":")) %>% mutate(Location = rep("Center", 400)) %>% mutate(Interval = sample.int(600, 400)) Intensity <- rlnorm(400, meanlog = 2) se <- runif(400) end_df <- data.frame(Intensity, se, Position, Query, Reference) %>% mutate(lower = Intensity - se, upper = Intensity + se) %>% mutate(Group = paste(Query, Reference, sep = ":")) %>% mutate(Location = rep("End", 400)) %>% mutate(Interval = sample.int(2000, 400)) df <- rbind(start_df, center_df, end_df) p <- draw_stacked_profile(df, cn = "Group", shade = TRUE, ext = c(-50, 50, -50, 50), hl = c(-20, 20, -25, 25), insert = 100) p
library(dplyr) Reference <- rep(rep(c("Ref1", "Ref2"), each = 100), 2) Query <- rep(c("Query1", "Query2"), each = 200) Position <- rep(seq(-50, 49), 4) Intensity <- rlnorm(400) se <- runif(400) start_df <- data.frame(Intensity, se, Position, Query, Reference) %>% mutate(lower = Intensity - se, upper = Intensity + se) %>% mutate(Group = paste(Query, Reference, sep = ":")) %>% mutate(Location = rep("Start", 400)) %>% mutate(Interval = sample.int(1000, 400)) Intensity <- rlnorm(400, meanlog = 1.5) se <- runif(400) center_df <- data.frame(Intensity, se, Position, Query, Reference) %>% mutate(lower = Intensity - se, upper = Intensity + se) %>% mutate(Group = paste(Query, Reference, sep = ":")) %>% mutate(Location = rep("Center", 400)) %>% mutate(Interval = sample.int(600, 400)) Intensity <- rlnorm(400, meanlog = 2) se <- runif(400) end_df <- data.frame(Intensity, se, Position, Query, Reference) %>% mutate(lower = Intensity - se, upper = Intensity + se) %>% mutate(Group = paste(Query, Reference, sep = ":")) %>% mutate(Location = rep("End", 400)) %>% mutate(Interval = sample.int(2000, 400)) df <- rbind(start_df, center_df, end_df) p <- draw_stacked_profile(df, cn = "Group", shade = TRUE, ext = c(-50, 50, -50, 50), hl = c(-20, 20, -25, 25), insert = 100) p
This is a helper function for handle_input. edgeR::calcNormFactors function is used to estimate normalizing factors, which is used to multiply library sizes.
effective_size(outlist, outRle, genome = "hg19", nc = 2, verbose = FALSE)
effective_size(outlist, outRle, genome = "hg19", nc = 2, verbose = FALSE)
outlist |
a list of list objects with four elements, 'query' is a GRanges object, 'size' is the library size, 'type' is the input file type, 'weight' is the name of the metadata column |
outRle |
logical, indicating whether the 'query' element of the output should be an RleList object or a GRanges object |
genome |
a string denoting the genome name and version |
nc |
integer, number of cores for parallel processing |
verbose |
logical, whether to output additional information |
a list of list objects with four elements ('query', 'size', 'type', 'weight'), with the 'size' element modified.
Shuye Pu
queryFiles <- system.file("extdata", "chip_treat_chr19.bam", package = "GenomicPlot" ) names(queryFiles) <- "query" inputFiles <- system.file("extdata", "chip_input_chr19.bam", package = "GenomicPlot" ) names(inputFiles) <- "input" chipImportParams <- setImportParams( offset = 0, fix_width = 150, fix_point = "start", norm = TRUE, useScore = FALSE, outRle = FALSE, useSizeFactor = FALSE, genome = "hg19" ) out_list <- handle_input( inputFiles = c(queryFiles, inputFiles), importParams = chipImportParams, verbose = TRUE, nc = 2 ) out <- effective_size(out_list, outRle = TRUE)
queryFiles <- system.file("extdata", "chip_treat_chr19.bam", package = "GenomicPlot" ) names(queryFiles) <- "query" inputFiles <- system.file("extdata", "chip_input_chr19.bam", package = "GenomicPlot" ) names(inputFiles) <- "input" chipImportParams <- setImportParams( offset = 0, fix_width = 150, fix_point = "start", norm = TRUE, useScore = FALSE, outRle = FALSE, useSizeFactor = FALSE, genome = "hg19" ) out_list <- handle_input( inputFiles = c(queryFiles, inputFiles), importParams = chipImportParams, verbose = TRUE, nc = 2 ) out <- effective_size(out_list, outRle = TRUE)
The data files in the extdata directory contain data for next generation sequencing read alignments, MACS2 peaks and gene annotation, which are used to test the package and generate plots in the package vignettes. To meet the package file size limit, all data are restricted to chr19:58000-507000 of the human genome version hg19. Details for each file are as follows.
"gencode.v19.annotation_chr19.gtf" is an excerpt of a gene annotation file by limiting to chr19:58000-507000 of the human genome.
"gencode.v19.annotation_chr19.gtf.granges.rds" is a GRanges object produced by importing the above gtf file using RCAS::importGtf.
"chip_treat_chr19.bam(.bai)" and "chip_input_chr19.bam(.bai)" are paired-end read alignment data from ChIPseq experiments.
"treat_chr19.bam(.bai)" and "input_chr19.bam(.bai)" are single-end read alignment data from iCLIP experiments.
"test_wig_chr19_+(-).wig", "test_wig_chr19_+(-).bw" are iCLIP alignment data in WIG and BIGWIG format, respectively; '+' and '-' represent forward and reverse strand, respectively.
"test_clip_peak_chr19.bed" contains strand-specific iCLIP peak in BED format.
"test_chip_peak_chr19.bed" and "test_chip_peak_chr19.narrowPeak" contain ChIPseq peaks generated with MACS2, in summit peak and narrow peak format, respectively. "test_chr19.bedGraph" contains the same data in bedGraph format.
"test_file1.txt", "test_file2.txt", "test_file3.txt" and "test_file4.txt" are tab-delimited text files, each contains various human gene names in different columns.
Various files used as inputs to run examples and tests
Shuye Pu
The original gene annotation (gtf) file is downloaded from
https://www.gencodegenes.org/human/.
Except for the gtf file, all other files are derived from experimental
data produced in-house at the Greenblatt Lab, University of Toronto, Canada.
Gene level computations require selecting one transcript per gene to avoid bias by genes with multiple isoforms. In ideal case, the most abundant transcript (principal or canonical isoform) should be chosen. However, the most abundant isoform may vary depending on tissue type or physiological condition, the longest transcript is usually the principal isoform, and alternatively spliced isoforms are not. This method get the longest transcript for each gene. The longest transcript is defined as the isoform that has the longest transcript length. In case of tie, the one with longer CDS is selected. If the lengths of CDS tie again, the transcript with smaller id is selected arbitrarily.
extract_longest_tx(txdb)
extract_longest_tx(txdb)
txdb |
a TxDb object defined in the GenomicFeatures package |
a dataframe of transcript information with the following columns: "tx_id tx_name gene_id nexon tx_len cds_len utr5_len utr3_len"
Shuye Pu
gtfFile <- system.file("extdata", "gencode.v19.annotation_chr19.gtf", package = "GenomicPlot" ) txdb <- custom_TxDb_from_GTF(gtfFile, genome = "hg19") longestTx <- extract_longest_tx(txdb)
gtfFile <- system.file("extdata", "gencode.v19.annotation_chr19.gtf", package = "GenomicPlot" ) txdb <- custom_TxDb_from_GTF(gtfFile, genome = "hg19") longestTx <- extract_longest_tx(txdb)
This function reports all query GRanges that do not overlaps GRanges in subject. Strand information is used to define overlap.
filter_by_nonoverlaps_stranded( query, subject, maxgap = -1L, minoverlap = 0L, ignore.order = TRUE )
filter_by_nonoverlaps_stranded( query, subject, maxgap = -1L, minoverlap = 0L, ignore.order = TRUE )
query |
a GRanges object |
subject |
a GRanges object |
maxgap |
an integer denoting the distance that define overlap |
minoverlap |
The minimum amount of overlap between intervals as a single integer greater than 0. If you modify this argument, maxgap must be held fixed. |
ignore.order |
logical, indicating whether the order of query and subject can be switched, default = TRUE. This parameter is used to avoid the situation that the size of overlaps is bigger than the size of subject, which will produce an error when plotting Venn diagrams. |
a GRanges object
Shuye Pu
query <- GRanges("chr19", IRanges(rep(c(10, 15), 2), width = c(1, 20, 40, 50)), strand = c("+", "+", "-", "-") ) subject <- GRanges("chr19", IRanges(rep(c(13, 150), 2), width = c(10, 14, 20, 28)), strand = c("+", "-", "-", "+") ) res <- filter_by_nonoverlaps_stranded(query, subject) res
query <- GRanges("chr19", IRanges(rep(c(10, 15), 2), width = c(1, 20, 40, 50)), strand = c("+", "+", "-", "-") ) subject <- GRanges("chr19", IRanges(rep(c(13, 150), 2), width = c(10, 14, 20, 28)), strand = c("+", "-", "-", "+") ) res <- filter_by_nonoverlaps_stranded(query, subject) res
This function reports all query GRanges that have overlaps in subject GRanges. Strand information is not required.
filter_by_overlaps_nonstranded( query, subject, maxgap = -1L, minoverlap = 0L, ignore.order = TRUE )
filter_by_overlaps_nonstranded( query, subject, maxgap = -1L, minoverlap = 0L, ignore.order = TRUE )
query |
a GRanges object |
subject |
a GRanges object |
maxgap |
an integer denoting the distance that define overlap |
minoverlap |
The minimum amount of overlap between intervals as a single integer greater than 0. If you modify this argument, maxgap must be held fixed. |
ignore.order |
logical, indicating whether the order of query and subject can be switched, default = TRUE. This parameter is used to avoid the situation that the size of overlaps is bigger than the size of subject, which will produce an error when plotting Venn diagrams. |
a GRanges object
Shuye Pu
query <- GRanges("chr19", IRanges(rep(c(10, 15), 2), width = c(1, 20, 40, 50)), strand = c("+", "+", "-", "-") ) subject <- GRanges("chr19", IRanges(rep(c(13, 150), 2), width = c(10, 14, 20, 28)), strand = c("+", "-", "-", "+") ) res <- filter_by_overlaps_nonstranded(query, subject, ignore.order = TRUE) res
query <- GRanges("chr19", IRanges(rep(c(10, 15), 2), width = c(1, 20, 40, 50)), strand = c("+", "+", "-", "-") ) subject <- GRanges("chr19", IRanges(rep(c(13, 150), 2), width = c(10, 14, 20, 28)), strand = c("+", "-", "-", "+") ) res <- filter_by_overlaps_nonstranded(query, subject, ignore.order = TRUE) res
This function reports all query GRanges that have overlaps in subject GRanges. Strand information is used to define overlap.
filter_by_overlaps_stranded( query, subject, maxgap = -1L, minoverlap = 0L, ignore.order = TRUE )
filter_by_overlaps_stranded( query, subject, maxgap = -1L, minoverlap = 0L, ignore.order = TRUE )
query |
a GRanges object |
subject |
a GRanges object |
maxgap |
an integer denoting the distance that define overlap |
minoverlap |
The minimum amount of overlap between intervals as a single integer greater than 0. If you modify this argument, maxgap must be held fixed. |
ignore.order |
logical, indicating whether the order of query and subject can be switched, default = TRUE. Overlaps in query and subject often have different sizes. This parameter will make the function use whichever is smaller to avoid errors when making Venn diagrams. |
a GRanges object
Shuye Pu
query <- GRanges("chr19", IRanges(rep(c(10, 15), 2), width = c(1, 20, 40, 50)), strand = c("+", "+", "-", "-") ) subject <- GRanges("chr19", IRanges(rep(c(13, 150), 2), width = c(10, 14, 20, 28)), strand = c("+", "-", "-", "+") ) res <- filter_by_overlaps_stranded(query, subject) res resf <- filter_by_overlaps_stranded(query, subject, ignore.order = FALSE) resf
query <- GRanges("chr19", IRanges(rep(c(10, 15), 2), width = c(1, 20, 40, 50)), strand = c("+", "+", "-", "-") ) subject <- GRanges("chr19", IRanges(rep(c(13, 150), 2), width = c(10, 14, 20, 28)), strand = c("+", "-", "-", "+") ) res <- filter_by_overlaps_stranded(query, subject) res resf <- filter_by_overlaps_stranded(query, subject, ignore.order = FALSE) resf
Given a list of gene names in a file or in a character vector, turn them into a vector of transcript ids.
gene2tx(gtfFile, geneList, geneCol = 1)
gene2tx(gtfFile, geneList, geneCol = 1)
gtfFile |
path to a GTF file |
geneList |
path to a tab-delimited text file with one gene name on each line, or a character vector of gene names (eg. RPRD1B) |
geneCol |
the position of the column that containing gene names in the case that geneList is a file |
a vector of transcript ids (eg. ENST00000577222.1)
Shuye Pu
gtfFile <- system.file("extdata", "gencode.v19.annotation_chr19.gtf", package = "GenomicPlot" ) genes <- c("RPRD1A", "RPAP2", "RPRD1B", "RPRD2", "ZNF281", "YTHDF2") tx <- gene2tx(gtfFile = gtfFile, geneList = genes)
gtfFile <- system.file("extdata", "gencode.v19.annotation_chr19.gtf", package = "GenomicPlot" ) genes <- c("RPRD1A", "RPAP2", "RPRD1B", "RPRD2", "ZNF281", "YTHDF2") tx <- gene2tx(gtfFile = gtfFile, geneList = genes)
An R package for efficient and flexible visualization of genome-wide NGS coverage profiles
The goal of 'GenomicPlot' is to provide an efficient visualization tool for next generation sequencing (NGS) data with rich functionality and flexibility. 'GenomicPlot' enables plotting of NGS data in various formats (bam, bed, wig and bigwig); both coverage and enrichment over input can be computed and displayed with respect to genomic features (such as UTR, CDS, enhancer), and user defined genomic loci or regions. Statistical tests on signal intensity within user defined regions of interest can be performed and presented as box plots or pie charts. Parallel processing is enabled to speed up computation on multi-core platforms. Main functions are as follows:
plot_5parts_metagene
generates genomic (with introns)
or metagenomic (without introns) plots around gene body and its upstream
and downstream regions, the gene body can be further segmented into
5'UTR, CDS and 3'UTR.
plot_start_end
plots genomic profiles around the start
and end of genomic features (like exons or introns), or user defined
genomic regions. A center region with user defined width can be plotted
simultaneously.
plot_locus
plots distance between sample peaks and
genomic features, or distance from one set of peaks to another set of
peaks.
plot_region
plots signal profiles within and around
genomic features, or user defined genomic regions.
plot_peak_annotation
plots peak annotation statistics
(distribution in different type of genes, and in different parts of
genes).
plot_overlap_bed
plots peak overlaps as Venn diagrams.
Random features can be generated and plotted to serve as contrast to
real features in plot_locus_with_random
and
plot_start_end_with_random
.
All profile line plots have error bands.
Statistical analysis results on user defined regions of interest are
plotted along with the profile plots in plot_region
,
plot_locus
and plot_locus_with_random
.
Shuye Pu
_PACKAGE
Extract genomic coordinates and make bed or bed 12 files from a TxDb object for a variety of annotated genomic features. The output of this function is a list. The first element of the list is a GRanges object that provide the start and end information of the feature. The second element is a GRangesList providing information for sub-components. The third element is the name of a bed file.
get_genomic_feature_coordinates( txdb, featureName, featureSource = NULL, export = FALSE, longest = FALSE, protein_coding = FALSE )
get_genomic_feature_coordinates( txdb, featureName, featureSource = NULL, export = FALSE, longest = FALSE, protein_coding = FALSE )
txdb |
a TxDb object defined in the GenomicFeatures package |
featureName |
one of the genomic feature in c("utr3", "utr5", "cds", "intron", "exon", "transcript", "gene") |
featureSource |
the name of the gtf/gff3 file or the online database from which txdb is derived, used as name of output file |
export |
logical, indicating if the bed file should be produced |
longest |
logical, indicating whether the output should be limited to the longest transcript of each gene |
protein_coding |
logical, indicating whether to limit to protein_coding genes |
For "utr3", "utr5", "cds" and "transcript", the GRanges object denotes the start and end of the feature in one transcript, and the range is named by the transcript id and may span introns; the GrangesList object is a list of exons comprising each feature and indexed on transcript id. The bed file is in bed12 format. For "exon" and "intron", the GRanges object denotes unnamed ranges of individual exon and intron, and the GrangesList object is a list of exons or introns belonging to one transcript and indexed on transcript id. The bed file is in bed6 format. For "gene", both GRanges object and GRangesList object have the same ranges and names. The bed file is in bed6 format.
a list of three objects, the first is a GRanges object, the second is a GRangesList object, the last is the output file name if export is TRUE.
Shuye Pu
gtfFile <- system.file("extdata", "gencode.v19.annotation_chr19.gtf", package = "GenomicPlot" ) txdb <- custom_TxDb_from_GTF(gtfFile, genome = "hg19") output <- get_genomic_feature_coordinates(txdb, featureName = "cds", featureSource = "gencode", export = FALSE, longest = TRUE, protein_coding = TRUE )
gtfFile <- system.file("extdata", "gencode.v19.annotation_chr19.gtf", package = "GenomicPlot" ) txdb <- custom_TxDb_from_GTF(gtfFile, genome = "hg19") output <- get_genomic_feature_coordinates(txdb, featureName = "cds", featureSource = "gencode", export = FALSE, longest = TRUE, protein_coding = TRUE )
Annotate each peak with genomic features based on overlap, and produce summary statistics for distribution of peaks in features of protein-coding genes. If a peak overlap multiple features, a feature is assigned to the peak in the following order of precedence: "5'UTR", "3'UTR", "CDS", "Intron", "Promoter", "TTS".
get_targeted_genes(peak, features, stranded = TRUE)
get_targeted_genes(peak, features, stranded = TRUE)
peak |
a GRanges object defining query ranges |
features |
a GRangesList object representing genomic features |
stranded |
logical, indicating whether the overlap should be strand-specific |
a list object
used in plot_peak_annotation
Shuye Pu
gtfFile <- system.file("extdata", "gencode.v19.annotation_chr19.gtf", package = "GenomicPlot" ) txdb <- custom_TxDb_from_GTF(gtfFile, genome = "hg19") f <- get_txdb_features(txdb, dsTSS = 100, fiveP = 0, threeP = 1000) p <- RCAS::importBed(system.file("extdata", "test_chip_peak_chr19.bed", package = "GenomicPlot" )) ann <- get_targeted_genes(peak = p, features = f, stranded = FALSE)
gtfFile <- system.file("extdata", "gencode.v19.annotation_chr19.gtf", package = "GenomicPlot" ) txdb <- custom_TxDb_from_GTF(gtfFile, genome = "hg19") f <- get_txdb_features(txdb, dsTSS = 100, fiveP = 0, threeP = 1000) p <- RCAS::importBed(system.file("extdata", "test_chip_peak_chr19.bed", package = "GenomicPlot" )) ann <- get_targeted_genes(peak = p, features = f, stranded = FALSE)
Get genomic coordinates of promoter, 5'UTR, CDS, 3'UTR, TTS and intron for the longest transcript of protein-coding genes. The range of promoter is defined by fiveP and dsTSS upstream and downstream TSS, respectively, the TTS ranges from the 3' end of the gene to threeP downstream, or the start of a downstream gene, whichever is closer.
get_txdb_features(txdb, fiveP = -1000, dsTSS = 300, threeP = 1000, nc = 2)
get_txdb_features(txdb, fiveP = -1000, dsTSS = 300, threeP = 1000, nc = 2)
txdb |
a TxDb object defined in the GenomicFeatures package |
fiveP |
extension upstream of the 5' boundary of genes |
dsTSS |
range of promoter extending downstream of TSS |
threeP |
extension downstream of the 3' boundary of genes |
nc |
number of cores for parallel processing |
a GRangesList object
Shuye Pu
gtfFile <- system.file("extdata", "gencode.v19.annotation_chr19.gtf", package = "GenomicPlot" ) txdb <- custom_TxDb_from_GTF(gtfFile, genome = "hg19") f <- get_txdb_features(txdb, dsTSS = 100, fiveP = -100, threeP = 100)
gtfFile <- system.file("extdata", "gencode.v19.annotation_chr19.gtf", package = "GenomicPlot" ) txdb <- custom_TxDb_from_GTF(gtfFile, genome = "hg19") f <- get_txdb_features(txdb, dsTSS = 100, fiveP = -100, threeP = 100)
Genomic coordinates of 72 transcripts in hg19 for genomic
features promoter, 5'UTR, CDS, 3'UTR, TTS, as well as user inputs for
processing these features.
See prepare_5parts_genomic_features
for details.
A named list with the following elements:
a list of 5 GrangesList objects for the 5 genomic features
a positive integer
a vector of 5 integers
a negative integer
a positive integer
logical
logical
Shuye Pu
The data is produced by running the following code:
txdb <- AnnotationDbi::loadDb(system.file("extdata", "txdb.sql",
package = "GenomicPlot"))
gf5_genomic <- GenomicPlot::prepare_5parts_genomic_features(txdb,
meta = FALSE, nbins = 100, fiveP = -2000, threeP = 1000, longest = TRUE)
Metagenomic coordinates of 72 transcripts in hg19 for genomic
features promoter, 5'UTR, CDS, 3'UTR, TTS, as well as user inputs for
processing these features.
See prepare_5parts_genomic_features
for details.
A named list with the following elements:
a list of 5 GrangesList objects for the 5 genomic features
a positive integer
a vector of 5 integers
a negative integer
a positive integer
logical
logical
Shuye Pu
The data is produced by running the following code:
txdb <- AnnotationDbi::loadDb(system.file("extdata", "txdb.sql",
package = "GenomicPlot"))
gf5_meta <- GenomicPlot::prepare_5parts_genomic_features(txdb, meta = TRUE,
nbins = 100, fiveP = -2000, threeP = 1000, longest = TRUE)
Convert a GRanges object with meta data columns to a dataframe, with the first 6 columns corresponding those of BED6 format, and the meta data as additional columns
gr2df(gr)
gr2df(gr)
gr |
a GRanges object |
a dataframe
Shuye Pu
gr2 <- GenomicRanges::GRanges(c("chr1", "chr1"), IRanges::IRanges(c(7, 13), width = 3), strand = c("+", "-") ) GenomicRanges::mcols(gr2) <- data.frame( score = c(0.3, 0.9), cat = c(TRUE, FALSE) ) df2 <- gr2df(gr2)
gr2 <- GenomicRanges::GRanges(c("chr1", "chr1"), IRanges::IRanges(c(7, 13), width = 3), strand = c("+", "-") ) GenomicRanges::mcols(gr2) <- data.frame( score = c(0.3, 0.9), cat = c(TRUE, FALSE) ) df2 <- gr2df(gr2)
This is a function for read NGS reads data in bam format, store the input data in a list of GRanges objects or RleList objects. For paired-end reads, only take the second read in a pair, assuming which is the sense read for strand-specific RNAseq.
handle_bam(inputFile, importParams = NULL, verbose = FALSE)
handle_bam(inputFile, importParams = NULL, verbose = FALSE)
inputFile |
a string denoting path to the input file |
importParams |
a list of parameters, refer to |
verbose |
logical, whether to output additional information |
The reads are filtered using mapq score >= 10 by default, only mapped reads are counted towards library size.
a list object with four elements, 'query' is a list GRanges objects or RleList objects, 'size' is the library size, 'type' is the input file type, weight' is the name of the metadata column to be used as weight for coverage calculation
Shuye Pu
queryFiles <- system.file("extdata", "treat_chr19.bam", package = "GenomicPlot" ) names(queryFiles) <- "query" bamimportParams <- setImportParams( offset = -1, fix_width = 0, fix_point = "start", norm = TRUE, useScore = FALSE, outRle = TRUE, useSizeFactor = FALSE, genome = "hg19" ) out <- handle_bam( inputFile = queryFiles, importParams = bamimportParams, verbose = TRUE )
queryFiles <- system.file("extdata", "treat_chr19.bam", package = "GenomicPlot" ) names(queryFiles) <- "query" bamimportParams <- setImportParams( offset = -1, fix_width = 0, fix_point = "start", norm = TRUE, useScore = FALSE, outRle = TRUE, useSizeFactor = FALSE, genome = "hg19" ) out <- handle_bam( inputFile = queryFiles, importParams = bamimportParams, verbose = TRUE )
This is a function for read peaks data in bed format, store the input data in a list of GRanges objects or RleList objects.
handle_bed(inputFile, importParams = NULL, verbose = FALSE)
handle_bed(inputFile, importParams = NULL, verbose = FALSE)
inputFile |
a string denoting path to the input file |
importParams |
a list of parameters, refer to |
verbose |
logical, whether to output additional information |
a list object with four elements, 'query' is a list GRanges objects or RleList objects, 'size' is the library size, 'type' is the input file type, 'weight' is the name of the metadata column to be used as weight for coverage calculation
Shuye Pu
queryFiles <- system.file("extdata", "test_chip_peak_chr19.narrowPeak", package = "GenomicPlot" ) names(queryFiles) <- "narrowPeak" bedimportParams <- setImportParams( offset = 0, fix_width = 100, fix_point = "center", norm = FALSE, useScore = FALSE, outRle = TRUE, useSizeFactor = FALSE, genome = "hg19" ) out <- handle_bed(queryFiles, bedimportParams, verbose = TRUE) lapply(out$query, sum)
queryFiles <- system.file("extdata", "test_chip_peak_chr19.narrowPeak", package = "GenomicPlot" ) names(queryFiles) <- "narrowPeak" bedimportParams <- setImportParams( offset = 0, fix_width = 100, fix_point = "center", norm = FALSE, useScore = FALSE, outRle = TRUE, useSizeFactor = FALSE, genome = "hg19" ) out <- handle_bed(queryFiles, bedimportParams, verbose = TRUE) lapply(out$query, sum)
This is a function for read peaks data in bedGraph format, store the input data in a list of GRanges objects or RleList objects.
handle_bedGraph(inputFile, importParams = NULL, verbose = FALSE)
handle_bedGraph(inputFile, importParams = NULL, verbose = FALSE)
inputFile |
a string denoting path to the input file |
importParams |
a list of parameters, refer to |
verbose |
logical, whether to output additional information |
a list object with four elements, 'query' is a list GRanges objects or RleList objects, 'size' is the library size, 'type' is the input file type, 'weight' is the name of the metadata column to be used as weight for coverage calculation
Shuye Pu
queryFiles <- system.file("extdata", "test_chr19.bedGraph", package = "GenomicPlot" ) names(queryFiles) <- "chipPeak" importParams <- setImportParams( offset = 0, fix_width = 0, fix_point = "start", norm = FALSE, useScore = TRUE, outRle = FALSE, useSizeFactor = FALSE, genome = "hg19", val = 4, skip = 1 ) out <- handle_bedGraph(queryFiles, importParams, verbose = TRUE) out$query
queryFiles <- system.file("extdata", "test_chr19.bedGraph", package = "GenomicPlot" ) names(queryFiles) <- "chipPeak" importParams <- setImportParams( offset = 0, fix_width = 0, fix_point = "start", norm = FALSE, useScore = TRUE, outRle = FALSE, useSizeFactor = FALSE, genome = "hg19", val = 4, skip = 1 ) out <- handle_bedGraph(queryFiles, importParams, verbose = TRUE) out$query
This is a function for read NGS coverage data in bigwig format, store the input data in a list of GRanges objects or RleList objects. The input bw file can be stranded or non-stranded. Library size is calculate as the sum of all coverage.
handle_bw(inputFile, importParams, verbose = FALSE)
handle_bw(inputFile, importParams, verbose = FALSE)
inputFile |
a string denoting path to the input file |
importParams |
a list of parameters, refer to |
verbose |
logical, whether to output additional information |
For stranded files, forward and reverse strands are stored in separate files, with '+' or 'p' in the forward strand file name and '-' or 'm' in the reverse strand file name.
a list object with four elements, 'query' is a list GRanges objects or RleList objects, 'size' is the estimated library size, 'type' is the input file type, weight' is the name of the metadata column to be used as weight for coverage calculation
Shuye Pu
queryFiles <- system.file("extdata", "test_wig_chr19_+.bw", package = "GenomicPlot" ) names(queryFiles) <- "test_bw" wigimportParams <- setImportParams( offset = 0, fix_width = 0, fix_point = "start", norm = FALSE, useScore = FALSE, outRle = TRUE, useSizeFactor = FALSE, genome = "hg19" ) out <- handle_bw(queryFiles, wigimportParams, verbose = TRUE)
queryFiles <- system.file("extdata", "test_wig_chr19_+.bw", package = "GenomicPlot" ) names(queryFiles) <- "test_bw" wigimportParams <- setImportParams( offset = 0, fix_width = 0, fix_point = "start", norm = FALSE, useScore = FALSE, outRle = TRUE, useSizeFactor = FALSE, genome = "hg19" ) out <- handle_bw(queryFiles, wigimportParams, verbose = TRUE)
This is a wrapper function for read NGS data in different file formats, store the input data in a list of GRanges objects or RleList objects. File names end in bed|bam|bw|bigwig|bigWig|BigWig|BW|BIGWIG are recognized, and a named list of files with mixed formats are allowed.
handle_input(inputFiles, importParams = NULL, verbose = FALSE, nc = 2)
handle_input(inputFiles, importParams = NULL, verbose = FALSE, nc = 2)
inputFiles |
a vector of strings denoting file names |
importParams |
a list with the 9 elements: list(offset, fix_width,
fix_point, useScore, outRle, norm, genome, useSizeFactor). Details are
described in the documentation of |
verbose |
logical, whether to output additional information |
nc |
integer, number of cores for parallel processing |
when 'useScore' is TRUE, the score column of the bed file will be used in the metadata column 'score' of the GRanges object, or the 'Values' field of the RleList object. Otherwise the value 1 will be used instead. When the intended use of the input bed is a reference feature, both 'useScore' and 'outRle' should be set to FALSE.
a list object with four elements, 'query' is a list GRanges objects or RleList objects, 'size' is the library size, 'type' is the input file type, 'weight' is the name of the metadata column to be used as weight for coverage calculation
Shuye Pu
queryFiles1 <- system.file("extdata", "treat_chr19.bam", package = "GenomicPlot" ) names(queryFiles1) <- "query" inputFiles1 <- system.file("extdata", "input_chr19.bam", package = "GenomicPlot" ) names(inputFiles1) <- "input" bamimportParams <- setImportParams( offset = -1, fix_width = 0, fix_point = "start", norm = TRUE, useScore = FALSE, outRle = TRUE, useSizeFactor = FALSE, genome = "hg19" ) out_list <- handle_input( inputFiles = c(queryFiles1, inputFiles1), importParams = bamimportParams, verbose = TRUE, nc = 2 ) queryFiles2 <- system.file("extdata", "test_wig_chr19_+.wig", package = "GenomicPlot" ) names(queryFiles2) <- "test_wig" wigimportParams <- setImportParams( offset = 0, fix_width = 0, fix_point = "start", norm = FALSE, useScore = FALSE, outRle = TRUE, useSizeFactor = FALSE, genome = "hg19" ) out <- handle_input(queryFiles2, wigimportParams, verbose = TRUE) queryFiles3 <- system.file("extdata", "test_wig_chr19_+.bw", package = "GenomicPlot" ) names(queryFiles3) <- "test_bw" out <- handle_input(c(queryFiles1, queryFiles2, queryFiles3), wigimportParams, verbose = TRUE )
queryFiles1 <- system.file("extdata", "treat_chr19.bam", package = "GenomicPlot" ) names(queryFiles1) <- "query" inputFiles1 <- system.file("extdata", "input_chr19.bam", package = "GenomicPlot" ) names(inputFiles1) <- "input" bamimportParams <- setImportParams( offset = -1, fix_width = 0, fix_point = "start", norm = TRUE, useScore = FALSE, outRle = TRUE, useSizeFactor = FALSE, genome = "hg19" ) out_list <- handle_input( inputFiles = c(queryFiles1, inputFiles1), importParams = bamimportParams, verbose = TRUE, nc = 2 ) queryFiles2 <- system.file("extdata", "test_wig_chr19_+.wig", package = "GenomicPlot" ) names(queryFiles2) <- "test_wig" wigimportParams <- setImportParams( offset = 0, fix_width = 0, fix_point = "start", norm = FALSE, useScore = FALSE, outRle = TRUE, useSizeFactor = FALSE, genome = "hg19" ) out <- handle_input(queryFiles2, wigimportParams, verbose = TRUE) queryFiles3 <- system.file("extdata", "test_wig_chr19_+.bw", package = "GenomicPlot" ) names(queryFiles3) <- "test_bw" out <- handle_input(c(queryFiles1, queryFiles2, queryFiles3), wigimportParams, verbose = TRUE )
This is a function for read NGS coverage data in wig format, store the input data in a list of GRanges objects or RleList objects. The input wig file can be stranded or non-stranded. Library size is calculate as the sum of all coverage.
handle_wig(inputFile, importParams, verbose = FALSE)
handle_wig(inputFile, importParams, verbose = FALSE)
inputFile |
a string denoting path to the input file |
importParams |
a list of parameters, refer to |
verbose |
logical, whether to output additional information |
For stranded files, forward and reverse strands are stored in separate files, with '+' or 'p' in the forward strand file name and '-' or 'm' in the reverse strand file name.
a list object with four elements, 'query' is a list GRanges objects or RleList objects, 'size' is the library size, 'type' is the input file type, 'weight' is the name of the metadata column to be used as weight for coverage calculation
Shuye Pu
queryFiles <- system.file("extdata", "test_wig_chr19_+.wig", package = "GenomicPlot" ) names(queryFiles) <- "test_wig" wigimportParams <- setImportParams( offset = 0, fix_width = 0, fix_point = "start", norm = FALSE, useScore = FALSE, outRle = TRUE, useSizeFactor = FALSE, genome = "hg19" ) out <- handle_wig(queryFiles, wigimportParams, verbose = TRUE)
queryFiles <- system.file("extdata", "test_wig_chr19_+.wig", package = "GenomicPlot" ) names(queryFiles) <- "test_wig" wigimportParams <- setImportParams( offset = 0, fix_width = 0, fix_point = "start", norm = FALSE, useScore = FALSE, outRle = TRUE, useSizeFactor = FALSE, genome = "hg19" ) out <- handle_wig(queryFiles, wigimportParams, verbose = TRUE)
Make a partial TxDb object given a GTF file and a list of gene names in a file or in a character vector.
make_subTxDb_from_GTF(gtfFile, genome = "hg19", geneList, geneCol = 1)
make_subTxDb_from_GTF(gtfFile, genome = "hg19", geneList, geneCol = 1)
gtfFile |
path to a GTF file |
genome |
version of genome, like "hg19" |
geneList |
path to a tab-delimited text file with one gene name on each line, or a character vector of gene names |
geneCol |
the position of the column that containing gene names in the case that geneList is a file |
a TxDb object
Shuye Pu
gtfFile <- system.file("extdata", "gencode.v19.annotation_chr19.gtf", package = "GenomicPlot" ) genes <- c("RPRD1A", "RPAP2", "RPRD1B", "RPRD2", "ZNF281", "YTHDF2") txdb <- make_subTxDb_from_GTF(gtfFile = gtfFile, geneList = genes)
gtfFile <- system.file("extdata", "gencode.v19.annotation_chr19.gtf", package = "GenomicPlot" ) genes <- c("RPRD1A", "RPAP2", "RPRD1B", "RPRD2", "ZNF281", "YTHDF2") txdb <- make_subTxDb_from_GTF(gtfFile = gtfFile, geneList = genes)
This is a helper function for Venn diagram plot. A Venn diagram is plotted as output. For GRanges, as A overlap B may not be the same as B overlap A, the order of GRanges in a list matters, certain order may produce an error.
overlap_pair(apair, overlap_fun, title = NULL)
overlap_pair(apair, overlap_fun, title = NULL)
apair |
a list of two vectors |
overlap_fun |
the name of the function that defines overlap, depending
on the type of object in the vectors. For GRanges, use
|
title |
main title of the figure |
a VennDiagram object
Shuye Pu
test_list <- list(A = c(1, 2, 3, 4, 5), B = c(4, 5, 7)) overlap_pair(test_list, intersect, title = "test") ## GRanges overlap query <- GRanges("chr19", IRanges(rep(c(10, 15), 2), width = c(1, 20, 40, 50)), strand = c("+", "+", "-", "-") ) subject <- GRanges("chr19", IRanges(rep(c(13, 150), 2), width = c(10, 14, 20, 28)), strand = c("+", "-", "-", "+") ) overlap_pair( list(query = query, subject = subject), filter_by_overlaps_stranded )
test_list <- list(A = c(1, 2, 3, 4, 5), B = c(4, 5, 7)) overlap_pair(test_list, intersect, title = "test") ## GRanges overlap query <- GRanges("chr19", IRanges(rep(c(10, 15), 2), width = c(1, 20, 40, 50)), strand = c("+", "+", "-", "-") ) subject <- GRanges("chr19", IRanges(rep(c(13, 150), 2), width = c(10, 14, 20, 28)), strand = c("+", "-", "-", "+") ) overlap_pair( list(query = query, subject = subject), filter_by_overlaps_stranded )
This is a helper function for Venn diagram plot. A Venn diagram is plotted as output. For GRanges, as A overlap B may not be the same as B overlap A, the order of GRanges in a list matters, certain order may produce an error.
overlap_quad(aquad, overlap_fun, title = NULL)
overlap_quad(aquad, overlap_fun, title = NULL)
aquad |
a list of four vectors |
overlap_fun |
the name of the function that defines overlap, depending
on the type of object in the vectors. For GRanges, use
|
title |
main title of the figure |
a VennDiagram object
Shuye Pu
test_list <- list(A = c(1, 2, 3, 4, 5), B = c(4, 5, 7), C = c(1, 3), D = 6) overlap_quad(test_list, intersect) ## GRanges overlap query1 <- GRanges("chr19", IRanges(rep(c(10, 15), 2), width = c(1, 20, 40, 50)), strand = c("+", "+", "-", "-") ) query2 <- GRanges("chr19", IRanges(rep(c(1, 15), 2), width = c(1, 20, 40, 50)), strand = c("+", "+", "-", "-") ) subject1 <- GRanges("chr19", IRanges(rep(c(13, 150), 2), width = c(10, 14, 20, 28)), strand = c("+", "-", "-", "+") ) subject2 <- GRanges("chr19", IRanges(rep(c(13, 50), 2), width = c(10, 14, 20, 21)), strand = c("+", "-", "-", "+") ) overlap_quad(list( subject1 = subject1, subject2 = subject2, query1 = query1, query2 = query2 ), filter_by_overlaps_stranded)
test_list <- list(A = c(1, 2, 3, 4, 5), B = c(4, 5, 7), C = c(1, 3), D = 6) overlap_quad(test_list, intersect) ## GRanges overlap query1 <- GRanges("chr19", IRanges(rep(c(10, 15), 2), width = c(1, 20, 40, 50)), strand = c("+", "+", "-", "-") ) query2 <- GRanges("chr19", IRanges(rep(c(1, 15), 2), width = c(1, 20, 40, 50)), strand = c("+", "+", "-", "-") ) subject1 <- GRanges("chr19", IRanges(rep(c(13, 150), 2), width = c(10, 14, 20, 28)), strand = c("+", "-", "-", "+") ) subject2 <- GRanges("chr19", IRanges(rep(c(13, 50), 2), width = c(10, 14, 20, 21)), strand = c("+", "-", "-", "+") ) overlap_quad(list( subject1 = subject1, subject2 = subject2, query1 = query1, query2 = query2 ), filter_by_overlaps_stranded)
This is a helper function for Venn diagram plot. A Venn diagram is plotted as output. For GRanges, as A overlap B may not be the same as B overlap A, the order of GRanges in a list matters, certain order may produce an error.
overlap_triple(atriple, overlap_fun, title = NULL)
overlap_triple(atriple, overlap_fun, title = NULL)
atriple |
a list of three vectors |
overlap_fun |
the name of the function that defines overlap, depending
on the type of object in the vectors. For GRanges, use
|
title |
main title of the figure |
a VennDiagram object
Shuye Pu
test_list <- list(A = c(1, 2, 3, 4, 5), B = c(4, 5, 7), C = c(1, 3)) overlap_triple(test_list, intersect, title = "test") ## GRanges overlap query <- GRanges("chr19", IRanges(rep(c(10, 15), 2), width = c(1, 20, 40, 50)), strand = c("+", "+", "-", "-") ) subject1 <- GRanges("chr19", IRanges(rep(c(13, 150), 2), width = c(10, 14, 20, 28)), strand = c("+", "-", "-", "+") ) subject2 <- GRanges("chr19", IRanges(rep(c(13, 50), 2), width = c(10, 14, 20, 21)), strand = c("+", "-", "-", "+") ) overlap_triple( list(subject1 = subject1, subject2 = subject2, query = query), filter_by_overlaps_stranded )
test_list <- list(A = c(1, 2, 3, 4, 5), B = c(4, 5, 7), C = c(1, 3)) overlap_triple(test_list, intersect, title = "test") ## GRanges overlap query <- GRanges("chr19", IRanges(rep(c(10, 15), 2), width = c(1, 20, 40, 50)), strand = c("+", "+", "-", "-") ) subject1 <- GRanges("chr19", IRanges(rep(c(13, 150), 2), width = c(10, 14, 20, 28)), strand = c("+", "-", "-", "+") ) subject2 <- GRanges("chr19", IRanges(rep(c(13, 50), 2), width = c(10, 14, 20, 21)), strand = c("+", "-", "-", "+") ) overlap_triple( list(subject1 = subject1, subject2 = subject2, query = query), filter_by_overlaps_stranded )
Function for parallel computation of countOverlaps function in the GenomicRanges package
parallel_countOverlaps(grange_list, tileBins, nc = 2, switch = FALSE)
parallel_countOverlaps(grange_list, tileBins, nc = 2, switch = FALSE)
grange_list |
a list of GRanges objects. |
tileBins |
a GRanges object of tiled genome |
nc |
integer, number of cores for parallel processing |
switch |
logical, switch the order of query and feature |
a list of numeric vectors
Shuye Pu
bedQueryFiles <- c( system.file("extdata", "test_chip_peak_chr19.narrowPeak", package = "GenomicPlot" ), system.file("extdata", "test_chip_peak_chr19.bed", package = "GenomicPlot"), system.file("extdata", "test_clip_peak_chr19.bed", package = "GenomicPlot") ) names(bedQueryFiles) <- c("NarrowPeak", "SummitPeak", "iCLIPPeak") bedimportParams <- setImportParams( offset = 0, fix_width = 100, fix_point = "center", norm = FALSE, useScore = FALSE, outRle = FALSE, useSizeFactor = FALSE, genome = "hg19" ) out_list <- handle_input( inputFiles = bedQueryFiles, importParams = bedimportParams, verbose = TRUE, nc = 2 ) chromInfo <- circlize::read.chromInfo(species = "hg19")$df seqi <- Seqinfo(seqnames = chromInfo$chr, seqlengths = chromInfo$end, isCircular = rep(FALSE, nrow(chromInfo)), genome = "hg19") grange_list <- lapply(out_list, function(x) x$query) tilewidth <- 100000 tileBins <- tileGenome(seqi, tilewidth = tilewidth, cut.last.tile.in.chrom = TRUE ) score_list1 <- parallel_countOverlaps(grange_list, tileBins, nc = 2) dplyr::glimpse(score_list1)
bedQueryFiles <- c( system.file("extdata", "test_chip_peak_chr19.narrowPeak", package = "GenomicPlot" ), system.file("extdata", "test_chip_peak_chr19.bed", package = "GenomicPlot"), system.file("extdata", "test_clip_peak_chr19.bed", package = "GenomicPlot") ) names(bedQueryFiles) <- c("NarrowPeak", "SummitPeak", "iCLIPPeak") bedimportParams <- setImportParams( offset = 0, fix_width = 100, fix_point = "center", norm = FALSE, useScore = FALSE, outRle = FALSE, useSizeFactor = FALSE, genome = "hg19" ) out_list <- handle_input( inputFiles = bedQueryFiles, importParams = bedimportParams, verbose = TRUE, nc = 2 ) chromInfo <- circlize::read.chromInfo(species = "hg19")$df seqi <- Seqinfo(seqnames = chromInfo$chr, seqlengths = chromInfo$end, isCircular = rep(FALSE, nrow(chromInfo)), genome = "hg19") grange_list <- lapply(out_list, function(x) x$query) tilewidth <- 100000 tileBins <- tileGenome(seqi, tilewidth = tilewidth, cut.last.tile.in.chrom = TRUE ) score_list1 <- parallel_countOverlaps(grange_list, tileBins, nc = 2) dplyr::glimpse(score_list1)
Function for parallel computation of scoreMatrixBin. The 'windows' parameter of the scoreMatrixBin method is split into nc chunks, and scoreMatrixBin is called on each chunk simultaneously to speed up the computation.
parallel_scoreMatrixBin( queryRegions, windowRs, bin_num, bin_op, weight_col, stranded, nc = 2 )
parallel_scoreMatrixBin( queryRegions, windowRs, bin_num, bin_op, weight_col, stranded, nc = 2 )
queryRegions |
a RleList object or Granges object providing input for the 'target' parameter of the scoreMatrixBin method. |
windowRs |
a single GRangesList object. |
bin_num |
number of bins the windows should be divided into |
bin_op |
operation on the signals in a bin, a string in c("mean", "max", "min", "median", "sum") is accepted. |
weight_col |
if the queryRegions is a GRanges object, a numeric column in meta data part can be used as weights. |
stranded |
logical, indicating if the strand of the windows should be considered to determine upstream and downstream. |
nc |
an integer denoting the number of cores requested, 2 is the default number that is allowed by CRAN but 5 gives best trade-off between speed and space. |
a numeric matrix
Shuye Pu
queryFiles <- system.file("extdata", "chip_treat_chr19.bam", package = "GenomicPlot" ) names(queryFiles) <- "query" chipimportParams <- setImportParams( offset = 0, fix_width = 150, fix_point = "start", norm = TRUE, useScore = FALSE, outRle = TRUE, useSizeFactor = FALSE, genome = "hg19" ) queryRegion <- handle_input(queryFiles, chipimportParams, verbose = TRUE )[[1]]$query windowFiles <- system.file("extdata", "test_chip_peak_chr19.narrowPeak", package = "GenomicPlot" ) names(windowFiles) <- "narrowPeak" importParams <- setImportParams( offset = 0, fix_width = 0, fix_point = "start", norm = FALSE, useScore = FALSE, outRle = FALSE, useSizeFactor = FALSE, genome = "hg19" ) windowRegion <- handle_bed(windowFiles, importParams, verbose = TRUE)$query out <- parallel_scoreMatrixBin( queryRegions = queryRegion, windowRs = windowRegion, bin_num = 50, bin_op = "mean", weight_col = "score", stranded = TRUE, nc = 2 ) #
queryFiles <- system.file("extdata", "chip_treat_chr19.bam", package = "GenomicPlot" ) names(queryFiles) <- "query" chipimportParams <- setImportParams( offset = 0, fix_width = 150, fix_point = "start", norm = TRUE, useScore = FALSE, outRle = TRUE, useSizeFactor = FALSE, genome = "hg19" ) queryRegion <- handle_input(queryFiles, chipimportParams, verbose = TRUE )[[1]]$query windowFiles <- system.file("extdata", "test_chip_peak_chr19.narrowPeak", package = "GenomicPlot" ) names(windowFiles) <- "narrowPeak" importParams <- setImportParams( offset = 0, fix_width = 0, fix_point = "start", norm = FALSE, useScore = FALSE, outRle = FALSE, useSizeFactor = FALSE, genome = "hg19" ) windowRegion <- handle_bed(windowFiles, importParams, verbose = TRUE)$query out <- parallel_scoreMatrixBin( queryRegions = queryRegion, windowRs = windowRegion, bin_num = 50, bin_op = "mean", weight_col = "score", stranded = TRUE, nc = 2 ) #
Plot reads or peak Coverage/base/gene of samples given in the query files around genes. The upstream and downstream windows flanking genes can be given separately, metagene plots are generated with 5'UTR, CDS and 3'UTR segments. The length of each segments are prorated according to the median length of each segments. If Input files are provided, ratio over Input is computed and displayed as well.
plot_5parts_metagene( queryFiles, gFeatures_list, inputFiles = NULL, importParams = NULL, verbose = FALSE, transform = NA, smooth = FALSE, scale = FALSE, stranded = TRUE, outPrefix = NULL, heatmap = FALSE, heatRange = NULL, rmOutlier = 0, Ylab = "Coverage/base/gene", hw = c(10, 10), nc = 2 )
plot_5parts_metagene( queryFiles, gFeatures_list, inputFiles = NULL, importParams = NULL, verbose = FALSE, transform = NA, smooth = FALSE, scale = FALSE, stranded = TRUE, outPrefix = NULL, heatmap = FALSE, heatRange = NULL, rmOutlier = 0, Ylab = "Coverage/base/gene", hw = c(10, 10), nc = 2 )
queryFiles |
a vector of sample file names. The file should be in .bam, .bed, .wig or .bw format, mixture of formats is allowed |
gFeatures_list |
a list of genomic features as output of the function
|
inputFiles |
a vector of input sample file names. The file should be in .bam, .bed, .wig or .bw format, mixture of formats is allowed |
importParams |
a list of parameters for |
verbose |
logical, indicating whether to output additional information (data used for plotting or statistical test results) |
transform |
logical, whether to log2 transform the matrix |
smooth |
logical, indicating whether the line should smoothed with a spline smoothing algorithm |
scale |
logical, indicating whether the score matrix should be scaled to the range 0:1, so that samples with different baseline can be compared |
stranded |
logical, indicating whether the strand of the feature should be considered |
outPrefix |
a string specifying output file prefix for plots (outPrefix.pdf) |
heatmap |
logical, indicating whether a heatmap of the score matrix should be generated |
heatRange |
a numeric vector with three elements, defining custom range for color ramp, default=NULL, i.e. the range is defined automatically based on the c(minimun, median, maximum) of a data matrix |
rmOutlier |
a numeric value serving as a multiplier of the MAD in Hampel filter for outliers identification, 0 indicating not removing outliers. For Gaussian distribution, use 3, adjust based on data distribution. |
Ylab |
a string for y-axis label |
hw |
a vector of two elements specifying the height and width of the output figures |
nc |
integer, number of cores for parallel processing |
a dataframe containing the data used for plotting
Shuye Pu
data(gf5_meta) queryfiles <- system.file("extdata", "treat_chr19.bam", package = "GenomicPlot") names(queryfiles) <- "clip_bam" inputfiles <- system.file("extdata", "input_chr19.bam", package = "GenomicPlot") names(inputfiles) <- "clip_input" bamimportParams <- setImportParams( offset = -1, fix_width = 0, fix_point = "start", norm = TRUE, useScore = FALSE, outRle = TRUE, useSizeFactor = FALSE, genome = "hg19" ) plot_5parts_metagene( queryFiles = queryfiles, gFeatures_list = list("metagene" = gf5_meta), inputFiles = inputfiles, scale = FALSE, verbose = FALSE, transform = NA, smooth = TRUE, stranded = TRUE, outPrefix = NULL, importParams = bamimportParams, heatmap = TRUE, rmOutlier = 0, nc = 2 )
data(gf5_meta) queryfiles <- system.file("extdata", "treat_chr19.bam", package = "GenomicPlot") names(queryfiles) <- "clip_bam" inputfiles <- system.file("extdata", "input_chr19.bam", package = "GenomicPlot") names(inputfiles) <- "clip_input" bamimportParams <- setImportParams( offset = -1, fix_width = 0, fix_point = "start", norm = TRUE, useScore = FALSE, outRle = TRUE, useSizeFactor = FALSE, genome = "hg19" ) plot_5parts_metagene( queryFiles = queryfiles, gFeatures_list = list("metagene" = gf5_meta), inputFiles = inputfiles, scale = FALSE, verbose = FALSE, transform = NA, smooth = TRUE, stranded = TRUE, outPrefix = NULL, importParams = bamimportParams, heatmap = TRUE, rmOutlier = 0, nc = 2 )
Plot correlation in reads coverage distributions along the genome for bam files. Generates a fingerprint plot, a heatmap of correlation coefficients with hierarchical clustering, a pairwise correlation plot and a PCA plot.
plot_bam_correlation( bamFiles, binSize = 1e+06, outPrefix = NULL, importParams = NULL, grouping = NULL, verbose = FALSE, hw = c(8, 8), nc = 2 )
plot_bam_correlation( bamFiles, binSize = 1e+06, outPrefix = NULL, importParams = NULL, grouping = NULL, verbose = FALSE, hw = c(8, 8), nc = 2 )
bamFiles |
a named vector of strings denoting file names |
binSize |
an integer denoting the tile width for tiling the genome, default 1000000 |
outPrefix |
a string denoting output file name in pdf format |
importParams |
a list of parameters for |
grouping |
a named vector for bamFiles group assignment |
verbose |
logical, indicating whether to output additional information |
hw |
a vector of two elements specifying the height and width of the output figures |
nc |
integer, number of cores for parallel processing |
a dataframe of read counts per bin per sample
bamQueryFiles <- c( system.file("extdata", "chip_input_chr19.bam", package = "GenomicPlot"), system.file("extdata", "chip_treat_chr19.bam", package = "GenomicPlot") ) grouping <- c(1, 2) names(bamQueryFiles) <- names(grouping) <- c("chip_input", "chip_treat") bamImportParams <- setImportParams( offset = 0, fix_width = 150, fix_point = "start", norm = FALSE, useScore = FALSE, outRle = FALSE, useSizeFactor = FALSE, genome = "hg19" ) plot_bam_correlation( bamFiles = bamQueryFiles, binSize = 100000, outPrefix = NULL, importParams = bamImportParams, nc = 2, verbose = FALSE )
bamQueryFiles <- c( system.file("extdata", "chip_input_chr19.bam", package = "GenomicPlot"), system.file("extdata", "chip_treat_chr19.bam", package = "GenomicPlot") ) grouping <- c(1, 2) names(bamQueryFiles) <- names(grouping) <- c("chip_input", "chip_treat") bamImportParams <- setImportParams( offset = 0, fix_width = 150, fix_point = "start", norm = FALSE, useScore = FALSE, outRle = FALSE, useSizeFactor = FALSE, genome = "hg19" ) plot_bam_correlation( bamFiles = bamQueryFiles, binSize = 100000, outPrefix = NULL, importParams = bamImportParams, nc = 2, verbose = FALSE )
Plot reads or peak Coverage/base/gene of samples given in the query files around reference locus (start, end or center of a genomic region) defined in the centerFiles. The upstream and downstream windows flanking loci can be given separately, a smaller window can be defined to allow statistical comparisons between samples for the same reference, or between references for a given sample. If Input files are provided, ratio over Input is computed and displayed as well.
plot_locus( queryFiles, centerFiles, txdb = NULL, ext = c(-100, 100), hl = c(0, 0), shade = TRUE, smooth = FALSE, importParams = NULL, verbose = FALSE, binSize = 10, refPoint = "center", Xlab = "Center", Ylab = "Coverage/base/gene", inputFiles = NULL, stranded = TRUE, heatmap = TRUE, scale = FALSE, outPrefix = NULL, rmOutlier = 0, transform = NA, statsMethod = "wilcox.test", heatRange = NULL, hw = c(8, 8), nc = 2 )
plot_locus( queryFiles, centerFiles, txdb = NULL, ext = c(-100, 100), hl = c(0, 0), shade = TRUE, smooth = FALSE, importParams = NULL, verbose = FALSE, binSize = 10, refPoint = "center", Xlab = "Center", Ylab = "Coverage/base/gene", inputFiles = NULL, stranded = TRUE, heatmap = TRUE, scale = FALSE, outPrefix = NULL, rmOutlier = 0, transform = NA, statsMethod = "wilcox.test", heatRange = NULL, hw = c(8, 8), nc = 2 )
queryFiles |
a vector of sample file names. The file should be in .bam, .bed, .wig or .bw format, mixture of formats is allowed |
centerFiles |
a named vector of reference file names or genomic features in c("utr3", "utr5", "cds", "intron", "exon", "transcript", "gene"). The file should be in .bed format only |
txdb |
a TxDb object defined in the GenomicFeatures package. Default NULL, needed only when genomic features are used as centerFiles. |
ext |
a vector of two integers defining upstream and downstream boundaries of the plot window, flanking the reference locus |
hl |
a vector of two integers defining upstream and downstream boundaries of the highlight window, flanking the reference locus |
shade |
logical indicating whether to place a shaded rectangle around the point of interest |
smooth |
logical, indicating whether the line should smoothed with a spline smoothing algorithm |
importParams |
a list of parameters for |
verbose |
logical, indicating whether to output additional information (data used for plotting or statistical test results) |
binSize |
an integer defines bin size for intensity calculation |
refPoint |
a string in c("start", "center", "end") |
Xlab |
a string denotes the label on x-axis |
Ylab |
a string for y-axis label |
inputFiles |
a vector of input sample file names. The file should be in .bam, .bed, .wig or .bw format, mixture of formats is allowed |
stranded |
logical, indicating whether the strand of the feature should be considered |
heatmap |
logical, indicating whether a heatmap of the score matrix should be generated |
scale |
logical, indicating whether the score matrix should be scaled to the range 0:1, so that samples with different baseline can be compared |
outPrefix |
a string specifying output file prefix for plots (outPrefix.pdf) |
rmOutlier |
a numeric value serving as a multiplier of the MAD in Hampel filter for outliers identification, 0 indicating not removing outliers. For Gaussian distribution, use 3, adjust based on data distribution. |
transform |
a string in c("log", "log2", "log10"), default = NA indicating no transformation of data matrix |
statsMethod |
a string in c("wilcox.test", "t.test"), for pair-wise group comparisons |
heatRange |
a numeric vector with three elements, defining custom range for color ramp, default=NULL, i.e. the range is defined automatically based on the c(minimun, median, maximum) of a data matrix |
hw |
a vector of two elements specifying the height and width of the output figures |
nc |
integer, number of cores for parallel processing |
a list of two dataframes containing the data used for plotting and for statistical testing
Shuye Pu
centerfiles <- c( system.file("extdata", "test_clip_peak_chr19.bed", package = "GenomicPlot"), system.file("extdata", "test_chip_peak_chr19.bed", package = "GenomicPlot")) names(centerfiles) <- c("iCLIPPeak", "SummitPeak") queryfiles <- c( system.file("extdata", "chip_treat_chr19.bam", package = "GenomicPlot")) names(queryfiles) <- c("chip_bam") inputfiles <- c( system.file("extdata", "chip_input_chr19.bam", package = "GenomicPlot")) names(inputfiles) <- c("chip_input") chipimportParams <- setImportParams( offset = 0, fix_width = 150, fix_point = "start", norm = TRUE, useScore = FALSE, outRle = TRUE, useSizeFactor = FALSE, genome = "hg19" ) plot_locus( queryFiles = queryfiles, centerFiles = centerfiles, ext = c(-500, 500), hl = c(-100, 100), shade = TRUE, smooth = TRUE, importParams = chipimportParams, binSize = 10, refPoint = "center", Xlab = "Center", inputFiles = inputfiles, stranded = TRUE, scale = FALSE, outPrefix = NULL, verbose = FALSE, transform = NA, rmOutlier = 0, Ylab = "Coverage/base/peak", statsMethod = "wilcox.test", heatmap = TRUE, nc = 2 )
centerfiles <- c( system.file("extdata", "test_clip_peak_chr19.bed", package = "GenomicPlot"), system.file("extdata", "test_chip_peak_chr19.bed", package = "GenomicPlot")) names(centerfiles) <- c("iCLIPPeak", "SummitPeak") queryfiles <- c( system.file("extdata", "chip_treat_chr19.bam", package = "GenomicPlot")) names(queryfiles) <- c("chip_bam") inputfiles <- c( system.file("extdata", "chip_input_chr19.bam", package = "GenomicPlot")) names(inputfiles) <- c("chip_input") chipimportParams <- setImportParams( offset = 0, fix_width = 150, fix_point = "start", norm = TRUE, useScore = FALSE, outRle = TRUE, useSizeFactor = FALSE, genome = "hg19" ) plot_locus( queryFiles = queryfiles, centerFiles = centerfiles, ext = c(-500, 500), hl = c(-100, 100), shade = TRUE, smooth = TRUE, importParams = chipimportParams, binSize = 10, refPoint = "center", Xlab = "Center", inputFiles = inputfiles, stranded = TRUE, scale = FALSE, outPrefix = NULL, verbose = FALSE, transform = NA, rmOutlier = 0, Ylab = "Coverage/base/peak", statsMethod = "wilcox.test", heatmap = TRUE, nc = 2 )
Plot reads or peak Coverage/base/gene of samples given in the query files around reference locus defined in the centerFiles. The upstream and downstream windows flanking loci can be given separately, a smaller window can be defined to allow statistical comparisons between reference and random loci. The loci are further divided into sub-groups that are overlapping with c("5'UTR", "CDS", "3'UTR"), "unrestricted" means all loci regardless of overlapping.
plot_locus_with_random( queryFiles, centerFiles, txdb, ext = c(-200, 200), hl = c(-100, 100), shade = FALSE, importParams = NULL, verbose = FALSE, smooth = FALSE, transform = NA, binSize = 10, refPoint = "center", Xlab = "Center", Ylab = "Coverage/base/gene", inputFiles = NULL, stranded = TRUE, scale = FALSE, outPrefix = NULL, rmOutlier = 0, n_random = 1, hw = c(8, 8), detailed = FALSE, statsMethod = "wilcox.test", nc = 2 )
plot_locus_with_random( queryFiles, centerFiles, txdb, ext = c(-200, 200), hl = c(-100, 100), shade = FALSE, importParams = NULL, verbose = FALSE, smooth = FALSE, transform = NA, binSize = 10, refPoint = "center", Xlab = "Center", Ylab = "Coverage/base/gene", inputFiles = NULL, stranded = TRUE, scale = FALSE, outPrefix = NULL, rmOutlier = 0, n_random = 1, hw = c(8, 8), detailed = FALSE, statsMethod = "wilcox.test", nc = 2 )
queryFiles |
a vector of sample file names. The file should be in .bam, .bed, .wig or .bw format, mixture of formats is allowed |
centerFiles |
a vector of reference file names. The file should be .bed format only |
txdb |
a TxDb object defined in the 'GenomicFeatures' package |
ext |
a vector of two integers defining upstream and downstream boundaries of the plot window, flanking the reference locus |
hl |
a vector of two integers defining upstream and downstream boundaries of the highlight window, flanking the reference locus |
shade |
logical indicating whether to place a shaded rectangle around the point of interest |
importParams |
a list of parameters for |
verbose |
logical, indicating whether to output additional information (data used for plotting or statistical test results) |
smooth |
logical, indicating whether the line should smoothed with a spline smoothing algorithm |
transform |
a string in c("log", "log2", "log10"), default = NA i ndicating no transformation of data matrix |
binSize |
an integer defines bin size for intensity calculation |
refPoint |
a string in c("start", "center", "end") |
Xlab |
a string denotes the label on x-axis |
Ylab |
a string for y-axis label |
inputFiles |
a vector of input sample file names. The file should be in .bam, .bed, .wig or .bw format, mixture of formats is allowed |
stranded |
logical, indicating whether the strand of the feature should be considered |
scale |
logical, indicating whether the score matrix should be scaled to the range 0:1, so that samples with different baseline can be compared |
outPrefix |
a string specifying output file prefix for plots (outPrefix.pdf) |
rmOutlier |
a numeric value serving as a multiplier of the MAD in Hampel filter for outliers identification, 0 indicating not removing outliers. For Gaussian distribution, use 3, adjust based on data distribution |
n_random |
an integer denotes the number of randomization should be performed |
hw |
a vector of two elements specifying the height and width of the output figures |
detailed |
logical, indicating whether to plot each parts of gene. |
statsMethod |
a string in c("wilcox.test", "t.test"), for pair-wise groups comparisons |
nc |
integer, number of cores for parallel processing |
a dataframe containing the data used for plotting
Shuye Pu
gtfFile <- system.file("extdata", "gencode.v19.annotation_chr19.gtf", package = "GenomicPlot" ) txdb <- custom_TxDb_from_GTF(gtfFile, genome = "hg19") bedQueryFiles <- c( system.file("extdata", "test_chip_peak_chr19.narrowPeak", package = "GenomicPlot"), system.file("extdata", "test_chip_peak_chr19.bed", package = "GenomicPlot"), system.file("extdata", "test_clip_peak_chr19.bed", package = "GenomicPlot") ) names(bedQueryFiles) <- c("NarrowPeak", "SummitPeak", "iCLIPPeak") bamQueryFiles <- system.file("extdata", "treat_chr19.bam", package = "GenomicPlot") names(bamQueryFiles) <- "clip_bam" bamInputFiles <- system.file("extdata", "input_chr19.bam", package = "GenomicPlot") names(bamInputFiles) <- "clip_input" bamImportParams <- setImportParams( offset = -1, fix_width = 0, fix_point = "start", norm = TRUE, useScore = FALSE, outRle = TRUE, useSizeFactor = FALSE, genome = "hg19" ) plot_locus_with_random( queryFiles = bamQueryFiles, centerFiles = bedQueryFiles[3], txdb = txdb, ext = c(-200, 200), hl = c(-50, 50), shade = TRUE, importParams = bamImportParams, verbose = FALSE, smooth = TRUE, transform = NA, binSize = 10, refPoint = "center", Xlab = "Center", Ylab = "Coverage/base/peak", inputFiles = bamInputFiles, stranded = TRUE, scale = FALSE, outPrefix = NULL, rmOutlier = 0, n_random = 1, hw = c(8, 8), detailed = FALSE, statsMethod = "wilcox.test", nc = 2)
gtfFile <- system.file("extdata", "gencode.v19.annotation_chr19.gtf", package = "GenomicPlot" ) txdb <- custom_TxDb_from_GTF(gtfFile, genome = "hg19") bedQueryFiles <- c( system.file("extdata", "test_chip_peak_chr19.narrowPeak", package = "GenomicPlot"), system.file("extdata", "test_chip_peak_chr19.bed", package = "GenomicPlot"), system.file("extdata", "test_clip_peak_chr19.bed", package = "GenomicPlot") ) names(bedQueryFiles) <- c("NarrowPeak", "SummitPeak", "iCLIPPeak") bamQueryFiles <- system.file("extdata", "treat_chr19.bam", package = "GenomicPlot") names(bamQueryFiles) <- "clip_bam" bamInputFiles <- system.file("extdata", "input_chr19.bam", package = "GenomicPlot") names(bamInputFiles) <- "clip_input" bamImportParams <- setImportParams( offset = -1, fix_width = 0, fix_point = "start", norm = TRUE, useScore = FALSE, outRle = TRUE, useSizeFactor = FALSE, genome = "hg19" ) plot_locus_with_random( queryFiles = bamQueryFiles, centerFiles = bedQueryFiles[3], txdb = txdb, ext = c(-200, 200), hl = c(-50, 50), shade = TRUE, importParams = bamImportParams, verbose = FALSE, smooth = TRUE, transform = NA, binSize = 10, refPoint = "center", Xlab = "Center", Ylab = "Coverage/base/peak", inputFiles = bamInputFiles, stranded = TRUE, scale = FALSE, outPrefix = NULL, rmOutlier = 0, n_random = 1, hw = c(8, 8), detailed = FALSE, statsMethod = "wilcox.test", nc = 2)
This function takes a list of up to 4 bed file names, and produce a Venn diagram
plot_overlap_bed( bedList, outPrefix = NULL, importParams = NULL, pairOnly = TRUE, stranded = TRUE, hw = c(8, 8), verbose = FALSE )
plot_overlap_bed( bedList, outPrefix = NULL, importParams = NULL, pairOnly = TRUE, stranded = TRUE, hw = c(8, 8), verbose = FALSE )
bedList |
a named list of bed files, with list length = 2, 3 or 4 |
outPrefix |
a string for plot file name |
importParams |
a list of parameters for |
pairOnly |
logical, indicating whether only pair-wise overlap is desirable |
stranded |
logical, indicating whether the feature is stranded. For nonstranded feature, only "*" is accepted as strand |
hw |
a vector of two elements specifying the height and width of the output figures |
verbose |
logical, indicating whether to output additional information |
a ggplot object
Shuye Pu
queryFiles <- c( system.file("extdata", "test_chip_peak_chr19.narrowPeak", package = "GenomicPlot" ), system.file("extdata", "test_chip_peak_chr19.bed", package = "GenomicPlot" ), system.file("extdata", "test_clip_peak_chr19.bed", package = "GenomicPlot" ) ) names(queryFiles) <- c("narrowPeak", "summitPeak", "clipPeak") bedimportParams <- setImportParams( offset = 0, fix_width = 100, fix_point = "center", norm = FALSE, useScore = FALSE, outRle = FALSE, useSizeFactor = FALSE, genome = "hg19" ) plot_overlap_bed( bedList = queryFiles, importParams = bedimportParams, pairOnly = FALSE, stranded = FALSE, outPrefix = NULL )
queryFiles <- c( system.file("extdata", "test_chip_peak_chr19.narrowPeak", package = "GenomicPlot" ), system.file("extdata", "test_chip_peak_chr19.bed", package = "GenomicPlot" ), system.file("extdata", "test_clip_peak_chr19.bed", package = "GenomicPlot" ) ) names(queryFiles) <- c("narrowPeak", "summitPeak", "clipPeak") bedimportParams <- setImportParams( offset = 0, fix_width = 100, fix_point = "center", norm = FALSE, useScore = FALSE, outRle = FALSE, useSizeFactor = FALSE, genome = "hg19" ) plot_overlap_bed( bedList = queryFiles, importParams = bedimportParams, pairOnly = FALSE, stranded = FALSE, outPrefix = NULL )
This function takes a list of (at most 4) tab-delimited file names, and produce a Venn diagram
plot_overlap_genes( fileList, columnList, pairOnly = TRUE, hw = c(8, 8), outPrefix = NULL )
plot_overlap_genes( fileList, columnList, pairOnly = TRUE, hw = c(8, 8), outPrefix = NULL )
fileList |
a named list of tab-delimited files |
columnList |
a vector of integers denoting the columns that have gene names in the list of files |
pairOnly |
logical, indicating whether only pair-wise overlap is desirable |
hw |
a vector of two elements specifying the height and width of the output figures |
outPrefix |
a string for plot file name |
a list of vectors of gene names
Shuye Pu
testfile1 <- system.file("extdata", "test_file1.txt", package = "GenomicPlot" ) testfile2 <- system.file("extdata", "test_file2.txt", package = "GenomicPlot" ) testfile3 <- system.file("extdata", "test_file3.txt", package = "GenomicPlot" ) testfile4 <- system.file("extdata", "test_file4.txt", package = "GenomicPlot" ) testfiles <- c(testfile1, testfile2, testfile3, testfile4) names(testfiles) <- c("test1", "test2", "test3", "test4") plot_overlap_genes(testfiles, c(3, 2, 1, 1), pairOnly = FALSE)
testfile1 <- system.file("extdata", "test_file1.txt", package = "GenomicPlot" ) testfile2 <- system.file("extdata", "test_file2.txt", package = "GenomicPlot" ) testfile3 <- system.file("extdata", "test_file3.txt", package = "GenomicPlot" ) testfile4 <- system.file("extdata", "test_file4.txt", package = "GenomicPlot" ) testfiles <- c(testfile1, testfile2, testfile3, testfile4) names(testfiles) <- c("test1", "test2", "test3", "test4") plot_overlap_genes(testfiles, c(3, 2, 1, 1), pairOnly = FALSE)
Produce a table of transcripts targeted by peaks, and generate plots for target gene types, and peak distribution in genomic features
plot_peak_annotation( peakFile, gtfFile, importParams = NULL, fiveP = -1000, dsTSS = 300, threeP = 1000, simple = FALSE, outPrefix = NULL, verbose = FALSE, hw = c(8, 8), nc = 2 )
plot_peak_annotation( peakFile, gtfFile, importParams = NULL, fiveP = -1000, dsTSS = 300, threeP = 1000, simple = FALSE, outPrefix = NULL, verbose = FALSE, hw = c(8, 8), nc = 2 )
peakFile |
a string denoting the peak file name, only .bed format is allowed |
gtfFile |
path to a gene annotation gtf file with gene_biotype field |
importParams |
a list of parameters for |
fiveP |
extension out of the 5' boundary of genes for defining promoter: fiveP TSS + dsTSS |
dsTSS |
extension downstream of TSS for defining promoter: fiveP TSS + dsTSS |
threeP |
extension out of the 3' boundary of genes for defining termination region: -0 TTS + threeP |
simple |
logical, indicating whether 5'UTR, CDS and 3'UTR are annotated in the gtfFile |
outPrefix |
a string denoting output file name in pdf format |
verbose |
logical, to indicate whether to write the annotation results to a file |
hw |
a vector of two elements specifying the height and width of the output figures |
nc |
number of cores for parallel processing |
a list of three dataframes, 'annotation' is the annotation of peaks into gene types, 'stat' is the summary stats for pie chart, 'simplified' is the summary stats excluding intron
Shuye Pu
gtfFile <- system.file("extdata", "gencode.v19.annotation_chr19.gtf", package = "GenomicPlot" ) centerFile <- system.file("extdata", "test_chip_peak_chr19.bed", package = "GenomicPlot" ) names(centerFile) <- c("summitPeak") bedimportParams <- setImportParams( offset = 0, fix_width = 100, fix_point = "center", norm = FALSE, useScore = FALSE, outRle = FALSE, useSizeFactor = FALSE, genome = "hg19" ) plot_peak_annotation( peakFile = centerFile, gtfFile = gtfFile, importParams = bedimportParams, fiveP = -2000, dsTSS = 200, threeP = 2000, simple = FALSE )
gtfFile <- system.file("extdata", "gencode.v19.annotation_chr19.gtf", package = "GenomicPlot" ) centerFile <- system.file("extdata", "test_chip_peak_chr19.bed", package = "GenomicPlot" ) names(centerFile) <- c("summitPeak") bedimportParams <- setImportParams( offset = 0, fix_width = 100, fix_point = "center", norm = FALSE, useScore = FALSE, outRle = FALSE, useSizeFactor = FALSE, genome = "hg19" ) plot_peak_annotation( peakFile = centerFile, gtfFile = gtfFile, importParams = bedimportParams, fiveP = -2000, dsTSS = 200, threeP = 2000, simple = FALSE )
Plot reads or peak Coverage/base/gene of samples given in the query files inside regions defined in the centerFiles. The upstream and downstream flanking windows can be given separately. If Input files are provided, ratio over Input is computed and displayed as well.
plot_region( queryFiles, centerFiles, txdb = NULL, regionName = "region", inputFiles = NULL, nbins = 100, importParams = NULL, verbose = FALSE, scale = FALSE, heatmap = FALSE, fiveP = -1000, threeP = 1000, smooth = FALSE, stranded = TRUE, transform = NA, outPrefix = NULL, rmOutlier = 0, heatRange = NULL, Ylab = "Coverage/base/gene", statsMethod = "wilcox.test", hw = c(8, 8), nc = 2 )
plot_region( queryFiles, centerFiles, txdb = NULL, regionName = "region", inputFiles = NULL, nbins = 100, importParams = NULL, verbose = FALSE, scale = FALSE, heatmap = FALSE, fiveP = -1000, threeP = 1000, smooth = FALSE, stranded = TRUE, transform = NA, outPrefix = NULL, rmOutlier = 0, heatRange = NULL, Ylab = "Coverage/base/gene", statsMethod = "wilcox.test", hw = c(8, 8), nc = 2 )
queryFiles |
a named vector of sample file names. The file should be in .bam, .bed, .wig or .bw format, mixture of formats is allowed |
centerFiles |
a named vector of reference file names or genomic features in c("utr3", "utr5", "cds", "intron", "exon", "transcript", "gene"). The file should be in .bed format only |
txdb |
a TxDb object defined in the GenomicFeatures package. Default NULL, needed only when genomic features are used as centerFiles. |
regionName |
a string specifying the name of the center region in the plots |
inputFiles |
a named vector of input sample file names. The file should be in .bam, .bed, .wig or .bw format, mixture of formats is allowed |
nbins |
an integer defines the total number of bins |
importParams |
a list of parameters for |
verbose |
logical, indicating whether to output additional information (data used for plotting or statistical test results) |
scale |
logical, indicating whether the score matrix should be scaled to the range 0:1, so that samples with different baseline can be compared |
heatmap |
logical, indicating whether a heatmap of the score matrix should be generated |
fiveP |
an integer, indicating extension out or inside of the 5' boundary of gene by negative or positive number |
threeP |
an integer, indicating extension out or inside of the 5' boundary of gene by positive or negative number |
smooth |
logical, indicating whether the line should smoothed with a spline smoothing algorithm |
stranded |
logical, indicating whether the strand of the feature should be considered |
transform |
a string in c("log", "log2", "log10"), default = NA indicating no transformation of data matrix |
outPrefix |
a string specifying output file prefix for plots (outPrefix.pdf) |
rmOutlier |
a numeric value serving as a multiplier of the MAD in Hampel filter for outliers identification, 0 indicating not removing outliers. For Gaussian distribution, use 3, adjust based on data distribution |
heatRange |
a numeric vector with three elements, defining custom range for color ramp, default=NULL, i.e. the range is defined automatically based on the c(minimun, median, maximum) of a data matrix |
Ylab |
a string for y-axis label |
statsMethod |
a string in c("wilcox.test", "t.test"), for pair-wise group comparisons |
hw |
a vector of two elements specifying the height and width of the output figures |
nc |
integer, number of cores for parallel processing |
a dataframe containing the data used for plotting
Shuye Pu
centerfiles <- system.file("extdata", "test_chip_peak_chr19.narrowPeak", package = "GenomicPlot") names(centerfiles) <- c("NarrowPeak") queryfiles <- c( system.file("extdata", "chip_treat_chr19.bam", package = "GenomicPlot")) names(queryfiles) <- c("chip_bam") inputfiles <- c( system.file("extdata", "chip_input_chr19.bam", package = "GenomicPlot")) names(inputfiles) <- c("chip_input") chipimportParams <- setImportParams( offset = 0, fix_width = 150, fix_point = "start", norm = TRUE, useScore = FALSE, outRle = TRUE, useSizeFactor = FALSE, genome = "hg19", chr = c("chr19")) plot_region( queryFiles = queryfiles, centerFiles = centerfiles, inputFiles = inputfiles, nbins = 100, heatmap = TRUE, scale = FALSE, regionName = "narrowPeak", importParams = chipimportParams, verbose = FALSE, fiveP = -500, threeP = 500, smooth = TRUE, transform = "log2", stranded = TRUE, outPrefix = NULL, Ylab = "Coverage/base/peak", rmOutlier = 0, nc = 2 )
centerfiles <- system.file("extdata", "test_chip_peak_chr19.narrowPeak", package = "GenomicPlot") names(centerfiles) <- c("NarrowPeak") queryfiles <- c( system.file("extdata", "chip_treat_chr19.bam", package = "GenomicPlot")) names(queryfiles) <- c("chip_bam") inputfiles <- c( system.file("extdata", "chip_input_chr19.bam", package = "GenomicPlot")) names(inputfiles) <- c("chip_input") chipimportParams <- setImportParams( offset = 0, fix_width = 150, fix_point = "start", norm = TRUE, useScore = FALSE, outRle = TRUE, useSizeFactor = FALSE, genome = "hg19", chr = c("chr19")) plot_region( queryFiles = queryfiles, centerFiles = centerfiles, inputFiles = inputfiles, nbins = 100, heatmap = TRUE, scale = FALSE, regionName = "narrowPeak", importParams = chipimportParams, verbose = FALSE, fiveP = -500, threeP = 500, smooth = TRUE, transform = "log2", stranded = TRUE, outPrefix = NULL, Ylab = "Coverage/base/peak", rmOutlier = 0, nc = 2 )
Plot reads or peak Coverage/base/gene of samples given in the query files around start and end of custom features. The upstream and downstream windows can be given separately, within the window, a smaller window can be defined to highlight region of interest. A line plot will be displayed for both start and end of feature. If Input files are provided, ratio over Input is computed and displayed as well.
plot_start_end( queryFiles, inputFiles = NULL, centerFiles, txdb = NULL, importParams = NULL, binSize = 10, insert = 0, verbose = FALSE, ext = c(-500, 100, -100, 500), hl = c(-50, 50, -50, 50), stranded = TRUE, scale = FALSE, smooth = FALSE, rmOutlier = 0, outPrefix = NULL, transform = NA, shade = TRUE, Ylab = "Coverage/base/gene", hw = c(8, 8), nc = 2 )
plot_start_end( queryFiles, inputFiles = NULL, centerFiles, txdb = NULL, importParams = NULL, binSize = 10, insert = 0, verbose = FALSE, ext = c(-500, 100, -100, 500), hl = c(-50, 50, -50, 50), stranded = TRUE, scale = FALSE, smooth = FALSE, rmOutlier = 0, outPrefix = NULL, transform = NA, shade = TRUE, Ylab = "Coverage/base/gene", hw = c(8, 8), nc = 2 )
queryFiles |
a vector of sample file names. The file should be in .bam, .bed, .wig or .bw format, mixture of formats is allowed |
inputFiles |
a vector of input sample file names. The file should be in .bam, .bed, .wig or .bw format, mixture of formats is allowed |
centerFiles |
bed files that define the custom features, or features in c("utr3", "utr5", "cds", "intron", "exon", "transcript", "gene"), multiple features are allowed. |
txdb |
a TxDb object defined in the GenomicFeatures package. Default NULL, needed only when genomic features are used in the place of centerFiles. |
importParams |
a list of parameters for |
binSize |
an integer defines bin size for intensity calculation |
insert |
an integer specifies the length of the center regions to be included, in addition to the start and end of the feature |
verbose |
logical, whether to output additional information (including data used for plotting or statistical test results) |
ext |
a vector of four integers defining upstream and downstream boundaries of the plot window, flanking the start and end of features |
hl |
a vector of four integers defining upstream and downstream boundaries of the highlight window, flanking the start and end of features |
stranded |
logical, indicating whether the strand of the feature should be considered |
scale |
logical, indicating whether the score matrix should be scaled to the range 0:1, so that samples with different baseline can be compared |
smooth |
logical, indicating whether the line should smoothed with a spline smoothing algorithm |
rmOutlier |
a numeric value serving as a multiplier of the MAD in Hampel filter for outliers identification, 0 indicating not removing outliers. For Gaussian distribution, use 3, adjust based on data distribution |
outPrefix |
a string specifying output file prefix for plots (outPrefix.pdf) |
transform |
a string in c("log", "log2", "log10"), default = NA, indicating no transformation of data matrix |
shade |
logical indicating whether to place a shaded rectangle around the point of interest |
Ylab |
a string for y-axis label |
hw |
a vector of two elements specifying the height and width of the output figures |
nc |
integer, number of cores for parallel processing |
a list of two objects, the first is a GRanges object, the second is a GRangesList object
Shuye Pu
gtfFile <- system.file("extdata", "gencode.v19.annotation_chr19.gtf", package = "GenomicPlot" ) txdb <- custom_TxDb_from_GTF(gtfFile, genome = "hg19") bamQueryFiles <- system.file("extdata", "treat_chr19.bam", package = "GenomicPlot") names(bamQueryFiles) <- "clip_bam" bamInputFiles <- system.file("extdata", "input_chr19.bam", package = "GenomicPlot") names(bamInputFiles) <- "clip_input" bamimportParams <- setImportParams( offset = -1, fix_width = 0, fix_point = "start", norm = TRUE, useScore = FALSE, outRle = TRUE, useSizeFactor = FALSE, genome = "hg19" ) plot_start_end( queryFiles = bamQueryFiles, inputFiles = bamInputFiles, txdb = txdb, centerFiles = "intron", binSize = 10, importParams = bamimportParams, ext = c(-500, 200, -200, 500), hl = c(-100, 100, -100, 100), insert = 100, stranded = TRUE, scale = FALSE, smooth = TRUE, transform = "log2", outPrefix = NULL, nc = 2 )
gtfFile <- system.file("extdata", "gencode.v19.annotation_chr19.gtf", package = "GenomicPlot" ) txdb <- custom_TxDb_from_GTF(gtfFile, genome = "hg19") bamQueryFiles <- system.file("extdata", "treat_chr19.bam", package = "GenomicPlot") names(bamQueryFiles) <- "clip_bam" bamInputFiles <- system.file("extdata", "input_chr19.bam", package = "GenomicPlot") names(bamInputFiles) <- "clip_input" bamimportParams <- setImportParams( offset = -1, fix_width = 0, fix_point = "start", norm = TRUE, useScore = FALSE, outRle = TRUE, useSizeFactor = FALSE, genome = "hg19" ) plot_start_end( queryFiles = bamQueryFiles, inputFiles = bamInputFiles, txdb = txdb, centerFiles = "intron", binSize = 10, importParams = bamimportParams, ext = c(-500, 200, -200, 500), hl = c(-100, 100, -100, 100), insert = 100, stranded = TRUE, scale = FALSE, smooth = TRUE, transform = "log2", outPrefix = NULL, nc = 2 )
Plot reads or peak Coverage/base/gene of samples given in the query files around start, end and center of genomic features or custom feature given in a .bed file. The upstream and downstream windows can be given separately. If Input files are provided, ratio over Input is computed and displayed as well. A random feature can be generated to serve as a background for contrasting.
plot_start_end_with_random( queryFiles, inputFiles = NULL, txdb = NULL, centerFile, importParams = NULL, binSize = 10, insert = 0, verbose = FALSE, ext = c(-500, 200, -200, 500), hl = c(-50, 50, -50, 50), randomize = FALSE, stranded = TRUE, scale = FALSE, smooth = FALSE, rmOutlier = 0, outPrefix = NULL, transform = NA, shade = TRUE, nc = 2, hw = c(8, 8), Ylab = "Coverage/base/gene" )
plot_start_end_with_random( queryFiles, inputFiles = NULL, txdb = NULL, centerFile, importParams = NULL, binSize = 10, insert = 0, verbose = FALSE, ext = c(-500, 200, -200, 500), hl = c(-50, 50, -50, 50), randomize = FALSE, stranded = TRUE, scale = FALSE, smooth = FALSE, rmOutlier = 0, outPrefix = NULL, transform = NA, shade = TRUE, nc = 2, hw = c(8, 8), Ylab = "Coverage/base/gene" )
queryFiles |
a vector of sample file names. The file should be in .bam, .bed, .wig or .bw format, mixture of formats is allowed |
inputFiles |
a vector of input sample file names. The file should be in .bam, .bed, .wig or .bw format, mixture of formats is allowed |
txdb |
a TxDb object defined in the GenomicFeatures package. Default NULL, needed only when genomic features are used in the place of centerFile. |
centerFile |
a bed file that defines the custom feature, or a feature in c("utr3", "utr5", "cds", "intron", "exon", "transcript", "gene"), multiple features are not allowed. |
importParams |
a list of parameters for |
binSize |
an integer defines bin size for intensity calculation |
insert |
an integer specifies the length of the center regions to be included, in addition to the start and end of the feature |
verbose |
logical, whether to output additional information (data used for plotting or statistical test results) |
ext |
a vector of four integers defining upstream and downstream boundaries of the plot window, flanking the start and end of features |
hl |
a vector of four integers defining upstream and downstream boundaries of the highlight window, flanking the start and end of features |
randomize |
logical, indicating if randomized feature should generated and used as a contrast to the real feature. The ransomized feature is generated by shifting the given feature with a random offset within the range of ext[1] and ext[4] |
stranded |
logical, indicating whether the strand of the feature s hould be considered |
scale |
logical, indicating whether the score matrix should be scaled to the range 0:1, so that samples with different baseline can be compared |
smooth |
logical, indicating whether the line should smoothed with a spline smoothing algorithm |
rmOutlier |
a numeric value serving as a multiplier of the MAD in Hampel filter for outliers identification, 0 indicating not removing outliers. For Gaussian distribution, use 3, adjust based on data distribution |
outPrefix |
a string specifying output file prefix for plots (outPrefix.pdf) |
transform |
a string in c("log", "log2", "log10"), default = NA indicating no transformation of data matrix |
shade |
logical indicating whether to place a shaded rectangle around the point of interest |
nc |
integer, number of cores for parallel processing |
hw |
a vector of two elements specifying the height and width of the output figures |
Ylab |
a string for y-axis label |
a list of two objects, the first is a GRanges object, the second is a GRangesList object
Shuye Pu
gtfFile <- system.file("extdata", "gencode.v19.annotation_chr19.gtf", package = "GenomicPlot" ) txdb <- custom_TxDb_from_GTF(gtfFile, genome = "hg19") bamQueryFiles <- system.file("extdata", "treat_chr19.bam", package = "GenomicPlot") names(bamQueryFiles) <- "clip_bam" bamInputFiles <- system.file("extdata", "input_chr19.bam", package = "GenomicPlot") names(bamInputFiles) <- "clip_input" bamImportParams <- setImportParams( offset = -1, fix_width = 0, fix_point = "start", norm = TRUE, useScore = FALSE, outRle = TRUE, useSizeFactor = FALSE, genome = "hg19" ) plot_start_end_with_random( queryFiles = bamQueryFiles, inputFiles = bamInputFiles, txdb = txdb, centerFile = "intron", binSize = 10, importParams = bamImportParams, ext = c(-100, 100, -100, 100), hl = c(-20, 20, -20, 20), insert = 100, stranded = TRUE, scale = FALSE, smooth = TRUE, verbose = TRUE, transform = "log2", outPrefix = NULL, randomize = TRUE, nc = 2 )
gtfFile <- system.file("extdata", "gencode.v19.annotation_chr19.gtf", package = "GenomicPlot" ) txdb <- custom_TxDb_from_GTF(gtfFile, genome = "hg19") bamQueryFiles <- system.file("extdata", "treat_chr19.bam", package = "GenomicPlot") names(bamQueryFiles) <- "clip_bam" bamInputFiles <- system.file("extdata", "input_chr19.bam", package = "GenomicPlot") names(bamInputFiles) <- "clip_input" bamImportParams <- setImportParams( offset = -1, fix_width = 0, fix_point = "start", norm = TRUE, useScore = FALSE, outRle = TRUE, useSizeFactor = FALSE, genome = "hg19" ) plot_start_end_with_random( queryFiles = bamQueryFiles, inputFiles = bamInputFiles, txdb = txdb, centerFile = "intron", binSize = 10, importParams = bamImportParams, ext = c(-100, 100, -100, 100), hl = c(-20, 20, -20, 20), insert = 100, stranded = TRUE, scale = FALSE, smooth = TRUE, verbose = TRUE, transform = "log2", outPrefix = NULL, randomize = TRUE, nc = 2 )
This is a helper function for 'plot_3parts_metagene', used to speed up plotting of multiple data sets with the same configuration. Use featureName='transcript' and meta=FALSE and longest=TRUE for genes.
prepare_3parts_genomic_features( txdb, featureName = "transcript", meta = TRUE, nbins = 100, fiveP = -1000, threeP = 1000, longest = TRUE, protein_coding = TRUE, verbose = FALSE )
prepare_3parts_genomic_features( txdb, featureName = "transcript", meta = TRUE, nbins = 100, fiveP = -1000, threeP = 1000, longest = TRUE, protein_coding = TRUE, verbose = FALSE )
txdb |
a TxDb object defined in the GenomicFeatures package |
featureName |
one of the gene feature in c("utr3", "utr5", "cds", "transcript") |
meta |
logical, indicating whether a metagene (intron excluded) or genomic (intron included) plot should be produced |
nbins |
an integer defines the total number of bins |
fiveP |
extension out of the 5' boundary of gene |
threeP |
extension out of the 3' boundary of gene |
longest |
logical, indicating whether the output should be limited to the longest transcript of each gene |
protein_coding |
logical, indicating whether to limit to protein_coding genes |
verbose |
logical, whether to output additional information |
a named list with the elements c("windowRs", "nbins", "scaled_bins", "fiveP", "threeP", "meta", "longest")
Shuye Pu
gtfFile <- system.file("extdata", "gencode.v19.annotation_chr19.gtf", package = "GenomicPlot" ) txdb <- custom_TxDb_from_GTF(gtfFile, genome = "hg19") gf <- prepare_3parts_genomic_features(txdb, meta = FALSE, nbins = 100, fiveP = -1000, threeP = 1000, longest = FALSE )
gtfFile <- system.file("extdata", "gencode.v19.annotation_chr19.gtf", package = "GenomicPlot" ) txdb <- custom_TxDb_from_GTF(gtfFile, genome = "hg19") gf <- prepare_3parts_genomic_features(txdb, meta = FALSE, nbins = 100, fiveP = -1000, threeP = 1000, longest = FALSE )
This is a helper function for 'plot_5parts_metagene', used to speed up plotting of multiple data sets with the same configuration. Only protein-coding genes are considered.
prepare_5parts_genomic_features( txdb, meta = TRUE, nbins = 100, fiveP = -1000, threeP = 1000, longest = TRUE, verbose = FALSE, subsetTx = NULL )
prepare_5parts_genomic_features( txdb, meta = TRUE, nbins = 100, fiveP = -1000, threeP = 1000, longest = TRUE, verbose = FALSE, subsetTx = NULL )
txdb |
a TxDb object defined in the GenomicFeatures package |
meta |
logical, indicating whether a metagene (intron excluded) or gene (intron included) plot should be produced |
nbins |
an integer defines the total number of bins |
fiveP |
extension out of the 5' boundary of gene |
threeP |
extension out of the 3' boundary of gene |
longest |
logical, indicating whether the output should be limited to the longest transcript of each gene |
verbose |
logical, whether to output additional information |
subsetTx |
a vector of transcript names (eg. ENST00000587541.1) for subsetting the genome |
a named list with the elements c("windowRs", "nbins", "scaled_bins", "fiveP", "threeP", "meta", "longest")
Shuye Pu
gtfFile <- system.file("extdata", "gencode.v19.annotation_chr19.gtf", package = "GenomicPlot" ) txdb <- custom_TxDb_from_GTF(gtfFile, genome = "hg19") gf <- prepare_5parts_genomic_features(txdb, meta = TRUE, nbins = 100, fiveP = -0, threeP = 0, longest = TRUE )
gtfFile <- system.file("extdata", "gencode.v19.annotation_chr19.gtf", package = "GenomicPlot" ) txdb <- custom_TxDb_from_GTF(gtfFile, genome = "hg19") gf <- prepare_5parts_genomic_features(txdb, meta = TRUE, nbins = 100, fiveP = -0, threeP = 0, longest = TRUE )
This is a helper function for manipulate the score matrix produced by ScoreMatrix or ScoreMatrinBin functions defined in the 'genomation' package. To facilitate downstream analysis, imputation of missing values is performed implicitly when log transformation is required, otherwise missing values are replaced with 0.
process_scoreMatrix( fullmatrix, scale = FALSE, rmOutlier = 0, transform = NA, verbose = FALSE )
process_scoreMatrix( fullmatrix, scale = FALSE, rmOutlier = 0, transform = NA, verbose = FALSE )
fullmatrix |
a numeric matrix, with bins in columns and genomic windows in rows |
scale |
logical, indicating whether the score matrix should be scaled to the range 0:1, so that samples with different baseline can be compared |
rmOutlier |
a numeric value to multiple the 'mad' when detecting outliers, can be adjusted based on data. Default 0, indicating not to remove outliers. |
transform |
a string in c("log", "log2", "log10"), default = NA indicating no transformation of data matrix |
verbose |
logical, indicating whether to output additional information (data used for plotting or statistical test results) |
If inputFiles for the plotting function is null, all operations (scale, rmOutlier and transform) can be applied to the score matrix, in the order of rmOutlier -> transform -> scale. When inputFiles are provided, only rmOutlier can be applied to the score matrix, as transform and scale will affect ratio calculation, especially when log2 transformation of the ratio is intended. However, all these operations can be applied to the resulting ratio matrix. In order to avoid introducing distortion into the processed data, use caution when applying these operations.
a numeric matrix with the same dimension as the fullmatrix
Shuye Pu
fullMatrix <- matrix(rlnorm(100), ncol = 10) for (i in 5:6) { fullMatrix[i, 4:7] <- NaN fullMatrix[i + 1, 4:7] <- NA fullMatrix[i + 2, 4:7] <- -Inf fullMatrix[i - 1, 4:7] <- 0 fullMatrix[i - 2, 1:3] <- Inf } fullMatrix[9, 4:7] <- runif(4) + 90 wo <- process_scoreMatrix(fullMatrix, rmOutlier = 3, verbose = TRUE) tf <- process_scoreMatrix(fullMatrix, rmOutlier = 0, transform = "log2", verbose = TRUE ) scaled <- process_scoreMatrix(fullMatrix, scale = TRUE, verbose = TRUE)
fullMatrix <- matrix(rlnorm(100), ncol = 10) for (i in 5:6) { fullMatrix[i, 4:7] <- NaN fullMatrix[i + 1, 4:7] <- NA fullMatrix[i + 2, 4:7] <- -Inf fullMatrix[i - 1, 4:7] <- 0 fullMatrix[i - 2, 1:3] <- Inf } fullMatrix[9, 4:7] <- runif(4) + 90 wo <- process_scoreMatrix(fullMatrix, rmOutlier = 3, verbose = TRUE) tf <- process_scoreMatrix(fullMatrix, rmOutlier = 0, transform = "log2", verbose = TRUE ) scaled <- process_scoreMatrix(fullMatrix, scale = TRUE, verbose = TRUE)
The rows of a input numeric matrix is ordered based row sum, row maximum, or hierarchical clustering of the rows with euclidean distance and centroid linkage. This a helper function for drawing matrix heatmaps.
rank_rows(fullmatrix, ranking = "Hierarchical")
rank_rows(fullmatrix, ranking = "Hierarchical")
fullmatrix |
a numeric matrix |
ranking |
a string in c("Sum", "Max", "Hierarchical", "None") |
a numeric matrix
Shuye Pu
fullMatrix <- matrix(rnorm(100), ncol = 10) for (i in 5:8) { fullMatrix[i, 4:7] <- runif(4) + i } apply(fullMatrix, 1, sum) ranked <- rank_rows(fullMatrix, ranking = "Sum") apply(ranked, 1, sum)
fullMatrix <- matrix(rnorm(100), ncol = 10) for (i in 5:8) { fullMatrix[i, 4:7] <- runif(4) + i } apply(fullMatrix, 1, sum) ranked <- rank_rows(fullMatrix, ranking = "Sum") apply(ranked, 1, sum)
This is a helper function for dealing with excessively high values using Hampel filter. If outliers are detected, replace the outliers with the up bound = median(rowmax) + multiplier*mad(rowmax). This function is experimental. For data with normal distribution, the multiplier is usually set at 3. As the read counts data distribution is highly skewed, it is difficult to define a boundary for outliers, try the multiplier values between 10 to 1000.
rm_outlier(fullmatrix, verbose = FALSE, multiplier = 1000)
rm_outlier(fullmatrix, verbose = FALSE, multiplier = 1000)
fullmatrix |
a numeric matrix, with bins in columns and genomic windows in rows |
verbose |
logical, whether to output the outlier information to the console |
multiplier |
a numeric value to multiple the 'mad', default 1000, maybe adjusted based on data |
a numeric matrix
Shuye Pu
fullmatrix <- matrix(rnorm(100), ncol = 10) maxm <- max(fullmatrix) fullmatrix[3, 9] <- maxm + 1000 fullmatrix[8, 1] <- maxm + 500 rm_outlier(fullmatrix, verbose = TRUE, multiplier = 100) rm_outlier(fullmatrix, verbose = TRUE, multiplier = 1000)
fullmatrix <- matrix(rnorm(100), ncol = 10) maxm <- max(fullmatrix) fullmatrix[3, 9] <- maxm + 1000 fullmatrix[8, 1] <- maxm + 500 rm_outlier(fullmatrix, verbose = TRUE, multiplier = 100) rm_outlier(fullmatrix, verbose = TRUE, multiplier = 1000)
This is a helper function for making Seqinfo objects, which is a components of GRanges and TxDb objects. It also serves to unify seqlevels between GRanges and TxDb objects. Mitochondrial chromosome is not included.
set_seqinfo(genome = "hg19")
set_seqinfo(genome = "hg19")
genome |
a string denoting the genome name and version |
a Seqinfo object defined in the GenomeInfoDb package.
Shuye Pu
out <- set_seqinfo(genome = "hg19")
out <- set_seqinfo(genome = "hg19")
handle_input
functionThis function save as a template for setting up import parameters for reading NGS data, it provides default values for each parameter.
setImportParams( offset = 0, fix_width = 0, fix_point = "start", norm = FALSE, useScore = FALSE, outRle = TRUE, useSizeFactor = FALSE, saveRds = FALSE, genome = "hg19", val = 4, skip = 0, chr = NULL )
setImportParams( offset = 0, fix_width = 0, fix_point = "start", norm = FALSE, useScore = FALSE, outRle = TRUE, useSizeFactor = FALSE, saveRds = FALSE, genome = "hg19", val = 4, skip = 0, chr = NULL )
offset |
an integer, -1 indicating the bam reads should be shrunk to the -1 position at the 5'end of the reads, which corresponds to the cross link site in iCLIP. |
fix_width |
an integer, for bam file, defines how long the reads should be extended from the start position, ignored when offset is not 0; for bed files, defines the width of each interval centering on the 'fix_point'. |
fix_point |
a string in c("start", "end", "center") denoting the anchor point for extension, ignored when offset is not 0. |
norm |
logical, indicating whether the output RleList should be normalized to RPM using library sizes. |
useScore |
logical, indicating whether the 'score' column of the bed file should be used in calculation of coverage. |
outRle |
logical, indicating whether the output should be RleList objects or GRanges objects. |
useSizeFactor |
logical, indicating whether the library size should be adjusted with a size factor, using the 'calcNormFactors' function in the edgeR package, only applicable to ChIPseq data. |
saveRds |
logical, indicating whether the results of handle_input should be saved for fast reloading |
genome |
a string denoting the genome name and version. |
val |
integer, indicating the column that will be used as score/value. default 4 for bedGraph. |
skip |
integer, indicating how many rows will be skipped before reading in data, default 0. |
chr |
a vector of string, denoting chromosomes to be included, like c("chr1", "chr2", "chrX"), default NULL indicating all chromosomes will be included. |
a list of nine elements
Shuye Pu
importParams1 <- setImportParams() importParams2 <- setImportParams(offset = -1, saveRds = TRUE)
importParams1 <- setImportParams() importParams2 <- setImportParams(offset = -1, saveRds = TRUE)
Creating a virtual cluster for parallel processing
start_parallel(nc = 2, verbose = FALSE)
start_parallel(nc = 2, verbose = FALSE)
nc |
a positive integer greater than 1, denoting number of cores requested |
verbose |
logical, whether to output additional information |
an object of class c("SOCKcluster", "cluster"), depending on platform
Shuye Pu
cl <- start_parallel(2L) stop_parallel(cl)
cl <- start_parallel(2L) stop_parallel(cl)
Stopping a virtual cluster after parallel processing is finished
stop_parallel(cl)
stop_parallel(cl)
cl |
a cluster or SOCKcluster object depending on platform |
0 if the cluster is stopped successfully, 1 otherwise.
Shuye Pu
cl <- start_parallel(2L) stop_parallel(cl)
cl <- start_parallel(2L) stop_parallel(cl)
A tiny TxDb object holding genomic feature coordinates of 72 transcripts in hg19.
A SQLlite database
Shuye Pu
The data is produced by running the following code:
gtffile <- system.file("extdata", "gencode.v19.annotation_chr19.gtf",
package = "GenomicPlot")
txdb <- custom_TxDb_from_GTF(gtffile, genome = "hg19")
AnnotationDbi::saveDb(txdb, "./inst/extdata/txdb.sql")