This vignette provides a description of how to use the GENESIS package to analyze sequence data. We demonstrate the use of mixed models for genetic association testing, as PC-AiR PCs can be used as fixed effect covariates to adjust for population stratification, and a kinship matrix (or genetic relationship matrix) estimated from PC-Relate can be used to account for phenotype correlation due to genetic similarity among samples. To illustrate the methods, we use a small subset of data from 1000 Genomes Phase 3.
The first step is to convert a VCF file into the GDS file format used by GENESIS. We use the SeqArray package, which defines the extended GDS format used to capture all data in a VCF file. If the VCF files are split by chromosome, they can be combined into a single GDS file.
library(SeqArray)
vcffile <- system.file("extdata", "1KG",
paste0("1KG_phase3_subset_chr", 1:22, ".vcf.gz"),
package="GENESIS")
gdsfile <- tempfile()
seqVCF2GDS(vcffile, gdsfile, verbose=FALSE)
gds <- seqOpen(gdsfile)
gds
## Object of class "SeqVarGDSClass"
## File: /tmp/RtmpnDeURs/file22fc481005d6 (419.7K)
## + [ ] *
## |--+ description [ ] *
## |--+ sample.id { Str8 100 LZMA_ra(37.8%), 309B } *
## |--+ variant.id { Int32 24639 LZMA_ra(7.99%), 7.7K } *
## |--+ position { Int32 24639 LZMA_ra(71.8%), 69.1K } *
## |--+ chromosome { Str8 24639 LZMA_ra(0.36%), 237B } *
## |--+ allele { Str8 24639 LZMA_ra(19.2%), 20.0K } *
## |--+ genotype [ ] *
## | |--+ data { Bit2 2x100x24657 LZMA_ra(18.7%), 224.9K } *
## | |--+ extra.index { Int32 3x0 LZMA_ra, 18B } *
## | \--+ extra { Int16 0 LZMA_ra, 18B }
## |--+ phase [ ]
## | |--+ data { Bit1 100x24639 LZMA_ra(0.06%), 201B } *
## | |--+ extra.index { Int32 3x0 LZMA_ra, 18B } *
## | \--+ extra { Bit1 0 LZMA_ra, 18B }
## |--+ annotation [ ]
## | |--+ id { Str8 24639 LZMA_ra(37.3%), 87.8K } *
## | |--+ qual { Float32 24639 LZMA_ra(0.17%), 173B } *
## | |--+ filter { Int32,factor 24639 LZMA_ra(0.17%), 173B } *
## | |--+ info [ ]
## | \--+ format [ ]
## \--+ sample.annotation [ ]
Next, we combine the GDS file with information about the samples,
which we store in an AnnotatedDataFrame
(defined in the
Biobase
package). An AnnotatedDataFrame
combines a
data.frame
with metadata describing each column. A
SeqVarData
object (defined in the SeqVarTools
package), contains both an open GDS file and an
AnnotatedDataFrame
describing the samples. The
sample.id
column in the AnnotatedDataFrame
must match the sample.id
node in the GDS file.
library(GENESIS)
library(Biobase)
library(SeqVarTools)
data(sample_annotation_1KG)
annot <- sample_annotation_1KG
head(annot)
## sample.id Population sex
## 1 HG00110 GBR F
## 2 HG00116 GBR M
## 3 HG00120 GBR F
## 4 HG00128 GBR F
## 5 HG00136 GBR M
## 6 HG00137 GBR F
# simulate some phenotype data
set.seed(4)
annot$outcome <- rnorm(nrow(annot))
metadata <- data.frame(labelDescription=c("sample id",
"1000 genomes population",
"sex",
"simulated phenotype"),
row.names=names(annot))
annot <- AnnotatedDataFrame(annot, metadata)
all.equal(annot$sample.id, seqGetData(gds, "sample.id"))
## [1] TRUE
The first step for association testing is to fit the model under the null hypothesis that each SNP has no effect. This null model contains all of the covariates, including ancestry representative PCs, as well as any random effects, such as a polygenic effect due to genetic relatedness, but it does not include any SNP genotype terms as fixed effects.
The type of model fit depends on the arguments to
fitNullModel
. Including a cov.mat
argument
will result in a mixed model, while omitting this argument will run a
standard linear model. A logistic model is specified with
family="binomial"
. In the case of a logistic model and a
covariance matrix, fitNullModel
will use the GMMAT
algorithm. Including a group.var
argument will allow
heteroscedastic variance (for linear models or linear mixed models
only).
# add PCs to sample annotation in SeqVarData object
annot <- AnnotatedDataFrame(pc.df)
sampleData(seqData) <- annot
# covariance matrix from pcrelate output
grm <- pcrelateToMatrix(pcrel, scaleKin=2)
# fit the null model
nullmod <- fitNullModel(seqData, outcome="outcome",
covars=c("sex", "Population", paste0("PC", 1:2)),
cov.mat=grm, verbose=FALSE)
To run a test using the null model, we first create an iterator
object specifying how we want variants to be selected. (See the
documentation for the SeqVarIterator
class in SeqVarTools
for more details.) For single-variant tests (GWAS), it is common to use
a block iterator that reads variants in blocks (default is 10,000
variants per block).
For example purposes, we restrict our analysis to chromosome 1. The
seqSetFilter
function can be used to restrict the set of
variants tested in other ways (e.g., variants that pass a quality
filter).
## # of selected variants: 1,120
iterator <- SeqVarBlockIterator(seqData, verbose=FALSE)
assoc <- assocTestSingle(iterator, nullmod, verbose=FALSE,
BPPARAM=BiocParallel::SerialParam())
head(assoc)
## variant.id chr pos allele.index n.obs freq MAC Score Score.SE
## 1 1 1 828740 1 100 0.035 7 0.01852643 2.810783
## 2 2 1 913272 1 100 0.010 2 -0.19822201 1.378855
## 3 3 1 1171878 1 100 0.005 1 0.05842004 1.016472
## 4 4 1 1242288 1 100 0.025 5 -0.63222028 2.152144
## 5 5 1 1378837 1 100 0.670 66 -10.25156898 6.031003
## 6 6 1 1403820 1 100 0.015 3 2.30811833 1.689624
## Score.Stat Score.pval Est Est.SE PVE
## 1 0.00659120 0.99474102 0.002344969 0.3557727 5.111049e-07
## 2 -0.14375838 0.88569127 -0.104259227 0.7252393 2.431350e-04
## 3 0.05747337 0.95416812 0.056542030 0.9837953 3.886103e-05
## 4 -0.29376304 0.76893898 -0.136497869 0.4646530 1.015256e-03
## 5 -1.69981158 0.08916637 -0.281845581 0.1658099 3.399246e-02
## 6 1.36605427 0.17192193 0.808495931 0.5918476 2.195417e-02
The default test is a Score test, but the Wald test is also available for continuous outcomes.
If there are multiallelic variants, each alternate allele is tested
separately. The allele.index
column in the output
differentiates between different alternate alleles for the same
variant.
We make a QQ plot to examine the results.
qqPlot <- function(pval) {
pval <- pval[!is.na(pval)]
n <- length(pval)
x <- 1:n
dat <- data.frame(obs=sort(pval),
exp=x/n,
upper=qbeta(0.025, x, rev(x)),
lower=qbeta(0.975, x, rev(x)))
ggplot(dat, aes(-log10(exp), -log10(obs))) +
geom_line(aes(-log10(exp), -log10(upper)), color="gray") +
geom_line(aes(-log10(exp), -log10(lower)), color="gray") +
geom_point() +
geom_abline(intercept=0, slope=1, color="red") +
xlab(expression(paste(-log[10], "(expected P)"))) +
ylab(expression(paste(-log[10], "(observed P)"))) +
theme_bw()
}
qqPlot(assoc$Score.pval)
We can aggregate rare variants for association testing to decrease
multiple testing burden and increase statistical power. We can create
functionally agnostic units using a SeqVarWindowIterator
.
This iterator type generates a sliding window over the genome, with
user-specified width and step size. We can also create units with
specific start and end points or containing specific variants, using a
SeqVarRangeIterator
or a
SeqVarListIterator
.
In this example, we illustrate defining ranges based on known genes. We run a burden test, setting a maximum alternate allele frequency to exclude common variants.
library(GenomicRanges)
library(TxDb.Hsapiens.UCSC.hg19.knownGene)
# return the variants on chromosome 1 as a GRanges object
seqSetFilterChrom(seqData, include=1)
## # of selected variants: 1,120
gr <- granges(gds)
# find variants that overlap with each gene
txdb <- TxDb.Hsapiens.UCSC.hg19.knownGene
gr <- renameSeqlevels(gr, paste0("chr", seqlevels(gr)))
ts <- transcriptsByOverlaps(txdb, gr, columns="GENEID")
# simplistic example - define genes as overlapping transcripts
genes <- reduce(ts)
genes <- renameSeqlevels(genes, sub("chr", "", seqlevels(genes)))
# create an iterator where each successive unit is a different gene
iterator <- SeqVarRangeIterator(seqData, variantRanges=genes, verbose=FALSE)
# do a burden test on the rare variants in each gene
assoc <- assocTestAggregate(iterator, nullmod, AF.max=0.05, test="Burden",
BPPARAM=BiocParallel::SerialParam(), verbose=FALSE)
The output of an aggregate test is a list with two elements: 1) a data.frame with the test results for each aggregate unit, and 2) a list of data.frames containing the variants in each aggregate unit.
## n.site n.alt n.sample.alt Score Score.SE Score.Stat Score.pval Est
## 1 1 3 3 2.308118 1.689624 1.3660543 0.17192193 0.8084959
## 2 1 5 5 3.726985 2.238929 1.6646284 0.09598691 0.7434931
## 3 1 1 1 -0.775075 1.046050 -0.7409537 0.45872150 -0.7083346
## 4 1 9 9 -1.551195 2.581171 -0.6009659 0.54786273 -0.2328268
## 5 0 0 0 NA NA NA NA NA
## 6 1 1 1 -0.312060 1.023753 -0.3048197 0.76050351 -0.2977473
## Est.SE PVE
## 1 0.5918476 0.021954168
## 2 0.4466421 0.032599857
## 3 0.9559768 0.006458970
## 4 0.3874211 0.004248941
## 5 NA NA
## 6 0.9767982 0.001093118
## [[1]]
## variant.id chr pos allele.index n.obs freq MAC weight
## 1 6 1 1403820 1 100 0.015 3 1
##
## [[2]]
## variant.id chr pos allele.index n.obs freq MAC weight
## 1 7 1 1421285 1 100 0.025 5 1
##
## [[3]]
## variant.id chr pos allele.index n.obs freq MAC weight
## 1 12 1 2023475 1 100 0.005 1 1
##
## [[4]]
## variant.id chr pos allele.index n.obs freq MAC weight
## 1 21 1 3254100 1 100 0.045 9 1
##
## [[5]]
## [1] variant.id chr pos allele.index n.obs
## [6] freq MAC weight
## <0 rows> (or 0-length row.names)
##
## [[6]]
## variant.id chr pos allele.index n.obs freq MAC weight
## 1 24 1 3818550 1 100 0.005 1 1
Conomos M.P., Reiner A.P., Weir B.S., & Thornton T.A. (2016). Model-free Estimation of Recent Genetic Relatedness. American Journal of Human Genetics, 98(1), 127-148.
Conomos M.P., Miller M.B., & Thornton T.A. (2015). Robust Inference of Population Structure for Ancestry Prediction and Correction of Stratification in the Presence of Relatedness. Genetic Epidemiology, 39(4), 276-293.
Manichaikul, A., Mychaleckyj, J.C., Rich, S.S., Daly, K., Sale, M., & Chen, W.M. (2010). Robust relationship inference in genome-wide association studies. Bioinformatics, 26(22), 2867-2873.
Breslow NE and Clayton DG. (1993). Approximate Inference in Generalized Linear Mixed Models. Journal of the American Statistical Association 88: 9-25.
Chen H, Wang C, Conomos MP, Stilp AM, Li Z, Sofer T, Szpiro AA, Chen W, Brehm JM, Celedon JC, Redline S, Papanicolaou GJ, Thornton TA, Laurie CC, Rice K and Lin X. Control for Population Structure and Relatedness for Binary Traits in Genetic Association Studies Using Logistic Mixed Models. American Journal of Human Genetics, 98(4): 653-66.
Leal, S.M. & Li, B. (2008). Methods for Detecting Associations with Rare Variants for Common Diseases: Application to Analysis of Sequence Data. American Journal of Human Genetics, 83(3), 311-321.