Package 'FlowSOM'

Title: Using self-organizing maps for visualization and interpretation of cytometry data
Description: FlowSOM offers visualization options for cytometry data, by using Self-Organizing Map clustering and Minimal Spanning Trees.
Authors: Sofie Van Gassen [aut, cre], Artuur Couckuyt [aut], Katrien Quintelier [aut], Annelies Emmaneel [aut], Britt Callebaut [aut], Yvan Saeys [aut]
Maintainer: Sofie Van Gassen <[email protected]>
License: GPL (>= 2)
Version: 2.15.0
Built: 2024-12-29 05:39:15 UTC
Source: https://github.com/bioc/FlowSOM

Help Index


AddAnnotation

Description

Add annotation to a FlowSOM plot

Usage

AddAnnotation(
  p,
  fsom,
  toAnnotate = NULL,
  prefix = list(metaclusters = "MCL ", clusters = "CL "),
  ...
)

Arguments

p

Plot to add annotation to. When using PlotStars, please use list_insteadof_ggarrange = TRUE.

fsom

FlowSOM object that goes with the plot.

toAnnotate

A named list with "metaclusters" and/or "clusters" as names and a vector with the (meta)clusters that need to be annotated. Names can be abbreviated. Use a named vector with the old names as values and new labels as names for custom labeling.

prefix

Prefix to be added to labels. Default is "MCL " and "CL " for metaclusters and clusters respectively.

...

Arguments passed to geom_text_repel.

Value

The updated plot

Examples

# Identify the files
fcs <- flowCore::read.FCS(system.file("extdata", "68983.fcs", 
                                      package = "FlowSOM"))
# Build a FlowSOM object
flowSOM.res <- FlowSOM(fcs, 
                       scale = TRUE,
                       compensate = TRUE, 
                       transform = TRUE,
                       toTransform = 8:18, 
                       colsToUse = c(9, 12, 14:18),
                       nClus = 10,
                       seed = 1)
                       
p <- PlotStars(flowSOM.res, backgroundValues = flowSOM.res$metaclustering,
               list_insteadof_ggarrange = TRUE)
annotationList <- list("metaclusters" = c("CD8 T cells" = "1", "B cells" = "8"),
                   "clusters" = c(97))
AddAnnotation(p, flowSOM.res, toAnnotate = annotationList, 
              prefix = list("metaclusters" = "", clusters = "CL "))

AddBackground

Description

Function plots the background

Usage

AddBackground(
  p,
  backgroundValues,
  backgroundColors = NULL,
  backgroundLim = NULL
)

Arguments

p

ggplot object

backgroundValues

Vector of values to be plotted as background for the nodes

backgroundColors

Color palette to be used for the background coloring. Can be either a function or an array specifying colors.

backgroundLim

Background limits (can be used to ensure consistent Color palette between plots). If NULL (default), will be automatically adapted to the data.

Value

Returns nothing, but plots the background

See Also

PlotFlowSOM, AddLabels, AddNodes, AddPies, AddStars


Add a flowFrame to the data variable of the FlowSOM object

Description

Add a flowFrame to the data variable of the FlowSOM object

Usage

AddFlowFrame(fsom, flowFrame)

Arguments

fsom

FlowSOM object, as constructed by the ReadInput function

flowFrame

flowFrame to add to the FlowSOM object

Value

FlowSOM object with data added

See Also

ReadInput


AddLabels

Description

AddLabels

Usage

AddLabels(
  p,
  labels,
  hjust = 0.5,
  layout = NULL,
  textSize = 3.88,
  textColor = "black",
  ...
)

Arguments

p

ggplot object

labels

Labels to be added to each node

hjust

Horizontal adjust for labels. Default is centered.

layout

Dataframe with x and y columns. If null, the dataframe from the ggplot object will be reused.

textSize

Size for geom_text. Default (=3.88) is from geom_text.

textColor

Color for geom_text. Default = black.

...

Additional parameters to pass to geom_text

Value

Returns the ggplot object with labels added

See Also

PlotLabels, PlotNumbers


AddMST

Description

Function plots the MST

Usage

AddMST(p, fsom)

Arguments

p

ggplot object

fsom

FlowSOM object, as generated by FlowSOM

Value

Returns nothing, but plots the MST for FlowSOM MST view

See Also

PlotFlowSOM, ParseEdges, AddStarsPies, AddLabels, AddNodes, AddBackground, AddPies, AddStars


AddNodes

Description

Function plots the nodes

Usage

AddNodes(
  p,
  nodeInfo = NULL,
  values = NULL,
  lim = NULL,
  colorPalette = NULL,
  fillColor = "white",
  showLegend = TRUE,
  label = "",
  ...
)

Arguments

p

ggplot object

nodeInfo

Dataframe with for every node an x, y and size value, if null the dataframe from the ggplot object will be reused.

values

Values used for coloring the nodes. Default = NULL, in which case all nodes are filled in fillColor.

lim

The limits of the color scale, not used if values = NULL.

colorPalette

Color palette for color in nodes, not used if values = NULL. A vector of colors or a color function.

fillColor

Fixed fill for node colors, default = white.

showLegend

Boolean, default = TRUE.

label

Title for the legend.

...

Additional arguments to pass to geom_circle

Value

Returns nothing, but plots the nodes

See Also

PlotFlowSOM, PlotMarker, PlotVariable, AddLabels, AddBackground, AddPies, AddStars, AddStarsPies


AddPies

Description

Function plots the pies

Usage

AddPies(p, fsom, cellLabels, layout = NULL, colorPalette = NULL)

Arguments

p

ggplot object

fsom

FlowSOM object, as generated by BuildMST

cellLabels

Array of factors indicating the cell labels

layout

Coordinates of nodes. Uses dataframe of the ggplot object if NULL.

colorPalette

Color palette to be used for colors. Can be either a function or an array specifying colors.

Value

ggplot object with the pies added

See Also

PlotFlowSOM, AddLabels, AddNodes, AddBackground, PlotPies, AddStars, ParseArcs


AddScale

Description

AddScale

Usage

AddScale(
  p,
  values = NULL,
  colors = NULL,
  limits = NULL,
  showLegend = TRUE,
  labelLegend = "",
  type = "fill"
)

Arguments

p

ggplot object

values

Values used for the fill

colors

Colors to use (can be a vector or a function)

limits

Limits to use in the scale

showLegend

Boolean on whether to show the legend

labelLegend

Label to show as title of the legend

type

fill (default) or color

Value

ggplot object with scale added


AddStars

Description

Function plots the stars

Usage

AddStars(p, fsom, markers = fsom$map$colsUsed, colorPalette = NULL)

Arguments

p

ggplot object

fsom

FlowSOM object, as generated by BuildMST

markers

Determines which markers to plot. Default = "fsom$map$colsUsed"

colorPalette

Color palette to be used for colors. Can be either a function or an array specifying colors.

Value

ggplot object with the stars added

See Also

PlotFlowSOM, AddLabels, AddNodes, AddBackground, PlotStars, AddPies, ParseArcs


AddStarsPies

Description

Function plots stars or pies

Usage

AddStarsPies(p, arcs, colorPalette, showLegend = TRUE)

Arguments

p

ggplot object

arcs

Dataframe that contains all the data for the plotting the pies or stars

colorPalette

A vector of colors or a color function

showLegend

Boolean on whether to show the legend

Value

Returns nothing, but plots the stars or pies

See Also

PlotFlowSOM, AddLabels, AddNodes, AddBackground, AddPies, AddStars, ParseArcs, PlotStars PlotPies


Aggregate multiple FCS files together

Description

Aggregate multiple FCS files to analyze them simultaneously. A new FCS file is written, which contains about cTotal cells, with ceiling(cTotal/nFiles) cells from each file. Two new columns are added: a column indicating the original file by index, and a noisy version of this for better plotting opportunities (index plus or minus a value between 0 and 0.1).

Usage

AggregateFlowFrames(
  fileNames,
  cTotal,
  channels = NULL,
  writeOutput = FALSE,
  outputFile = "aggregate.fcs",
  keepOrder = FALSE,
  silent = FALSE,
  sampleWithReplacement = FALSE,
  ...
)

Arguments

fileNames

Character vector containing full paths to the FCS files or a flowSet to aggregate

cTotal

Total number of cells to write to the output file

channels

Channels/markers to keep in the aggregate. Default NULL takes all channels of the first file.

writeOutput

Whether to write the resulting flowFrame to a file. Default FALSE

outputFile

Full path to output file. Default "aggregate.fcs"

keepOrder

If TRUE, the random subsample will be ordered in the same way as they were originally ordered in the file. Default = FALSE.

silent

If FALSE, prints an update every time it starts processing a new file. Default = FALSE.

sampleWithReplacement

If TRUE and more cells per file are requested than actually present, all cells will be included plus additional resampling. Otherwise, at most all cells will be included once. Default = FALSE.

...

Additional arguments to pass to read.FCS

Value

This function does not return anything, but will write a file with about cTotal cells to outputFile

See Also

ceiling

Examples

# Define filename
fileName <- system.file("extdata", "68983.fcs", package = "FlowSOM")
# This example will sample 2 times 500 cells.
ff_new <- AggregateFlowFrames(c(fileName, fileName), 1000)

AutoMaxNodeSize

Description

Calculate node size

Usage

AutoMaxNodeSize(layout, overlap)

Arguments

layout

Coordinates of nodes

overlap

Parameter that determines how much overlap there will be. If negative the nodes will be smaller

Details

Function that calculates the minimum distance between the nodes to use this to adapt the maxNodeSize for better plotting

Value

Returns the maxNodeSize with some overlap

See Also

PlotFlowSOM, ScaleStarHeights, ParseNodeSize


BuildMST

Description

Build Minimal Spanning Tree

Usage

BuildMST(fsom, silent = FALSE, tSNE = FALSE)

Arguments

fsom

FlowSOM object, as generated by BuildSOM

silent

If TRUE, no progress updates will be printed

tSNE

If TRUE, an alternative t-SNE layout is computed as well

Details

Add minimal spanning tree description to the FlowSOM object

Value

FlowSOM object containing MST description

See Also

BuildSOM, PlotStars

Examples

# Read from file, build self-organizing map
fileName <- system.file("extdata", "68983.fcs", package="FlowSOM")
flowSOM.res <- ReadInput(fileName, compensate=TRUE, transform = TRUE,
                         scale = TRUE)
flowSOM.res <- BuildSOM(flowSOM.res, colsToUse = c(9, 12, 14:18))

# Build the Minimal Spanning Tree
flowSOM.res <- BuildMST(flowSOM.res)

Build a self-organizing map

Description

Build a SOM based on the data contained in the FlowSOM object

Usage

BuildSOM(fsom, colsToUse = NULL, silent = FALSE, outlierMAD = 4, ...)

Arguments

fsom

FlowSOM object containing the data, as constructed by the ReadInput function

colsToUse

Markers, channels or indices to use for building the SOM

silent

if TRUE, no progress updates will be printed

outlierMAD

Number of MAD when a cell is considered an outlier. See also TestOutliers

...

options to pass on to the SOM function (xdim, ydim, rlen, mst, alpha, radius, init, distf, importance)

Value

FlowSOM object containing the SOM result, which can be used as input for the BuildMST function

References

This code is strongly based on the kohonen package. R. Wehrens and L.M.C. Buydens, Self- and Super-organising Maps in R: the kohonen package J. Stat. Softw., 21(5), 2007

See Also

ReadInput, BuildMST

Examples

# Read from file
fileName <- system.file("extdata", "68983.fcs", package = "FlowSOM")
flowSOM.res <- ReadInput(fileName, compensate = TRUE, transform = TRUE,
                         scale = TRUE)

# Build the Self-Organizing Map
# E.g. with gridsize 5x5, presenting the dataset 20 times, 
# no use of MST in neighborhood calculations in between
flowSOM.res <- BuildSOM(flowSOM.res, colsToUse = c(9, 12, 14:18),
                        xdim = 5, ydim = 5, rlen = 20)

# Build the minimal spanning tree and apply metaclustering
flowSOM.res <- BuildMST(flowSOM.res)
metacl <- MetaClustering(flowSOM.res$map$codes,
                         "metaClustering_consensus", max = 10)

Calculate differences in cell counts between groups

Description

Calculate differences in cell counts between groups

Usage

CountGroups(fsom, groups, plot = TRUE, silent = FALSE)

Arguments

fsom

FlowSOM object as generated by BuildSOM

groups

List containing an array with file names for each group

plot

Logical. If TRUE, make a starplot of each individual file

silent

Logical. If TRUE, print progress messages

Value

Distance matrix

See Also

GroupStats

Examples

set.seed(1)
fileName <-  system.file("extdata", "68983.fcs", package="FlowSOM")
flowSOM.res <- FlowSOM(fileName, compensate = TRUE, transform = TRUE,
                      scale = TRUE, colsToUse = c(9,12,14:18), nClus = 10)

ff <- flowCore::read.FCS(fileName)
# Make an additional file without cluster 7 and double amount of cluster 5
selection <- c(which(GetClusters(flowSOM.res) %in% 
                                 which(flowSOM.res$metaclustering != 7)),
                 which(GetClusters(flowSOM.res) %in% 
                                 which(flowSOM.res$metaclustering == 5)))
ff_tmp <- ff[selection,]
flowCore::write.FCS(ff_tmp, file="ff_tmp.fcs")

# Compare only the file with the double amount of cluster 10
features <- GetFeatures(flowSOM.res, 
                        c(fileName, "ff_tmp.fcs"),
                        level = "clusters",
                        type = "percentages")
stats <- GroupStats(features$cluster_percentages,                     
                    groups = list("AllCells" = c(fileName),
                                  "Without_ydTcells" = c("ff_tmp.fcs")))

Calculate distance matrix using a minimal spanning tree neighborhood

Description

Calculate distance matrix using a minimal spanning tree neighborhood

Usage

Dist.MST(X)

Arguments

X

matrix in which each row represents a point

Value

Distance matrix


Run the FlowSOM algorithm

Description

Method to run general FlowSOM workflow. Will scale the data and uses consensus meta-clustering by default.

Usage

FlowSOM(
  input,
  pattern = ".fcs",
  compensate = FALSE,
  spillover = NULL,
  transform = FALSE,
  toTransform = NULL,
  transformFunction = flowCore::logicleTransform(),
  transformList = NULL,
  scale = FALSE,
  scaled.center = TRUE,
  scaled.scale = TRUE,
  silent = TRUE,
  colsToUse = NULL,
  nClus = 10,
  maxMeta = NULL,
  importance = NULL,
  seed = NULL,
  ...
)

Arguments

input

a flowFrame, a flowSet, a matrix with column names or an array of paths to files or directories

pattern

if input is an array of file- or directorynames, select only files containing pattern

compensate

logical, does the data need to be compensated

spillover

spillover matrix to compensate with If NULL and compensate = TRUE, we will look for $SPILL description in FCS file.

transform

logical, does the data need to be transformed with the transformation given in transformFunction.

toTransform

column names or indices that need to be transformed. Will be ignored if transformList is given. If NULL and transform = TRUE, column names of $SPILL description in FCS file will be used.

transformFunction

Defaults to logicleTransform()

transformList

transformList to apply on the samples.

scale

logical, does the data needs to be rescaled. Default = FALSE

scaled.center

see scale

scaled.scale

see scale

silent

if TRUE, no progress updates will be printed

colsToUse

Markers, channels or indices to use for building the SOM. Default (NULL) is all the columns used to build the FlowSOM object.

nClus

Exact number of clusters for meta-clustering. Ignored if maxMeta is specified. Default = 10.

maxMeta

Maximum number of clusters to try out for meta-clustering. If NULL (default), only one option will be computed (nClus).

importance

array with numeric values. Parameters will be scaled according to importance

seed

Set a seed for reproducible results

...

options to pass on to the SOM function (xdim, ydim, rlen, mst, alpha, radius, init, distf)

Value

A list with two items: the first is the flowSOM object containing all information (see the vignette for more detailed information about this object), the second is the metaclustering of the nodes of the grid. This is a wrapper function for ReadInput, BuildSOM, BuildMST and MetaClustering. Executing them separately may provide more options.

See Also

scale, ReadInput, BuildSOM, BuildMST, MetaClustering

Examples

# Read from file
fileName <- system.file("extdata", "68983.fcs", package = "FlowSOM")
flowSOM.res <- FlowSOM(fileName, compensate = TRUE, transform = TRUE,
                      scale = TRUE, colsToUse = c(9, 12, 14:18), nClus = 10)
# Or read from flowFrame object
ff <- flowCore::read.FCS(fileName)
ff <- flowCore::compensate(ff, flowCore::keyword(ff)[["SPILL"]])
ff <- flowCore::transform(ff,
         flowCore::transformList(colnames(flowCore::keyword(ff)[["SPILL"]]),
                                flowCore::logicleTransform()))
flowSOM.res <- FlowSOM(ff, 
                       scale = TRUE, 
                       colsToUse = c(9, 12, 14:18), 
                       nClus = 10)

# Plot results
PlotStars(flowSOM.res,
          backgroundValues = flowSOM.res$metaclustering)

# Get metaclustering per cell
flowSOM.clustering <- GetMetaclusters(flowSOM.res)

FlowSOM default colors

Description

FlowSOM default colors

Usage

FlowSOM_colors(n)

Arguments

n

Number of colors to generate

Value

array of n colors


FlowSOMmary

Description

This functions plots a summary of a flowSOM object. It includes a table of (meta)cluster data, the flowSOM trees and grid view, the (meta)cluster labels, the markers expression, the file distribution if present, the cluster per metacluster percentage, a t-SNE plot, and the MFI per metacluster.

Usage

FlowSOMmary(fsom, plotFile = "FlowSOMmary.pdf")

Arguments

fsom

FlowSOM object, as generated by FlowSOM

plotFile

Name of the pdf file that will be generated (default is FlowSOMmary.pdf). If NULL, a list of ggplots will be returned.

Value

Returns a summary of the FlowSOM object

Examples

# Identify the files
fcs <- flowCore::read.FCS(system.file("extdata", "68983.fcs", 
                                      package = "FlowSOM"))

# Build a FlowSOM object
flowSOM.res <- FlowSOM(fcs, 
                       scale = TRUE,
                       compensate = TRUE, 
                       transform = TRUE,
                       toTransform = 8:18, 
                       colsToUse = c(9, 12, 14:18),
                       nClus = 10,
                       seed = 1)
                       
FlowSOMmary(flowSOM.res)

FlowSOMSubset

Description

FlowSOM subset

Usage

FlowSOMSubset(fsom, ids)

Arguments

fsom

FlowSOM object, as generated by BuildMST

ids

Array containing the ids to keep

Details

Take a subset from a FlowSOM object

Value

FlowSOM object containing updated data and median values, but with the same grid

See Also

BuildMST

Examples

# Read two files (Artificially, as we just split 1 file in 2 subsets)
   fileName <- system.file("extdata", "68983.fcs", package = "FlowSOM")
   ff1 <- flowCore::read.FCS(fileName)[1:1000, ]
   flowCore::keyword(ff1)[["FIL"]] <- "File1"
   ff2 <- flowCore::read.FCS(fileName)[1001:2000, ]
   flowCore::keyword(ff2)[["FIL"]] <- "File2"
   
   flowSOM.res <- FlowSOM(flowCore::flowSet(c(ff1, ff2)), compensate = TRUE,
                          transform = TRUE, scale = TRUE,
                          colsToUse = c(9, 12, 14:18), maxMeta = 10)
   
   # see $metadata for subsets:
   flowSOM.res$metaData
   
   # Use only the second file, without changing the map
   fSOM2 <- FlowSOMSubset(flowSOM.res,
                          (flowSOM.res$metaData[[2]][1]):
                           (flowSOM.res$metaData[[2]][2]))

F measure

Description

Compute the F measure between two clustering results

Usage

FMeasure(realClusters, predictedClusters, silent = FALSE)

Arguments

realClusters

Array containing real cluster labels for each sample

predictedClusters

Array containing predicted cluster labels for each sample

silent

Logical, if FALSE (default), print some information about precision and recall

Value

F measure score

Examples

# Generate some random data as an example
realClusters <- sample(1:5,100,replace = TRUE)
predictedClusters <- sample(1:6, 100, replace = TRUE)

# Calculate the FMeasure
FMeasure(realClusters,predictedClusters)

get_channels

Description

Get channel names for an array of markers, given a flowFrame

Usage

get_channels(ff, markers)

Arguments

ff

The flowFrame of interest

markers

Vector with markers or channels of interest

Value

Corresponding channel names

See Also

get_markers

Examples

# Read the flowFrame
   fileName <- system.file("extdata", "68983.fcs", package="FlowSOM")
   ff <- flowCore::read.FCS(fileName)
   GetChannels(ff, c("FSC-A", "CD3", "FITC-A"))
   GetMarkers(ff, c("FSC-A", "CD3", "FITC-A"))

get_markers

Description

Get marker names, given a flowFrame. As available in "desc". If this is NA, defaults to channel name.

Usage

get_markers(ff, markers)

Arguments

ff

The flowFrame of interest

markers

Vector with markers or channels of interest

Value

Corresponding marker names

See Also

get_channels

Examples

# Read the flowFrame
   fileName <- system.file("extdata", "68983.fcs", package="FlowSOM")
   ff <- flowCore::read.FCS(fileName)
   GetChannels(ff, c("FSC-A", "CD3", "FITC-A"))
   GetMarkers(ff, c("FSC-A", "CD3", "FITC-A"))

GetChannels

Description

Get channel names for an array of markers, given a flowFrame or a FlowSOM object. As available in "name". grep is used to look for the markers. Other regex can be added.

Usage

GetChannels(object, markers, exact = TRUE)

Arguments

object

The flowFrame or the FlowSOM object of interest

markers

Vector with markers or channels of interest. Also accepts the index of the marker found in the object.

exact

If TRUE (default), the grep pattern will be extended to start with ^\\Q and end with \\E$, so only exact matches are possible.

Value

Corresponding channel names

See Also

GetMarkers

Examples

# Read the flowFrame
   fileName <- system.file("extdata", "68983.fcs", package = "FlowSOM")
   ff <- flowCore::read.FCS(fileName)
   GetChannels(ff, c("FSC-A", "CD3", "FITC-A"))
   GetMarkers(ff, c("FSC-A", "CD3", "FITC-A"))

Get CV values for all clusters

Description

Get CV values for all clusters

Usage

GetClusterCVs(fsom)

Arguments

fsom

FlowSOM object as generated by the FlowSOM function or the BuildSOM function

Value

Matrix with coefficient of variation values for each marker

fileName <- system.file("extdata", "68983.fcs", package = "FlowSOM") flowSOM.res <- FlowSOM(fileName, compensate = TRUE, transform = TRUE, scale = TRUE, colsToUse = c(9, 12, 14:18), nClus = 10) cvs <- GetClusterCVs(flowSOM.res)


Get MFI values for all clusters

Description

Get MFI values for all clusters

Usage

GetClusterMFIs(fsom, colsUsed = FALSE, prettyColnames = FALSE)

Arguments

fsom

FlowSOM object as generated by the FlowSOM function or the BuildSOM function

colsUsed

logical. Should report only the columns used to build the SOM. Default = FALSE.

prettyColnames

logical. Should report pretty column names instead of standard column names. Default = FALSE.

Value

Matrix with median values for each marker

Examples

fileName <- system.file("extdata", "68983.fcs", package = "FlowSOM")
flowSOM.res <- FlowSOM(fileName, compensate = TRUE, transform = TRUE,
                      scale = TRUE, colsToUse = c(9, 12, 14:18), nClus = 10)
mfis <- GetClusterMFIs(flowSOM.res)

Get percentage-positive values for all clusters

Description

Get percentage-positive values for all clusters

Usage

GetClusterPercentagesPositive(
  fsom,
  cutoffs,
  colsUsed = FALSE,
  prettyColnames = FALSE
)

Arguments

fsom

FlowSOM object as generated by the FlowSOM function or the BuildSOM function

cutoffs

named numeric vector. Upper bounds of negative population fluorescence-intensity values for each marker / channel.

colsUsed

logical. Should report only the columns used to build the SOM. Default = FALSE.

prettyColnames

logical. Should report pretty column names instead of standard column names. Default = FALSE.

Value

Matrix with percentages of cells that are positive in selected markers per each cluster

Examples

fileName <- system.file("extdata", "68983.fcs", package = "FlowSOM")
flowSOM.res <- FlowSOM(fileName, compensate = TRUE, transform = TRUE,
                      scale = TRUE, colsToUse = c(9, 12, 14:18), nClus = 10)
perc_pos <- GetClusterPercentagesPositive(flowSOM.res, cutoffs = c('CD4' = 5000))

Get cluster label for all individual cells

Description

Get cluster label for all individual cells

Usage

GetClusters(fsom)

Arguments

fsom

FlowSOM object as generated by the FlowSOM function or the BuildSOM function

Value

vector label for every cell

Examples

fileName <- system.file("extdata", "68983.fcs", package = "FlowSOM")
flowSOM.res <- FlowSOM(fileName, compensate = TRUE, transform = TRUE,
                      scale = TRUE, colsToUse = c(9, 12, 14:18), nClus = 10)
cluster_labels <- GetClusters(flowSOM.res)

GetCounts

Description

Get counts of number of cells in clusters or metaclusters

Usage

GetCounts(fsom, level = "metaclusters")

Arguments

fsom

FlowSOM object

level

Character string, should be either "clusters" or "metaclusters" (default) or abbreviations.

Value

A named vector with the counts

Examples

# Read from file, build self-organizing map and minimal spanning tree
fileName <- system.file("extdata", "68983.fcs", package = "FlowSOM")
ff <- flowCore::read.FCS(fileName)
ff <- flowCore::compensate(ff, flowCore::keyword(ff)[["SPILL"]])
ff <- flowCore::transform(ff, flowCore::estimateLogicle(ff,
                                               flowCore::colnames(ff)[8:18]))
flowSOM.res <- FlowSOM(ff,
                       scale = TRUE,
                       colsToUse = c(9, 12, 14:18),
                       nClus = 10,
                       seed = 1)
GetCounts(flowSOM.res)                      
GetCounts(flowSOM.res, level = "clusters")

Get CV values for all clusters

Description

Get CV values for all clusters

Usage

GetCVs(fsom)

Arguments

fsom

FlowSOM object as generated by the FlowSOM function or the BuildSOM function

Value

Matrix with coefficient of variation values for each marker

fileName <- system.file("extdata", "68983.fcs", package="FlowSOM") flowSOM.res <- FlowSOM(fileName, compensate=TRUE,transform=TRUE, scale=TRUE,colsToUse=c(9,12,14:18),nClus=10) cvs <- GetClusterCVs(flowSOM.res)


GetFeatures

Description

Map FCS files on an existing FlowSOM object

Usage

GetFeatures(
  fsom,
  files,
  level = c("clusters", "metaclusters"),
  type = "counts",
  MFI = NULL,
  positive_cutoffs = NULL,
  filenames = NULL,
  silent = FALSE
)

Arguments

fsom

FlowSOM object as generated by the FlowSOM function or the BuildSOM function

files

Either a vector of FCS files or paths to FCS files

level

Level(s) of interest. Default is c("clusters", "metaclusters"), but can also be only one of them. Can be abbreviated.

type

Type of features to extract. Default is "counts", can be a vector of "counts", "percentages", "MFIs" and/or "percentages_positive" or abbreviations.

MFI

Vector with channels / markers for which the MFI values must be returned when "MFIs" is in type

positive_cutoffs

Named vector with fluorescence-intensity values per channel / marker that are the upper bounds for a negative population when "percentages_positive" is in type

filenames

An optional vector with filenames that will be used as rownames in the count matrices. If NULL (default) either the paths will be used or a numerical vector.

silent

Logical. If TRUE, print progress messages. Default = FALSE.

Value

matrix with features per population - type combination

Examples

# Build FlowSom result
 fileName <- system.file("extdata", "68983.fcs", package = "FlowSOM")
 ff <- flowCore::read.FCS(fileName)
 ff <- flowCore::compensate(ff, flowCore::keyword(ff)[["SPILL"]])
 ff <- flowCore::transform(ff,
         flowCore::transformList(colnames(flowCore::keyword(ff)[["SPILL"]]),
                                flowCore::logicleTransform()))
 flowSOM.res <- FlowSOM(ff[1:1000, ], 
                        scale = TRUE, 
                        colsToUse = c(9, 12, 14:18),
                        nClus = 10)
   
 # Map new data
 counts <- GetFeatures(fsom = flowSOM.res, 
                       level = "clusters",
                       files = c(ff[1001:2000, ], ff[2001:3000, ]))
 features <- GetFeatures(fsom = flowSOM.res, 
                         files = c(ff[1001:2000, ], ff[2001:3000, ]),
                         type = c("counts", "percentages", "MFIs"), 
                         MFI = "APC-A", 
                         filenames = c("ff_1001-2000", "ff_2001-3000"))

 # Get percentages of positive cells
 positive_cutoffs <- c('CD8' = 1.5,
                       'CD4' = 0.3,
                       'CD19' = 1.3,
                       'CD3' = -0.3)
 
 perc_pos <- GetFeatures(fsom = flowSOM.res, 
                         files = c(ff[1001:2000, ], ff[2001:3000, ]),
                         type = c("percentages_positive"), 
                         positive_cutoffs = positive_cutoffs,
                         filenames = c("ff_1001-2000", "ff_2001-3000"))

Process a FlowJo workspace file

Description

Reads a FlowJo workspace file using the flowWorkspace library and returns a list with a matrix containing gating results and a vector with a label for each cell from a set of specified gates

Usage

GetFlowJoLabels(
  files,
  wspFile,
  group = "All Samples",
  cellTypes = NULL,
  getData = FALSE,
  ...
)

Arguments

files

The FCS files of interest

wspFile

The FlowJo wsp file to read

group

The FlowJo group to parse. Default "All Samples".

cellTypes

Cell types to use for final labeling the cells. Should correspond with a subset of the gate names in FlowJo.

getData

If true, flowFrames are returned as well.

...

Extra arguments to pass to CytoML::flowjo_to_gatingset

Value

This function returns a list, which for every file contains a list in which the first element ("matrix") is a matrix containing filtering results for each specified gate and the second element ("manual") is a vector which assigns one label to each cell. If only one file is given, only one list is returned instead of a list of lists.

See Also

PlotPies

Examples

# Identify the files
fcs_file <- system.file("extdata", "68983.fcs", package = "FlowSOM")
wspFile <- system.file("extdata", "gating.wsp", package = "FlowSOM")

# Specify the cell types of interest for assigning one label per cell
cellTypes <- c("B cells",
                "gd T cells", "CD4 T cells", "CD8 T cells",
                "NK cells", "NK T cells")

# Parse the FlowJo workspace   
gatingResult <- GetFlowJoLabels(fcs_file, wspFile,
                                cellTypes = cellTypes,
                                getData = TRUE)

# Check the number of cells assigned to each gate
colSums(gatingResult$matrix)

# Build a FlowSOM tree
flowSOM.res <- FlowSOM(gatingResult$flowFrame,
                       colsToUse = c(9, 12, 14:18),
                       nClus = 10,
                       seed = 1)
   
 # Plot pies indicating the percentage of cell types present in the nodes
 PlotPies(flowSOM.res,
          gatingResult$manual,
          backgroundValues = flowSOM.res$metaclustering)

GetMarkers

Description

Get marker names for an array of channels, given a flowFrame or a FlowSOM object. As available in "desc". If this is NA, defaults to channel name. grep is used to look for the markers. Other regex can be added.

Usage

GetMarkers(object, channels, exact = TRUE)

Arguments

object

The flowFrame or the FlowSOM object of interest

channels

Vector with markers or channels of interest. Also accepts the index of the channel in the object.

exact

If TRUE (default), the grep pattern will be extended to start with ^\\Q and end with \\E$, so only exact matches are possible.

Value

Corresponding marker names

See Also

GetChannels

Examples

# Read the flowFrame
   fileName <- system.file("extdata", "68983.fcs", package = "FlowSOM")
   ff <- flowCore::read.FCS(fileName)
   GetChannels(ff, c("FSC-A", "CD3", "FITC-A"))
   GetMarkers(ff, c("FSC-A", "CD3", "FITC-A"))

GetMetaclusterCVs

Description

Compute the coefficient of variation for the metaclusters

Usage

GetMetaclusterCVs(fsom, colsUsed = FALSE, prettyColnames = FALSE)

Arguments

fsom

Result of calling the FlowSOM function

colsUsed

Logical. Should report only the columns used to build the SOM. Default = FALSE.

prettyColnames

Logical. Should report pretty column names instead of standard column names. Default = FALSE.

Value

Metacluster CVs

Examples

fileName <- system.file("extdata", "68983.fcs", package = "FlowSOM")
ff <- flowCore::read.FCS(fileName)
ff <- flowCore::compensate(ff, flowCore::keyword(ff)[["SPILL"]])
ff <- flowCore::transform(ff,
         flowCore::transformList(colnames(flowCore::keyword(ff)[["SPILL"]]),
                                flowCore::logicleTransform()))
flowSOM.res <- FlowSOM(ff,
                       scale = TRUE,
                       colsToUse = c(9, 12, 14:18), 
                       nClus = 10)
cvs <- GetMetaclusterCVs(flowSOM.res)

GetMetaclusterMFIs

Description

Compute the median fluorescence intensities for the metaclusters

Usage

GetMetaclusterMFIs(fsom, colsUsed = FALSE, prettyColnames = FALSE)

Arguments

fsom

Result of calling the FlowSOM function

colsUsed

Logical. Should report only the columns used to build the SOM. Default = FALSE.

prettyColnames

Logical. Should report pretty column names instead of standard column names. Default = FALSE.

Value

Metacluster MFIs

Examples

fileName <- system.file("extdata", "68983.fcs", package = "FlowSOM")
ff <- flowCore::read.FCS(fileName)
ff <- flowCore::compensate(ff, flowCore::keyword(ff)[["SPILL"]])
ff <- flowCore::transform(ff,
         flowCore::transformList(colnames(flowCore::keyword(ff)[["SPILL"]]),
                                flowCore::logicleTransform()))
flowSOM.res <- FlowSOM(ff,
                       scale = TRUE,
                       colsToUse = c(9, 12, 14:18),
                       nClus = 10)
mfis <- GetMetaclusterMFIs(flowSOM.res)

Get percentage-positive values for all metaclusters

Description

Get percentage-positive values for all metaclusters

Usage

GetMetaclusterPercentagesPositive(
  fsom,
  cutoffs,
  colsUsed = FALSE,
  prettyColnames = FALSE
)

Arguments

fsom

FlowSOM object as generated by the FlowSOM function or the BuildSOM function

cutoffs

named numeric vector. Upper bounds of negative population fluorescence-intensity values for each marker / channel.

colsUsed

logical. Should report only the columns used to build the SOM. Default = FALSE.

prettyColnames

logical. Should report pretty column names instead of standard column names. Default = FALSE.

Value

Matrix with percentages of cells that are positive in selected markers per each metacluster

Examples

fileName <- system.file("extdata", "68983.fcs", package = "FlowSOM")
flowSOM.res <- FlowSOM(fileName, compensate = TRUE, transform = TRUE,
                      scale = TRUE, colsToUse = c(9, 12, 14:18), nClus = 10)
perc_pos <- GetMetaclusterPercentagesPositive(flowSOM.res, cutoffs = c('CD4' = 5000))

Get metacluster label for all individual cells

Description

Get metacluster label for all individual cells

Usage

GetMetaclusters(fsom, meta = NULL)

Arguments

fsom

FlowSOM object as generated by the FlowSOM function or the BuildSOM function

meta

Metacluster label for each FlowSOM cluster. If this is NULL, the fsom argument should be as generated by the FlowSOM function, and fsom$metaclustering will be used.

Value

vector label for every cell

Examples

fileName <- system.file("extdata", "68983.fcs", package = "FlowSOM")
flowSOM.res <- FlowSOM(fileName, compensate = TRUE, transform = TRUE,
                      scale = TRUE, colsToUse = c(9, 12, 14:18), nClus = 10)
metacluster_labels <- GetMetaclusters(flowSOM.res)
metacluster_labels <- GetMetaclusters(flowSOM.res,
                                      meta = flowSOM.res$metaclustering)

Get MFI values for all clusters

Description

Get MFI values for all clusters

Usage

GetMFIs(fsom, colsUsed = FALSE, prettyColnames = FALSE)

Arguments

fsom

FlowSOM object as generated by the FlowSOM function or the BuildSOM function

colsUsed

logical. Should report only the columns used to build the SOM. Default = FALSE.

prettyColnames

logical. Should report pretty column names instead of standard column names. Default = FALSE.

Value

Matrix with median values for each marker

Examples

fileName <- system.file("extdata", "68983.fcs", package="FlowSOM")
flowSOM.res <- FlowSOM(fileName, compensate=TRUE,transform=TRUE,
                      scale=TRUE,colsToUse=c(9,12,14:18),nClus=10)
mfis <- GetClusterMFIs(flowSOM.res)

GetPercentages

Description

Get percentages of number of cells in clusters or metaclusters

Usage

GetPercentages(fsom, level = "metaclusters")

Arguments

fsom

FlowSOM object

level

Character string, should be either "clusters" or "metaclusters" (default) or abbreviations.

Value

A named vector with the percentages

Examples

# Read from file, build self-organizing map and minimal spanning tree
fileName <- system.file("extdata", "68983.fcs", package = "FlowSOM")
ff <- flowCore::read.FCS(fileName)
ff <- flowCore::compensate(ff, flowCore::keyword(ff)[["SPILL"]])
ff <- flowCore::transform(ff, flowCore::estimateLogicle(ff,
                                               flowCore::colnames(ff)[8:18]))
flowSOM.res <- FlowSOM(ff,
                       scale = TRUE,
                       colsToUse = c(9, 12, 14:18),
                       nClus = 10,
                       seed = 1)
GetPercentages(flowSOM.res)                      
GetPercentages(flowSOM.res, level = "clusters")

gg_color_hue

Description

Helper function to get the ggplot colors

Usage

gg_color_hue(n)

Arguments

n

Number of colors

Value

array with hexadecimal color values


GroupStats

Description

Calculate statistics between 2 groups based on the GetFeatures output

Usage

GroupStats(features, groups)

Arguments

features

Feature matrix as generated by GetFeatures, e.g. a percentages matrix

groups

Named list with file or patient IDs per group (should match with the rownames of the matrix).

Value

Matrix with the medians per group, the p-values (the raw, Benjamini Hochberg corrected one and the -log10) that resulted from a Wilcox test and the fold and log10 fold changes between the medians of the 2 groups

Examples

# Build FlowSom result
 fileName <- system.file("extdata", "68983.fcs", package = "FlowSOM")
 ff <- flowCore::read.FCS(fileName)
 ff <- flowCore::compensate(ff, flowCore::keyword(ff)[["SPILL"]])
 ff <- flowCore::transform(ff,
         flowCore::transformList(colnames(flowCore::keyword(ff)[["SPILL"]]),
                                flowCore::logicleTransform()))
 flowSOM.res <- FlowSOM(ff, scale = TRUE, colsToUse = c(9, 12, 14:18),
                          nClus = 10)
   
# Create new data
# To illustrate the output, we here generate new FCS files (with more 
# cells in metaclusters 1 and 9).
# In practice you would not generate any new file but use your different
# files from your different groups
 flowCore::write.FCS(ff[sample(1:nrow(ff), 1000), ], file = "ff_tmp1.fcs")
 flowCore::write.FCS(ff[sample(1:nrow(ff), 1000), ], file = "ff_tmp2.fcs")
 flowCore::write.FCS(ff[sample(1:nrow(ff), 1000), ], file = "ff_tmp3.fcs")
 ff_tmp <- ff[c(1:1000,
                which(flowSOM.res$map$mapping[, 1] %in% 
                     which(flowSOM.res$metaclustering == 9)),
                which(flowSOM.res$map$mapping[, 1] %in% 
                     which(flowSOM.res$metaclustering == 1))), ]
 flowCore::write.FCS(ff_tmp[sample(1:nrow(ff_tmp), 1000), ],
                     file = "ff_tmp4.fcs")
 flowCore::write.FCS(ff_tmp[sample(1:nrow(ff_tmp), 1000), ], 
                     file = "ff_tmp5.fcs")
 
# Get the count matrix
 percentages <- GetFeatures(fsom = flowSOM.res, 
                            files = c("ff_tmp1.fcs", 
                                      "ff_tmp2.fcs", 
                                      "ff_tmp3.fcs",
                                      "ff_tmp4.fcs", 
                                      "ff_tmp5.fcs"), 
                            type = "percentages")
                       
  
# Perform the statistics
groups <- list("Group 1" = c("ff_tmp1.fcs", "ff_tmp2.fcs", "ff_tmp3.fcs"), 
               "Group 2" = c("ff_tmp4.fcs", "ff_tmp5.fcs"))
MC_stats <- GroupStats(percentages[["metacluster_percentages"]], groups)
C_stats <- GroupStats(percentages[["cluster_percentages"]], groups)

# Process the fold changes vector
fold_changes <- C_stats["fold changes", ]
fold_changes <- factor(ifelse(fold_changes < -3, 
                              "Underrepresented compared to Group 1",
                              ifelse(fold_changes > 3, 
                                     "Overrepresented compared to Group 1",
                                      "--")), 
                        levels = c("--", 
                                   "Underrepresented compared to Group 1",
                                   "Overrepresented compared to Group 1"))
fold_changes[is.na(fold_changes)] <- "--"

# Show in figure
## Fold change
gr_1 <- PlotStars(flowSOM.res, 
                  title = "Group 1", 
                  nodeSizes = C_stats["medians Group 1", ], 
                  list_insteadof_ggarrange = TRUE)
gr_2 <- PlotStars(flowSOM.res, title = "Group 2", 
            nodeSizes = C_stats["medians Group 2", ], 
            backgroundValues = fold_changes,
            backgroundColors = c("white", "red", "blue"), 
            list_insteadof_ggarrange = TRUE)
p <- ggpubr::ggarrange(plotlist = c(list(gr_1$tree), gr_2),
                       heights = c(3, 1))
ggplot2::ggsave("Groups_foldchanges.pdf", p, width = 10)

## p values
p <- PlotVariable(flowSOM.res, title = "Wilcox test group 1 vs. group 2",
variable = C_stats["p values", ])
ggplot2::ggsave("Groups_pvalues.pdf", p)

## volcano plot
p <- ggplot2::ggplot(data.frame("-log10 p values" = c(C_stats[4, ], 
                                                      MC_stats[4, ]), 
                                "log10 fold changes" = c(C_stats[7, ],
                                                         MC_stats[7, ]), 
check.names = FALSE), ggplot2::aes(x = `log10 fold changes`, 
                                   y = `-log10 p values`)) +
ggplot2::xlim(-3, 3) +
ggplot2::ylim(0, 3) +
ggplot2::geom_point()

Select k well spread points from X

Description

Select k well spread points from X

Usage

Initialize_KWSP(X, xdim, ydim)

Arguments

X

matrix in which each row represents a point

xdim

x dimension of the grid

ydim

y dimension of the grid

Value

array containing the selected selected rows

Examples

points <- matrix(1:1000, ncol = 10)
selection <- Initialize_KWSP(points, 3, 3)

Create a grid from first 2 PCA components

Description

Create a grid from first 2 PCA components

Usage

Initialize_PCA(data, xdim, ydim)

Arguments

data

matrix in which each row represents a point

xdim

x dimension of the grid

ydim

y dimension of the grid

Value

array containing the selected selected rows

Examples

points <- matrix(1:1000, ncol = 10)
selection <- Initialize_PCA(points, 3, 3)

Summarize the gating matrix into one vector, only including the cell types of interest

Description

Extract the compensated and transformed data and all gate labels.

Usage

ManualVector(manualMatrix, cellTypes)

Arguments

manualMatrix

Matrix containing boolean values, indicating for every gate (column) whether the cell (row) is part of it or not.

cellTypes

Cell types to use in the summary vector. All others will be ignored and cells which do not fall in one of these gates will get the label "Unknown". Order is important!

Value

A factor with one label for every cell


Assign nearest node to each datapoint

Description

Assign nearest node to each datapoint

Usage

MapDataToCodes(codes, newdata, distf = 2)

Arguments

codes

matrix with nodes of the SOM

newdata

datapoints to assign

distf

Distance function (1 = manhattan, 2 = euclidean, 3 = chebyshev, 4 = cosine)

Value

Array with nearest node id for each datapoint


MetaclusterCVs

Description

Compute the coefficient of variation for the metaclusters

Usage

MetaclusterCVs(fsom)

Arguments

fsom

Result of calling the FlowSOM function

Value

Metacluster CVs

Examples

fileName <- system.file("extdata", "68983.fcs", package="FlowSOM")
ff <- flowCore::read.FCS(fileName)
ff <- flowCore::compensate(ff,ff@description$SPILL)
ff <- flowCore::transform(ff,
         flowCore::transformList(colnames(ff@description$SPILL),
                                flowCore::logicleTransform()))
flowSOM.res <- FlowSOM(ff,scale=TRUE,colsToUse=c(9,12,14:18), nClus=10)
cvs <- GetMetaclusterCVs(flowSOM.res)

MetaClustering

Description

Cluster data with automatic number of cluster determination for several algorithms

Usage

MetaClustering(data, method, max = 20, seed = NULL, ...)

Arguments

data

Matrix containing the data to cluster

method

Clustering method to use

max

Maximum number of clusters to try out

seed

Seed to pass on to given clustering method

...

Extra parameters to pass along

Value

Numeric array indicating cluster for each datapoint

See Also

metaClustering_consensus

Examples

# Read from file, build self-organizing map and minimal spanning tree
   fileName <- system.file("extdata", "68983.fcs", package = "FlowSOM")
   flowSOM.res <- ReadInput(fileName, compensate = TRUE,transform = TRUE,
                            scale = TRUE)
   flowSOM.res <- BuildSOM(flowSOM.res,colsToUse = c(9, 12, 14:18))
   flowSOM.res <- BuildMST(flowSOM.res)
   
   # Apply metaclustering
   metacl <- MetaClustering(flowSOM.res$map$codes,
                            "metaClustering_consensus",
                            max = 10)
   
   # Get metaclustering per cell
   flowSOM.clustering <- metacl[flowSOM.res$map$mapping[, 1]]

MetaClustering

Description

Cluster data using hierarchical consensus clustering with k clusters

Usage

metaClustering_consensus(data, k = 7, seed = NULL)

Arguments

data

Matrix containing the data to cluster

k

Number of clusters

seed

Seed to pass to consensusClusterPlus

Value

Numeric array indicating cluster for each datapoint

See Also

MetaClustering

Examples

# Read from file, build self-organizing map and minimal spanning tree
   fileName <- system.file("extdata", "68983.fcs", package = "FlowSOM")
   flowSOM.res <- ReadInput(fileName, compensate = TRUE,transform = TRUE,
                            scale = TRUE)
   flowSOM.res <- BuildSOM(flowSOM.res,colsToUse = c(9, 12, 14:18))
   flowSOM.res <- BuildMST(flowSOM.res)
   
   # Apply consensus metaclustering
   metacl <- metaClustering_consensus(flowSOM.res$map$codes, k = 10)

MetaclusterMFIs

Description

Compute the median fluorescence intensities for the metaclusters

Usage

MetaclusterMFIs(fsom)

Arguments

fsom

Result of calling the FlowSOM function

Value

Metacluster MFIs

Examples

fileName <- system.file("extdata", "68983.fcs", package="FlowSOM")
ff <- flowCore::read.FCS(fileName)
ff <- flowCore::compensate(ff,ff@description$SPILL)
ff <- flowCore::transform(ff,
         flowCore::transformList(colnames(ff@description$SPILL),
                                flowCore::logicleTransform()))
flowSOM.res <- FlowSOM(ff,scale=TRUE,colsToUse=c(9,12,14:18),maxMeta=10)
mfis <- GetMetaclusterMFIs(flowSOM.res)

NClusters

Description

Extracts the number of clusters from a FlowSOM object

Usage

NClusters(fsom)

Arguments

fsom

FlowSOM object

Value

The number of clusters

Examples

# Build FlowSom result
 fileName <- system.file("extdata", "68983.fcs", package = "FlowSOM")
 ff <- flowCore::read.FCS(fileName)
 flowSOM.res <- FlowSOM(ff,
                        compensate = TRUE, transform = TRUE, scale = TRUE,
                        colsToUse = c(9, 12, 14:18),
                        maxMeta = 10)
 NClusters(flowSOM.res)

NewData

Description

Map new data to a FlowSOM grid

Usage

NewData(
  fsom,
  input,
  madAllowed = 4,
  compensate = NULL,
  spillover = NULL,
  transform = NULL,
  toTransform = NULL,
  transformFunction = NULL,
  transformList = NULL,
  scale = NULL,
  scaled.center = NULL,
  scaled.scale = NULL,
  silent = FALSE
)

Arguments

fsom

FlowSOM object

input

A flowFrame, a flowSet or an array of paths to files or directories

madAllowed

A warning is generated if the distance of the new data points to their closest cluster center is too big. This is computed based on the typical distance of the points from the original dataset assigned to that cluster, the threshold being set to median + madAllowed * MAD. Default is 4.

compensate

logical, does the data need to be compensated. If NULL, the same value as in the original FlowSOM call will be used.

spillover

spillover matrix to compensate with. If NULL, the same value as in the original FlowSOM call will be used.

transform

logical, does the data need to be transformed. If NULL, the same value as in the original FlowSOM call will be used.

toTransform

column names or indices that need to be transformed. If NULL, the same value as in the original FlowSOM call will be used.

transformFunction

If NULL, the same value as in the original FlowSOM call will be used.

transformList

If NULL, the same value as in the original FlowSOM call will be used.

scale

Logical, does the data needs to be rescaled. If NULL, the same value as in the original FlowSOM call will be used.

scaled.center

See scale. If NULL, the same value as in the original FlowSOM call will be used.

scaled.scale

See scale. If NULL, the same value as in the original FlowSOM call will be used.

silent

Logical. If TRUE, print progress messages. Default = FALSE.

Details

New data is mapped to an existing FlowSOM object. The input is similar to the ReadInput function. A new FlowSOM object is created, with the same grid, but a new mapping, node sizes and mean values. The same preprocessing steps (compensation, transformation and scaling) will happen to this file as was specified in the original FlowSOM call. The scaling parameters from the original grid will be used.

Value

A new FlowSOM object

See Also

FlowSOMSubset if you want to get a subset of the current data instead of a new dataset

Examples

# Build FlowSom result
 fileName <- system.file("extdata", "68983.fcs", package = "FlowSOM")
 ff <- flowCore::read.FCS(fileName)
 ff <- flowCore::compensate(ff, flowCore::keyword(ff)[["SPILL"]])
 ff <- flowCore::transform(ff,
         flowCore::transformList(colnames(flowCore::keyword(ff)[["SPILL"]]),
                                flowCore::logicleTransform()))
   flowSOM.res <- FlowSOM(ff[1:1000, ], 
                          scale = TRUE, 
                          colsToUse = c(9, 12, 14:18),
                          nClus = 10)
   
   # Map new data
   fSOM2 <- NewData(flowSOM.res, ff[1001:2000, ])

NMetaclusters

Description

Extracts the number of metaclusters from a FlowSOM object

Usage

NMetaclusters(fsom)

Arguments

fsom

FlowSOM object

Value

The number of metaclusters

Examples

# Build FlowSom result
 fileName <- system.file("extdata", "68983.fcs", package = "FlowSOM")
 ff <- flowCore::read.FCS(fileName)
 flowSOM.res <- FlowSOM(ff,
                        compensate = TRUE, transform = TRUE, scale = TRUE,
                        colsToUse = c(9, 12, 14:18),
                        maxMeta = 10)
 NMetaclusters(flowSOM.res)

ParseArcs

Description

Parses stars

Usage

ParseArcs(x, y, arcValues, arcHeights)

Arguments

x

x coordinate of node

y

y coordinate of node

arcValues

A named vector with the frequency of how the node should be divided

arcHeights

The heights of the arcs

Details

Function that parses the FlowSOM object into a dataframe for the star values for ggplot

Value

A dataframe ready to use with ggplot, consisting of the coordinates of centers, the radius and angles of the star values

See Also

PlotFlowSOM, ParseEdges, ParseNodeSize, ParseQuery, ParseSD


ParseEdges

Description

Parses edges

Usage

ParseEdges(fsom)

Arguments

fsom

FlowSOM object, as generated by FlowSOM

Details

Function that parses the graph edges of the FlowSOM object into a dataframe

Value

A dataframe consisting of start and end coordinates of edges

See Also

PlotFlowSOM, ParseNodeSize, ParseArcs, ParseQuery, ParseSD, AddMST


ParseLayout

Description

ParseLayout

Usage

ParseLayout(fsom, layout)

Arguments

fsom

FlowSOM object

layout

"MST", "grid" or a matrix/dataframe with 2 columns and 1 row per cluster

Value

dataframe with 2 columns and 1 row per cluster


ParseNodeSize

Description

Parses node size

Usage

ParseNodeSize(nodeSizes, maxNodeSize, refNodeSize)

Arguments

nodeSizes

A vector with node sizes

maxNodeSize

Determines the maximum node size.

refNodeSize

Reference for node size against which the nodeSizes will be scaled. Default = max(nodeSizes)

Details

Function that parses the mapping of the FlowSOM object into node sizes relative to the abundances of cells per cluster

Scales node size relative to the abundances of cells per cluster

Value

A vector is returned consisting of node sizes

See Also

PlotFlowSOM, ParseEdges, AutoMaxNodeSize, ParseArcs, ParseQuery, ParseSD


ParseQuery

Description

Parses query

Usage

ParseQuery(fsom, query)

Arguments

fsom

FlowSOM object, as generated by FlowSOM

query

Array containing "high" or "low" for the specified column names of the FlowSOM data

Details

Identify nodes in the tree which resemble a certain profile of "high" or "low" marker expressions.

Value

A list, containing the ids of the selected nodes, the individual scores for all nodes and the scores for each marker for each node

See Also

PlotFlowSOM, ParseEdges, ParseNodeSize, ParseArcs, QueryStarPlot, ParseSD


ParseSD Parses SD in FlowSOM object

Description

Calculates the standard deviation of a FlowSOM object

Usage

ParseSD(fsom, marker = NULL)

Arguments

fsom

FlowSOM object, as generated by FlowSOM

marker

If a marker is given, the standard deviation for this marker is shown. Otherwise, the maximum ratio is used.

Value

A vector containing the SDs

See Also

PlotFlowSOM, ParseEdges, ParseNodeSize, ParseArcs, ParseQuery, PlotSD


Plot2DScatters

Description

Function to draw 2D scatter plots of FlowSOM (meta)clusters

Usage

Plot2DScatters(
  fsom,
  channelpairs,
  clusters = NULL,
  metaclusters = NULL,
  maxBgPoints = 3000,
  sizeBgPoints = 0.5,
  maxPoints = 1000,
  sizePoints = 0.5,
  xLim = NULL,
  yLim = NULL,
  xyLabels = c("marker"),
  density = TRUE,
  centers = TRUE,
  colors = NULL,
  plotFile = "2DScatterPlots.png"
)

Arguments

fsom

FlowSOM object, as created by FlowSOM

channelpairs

List in which each element is a pair of channel or marker names

clusters

Vector or list (to combine multiple clusters in one plot) with indices of clusters of interest

metaclusters

Vector or list (to combine multiple metaclusters in one plot) with indices of metaclusters of interest

maxBgPoints

Maximum number of background cells to plot

sizeBgPoints

Size of the background cells

maxPoints

Maximum number of (meta)cluster cells to plot

sizePoints

Size of the (meta)cluster cells

xLim

Optional vector of a lower and upper limit of the x-axis

yLim

Optional vector of a lower and upper limit of the y-axis

xyLabels

Determines the label of the x- and y-axis. Can be "marker" and\or "channel" or abbrevations. Default = "marker".

density

Default is TRUE to color the (meta)cluster points according to density. Set to FALSE to use a plain color

centers

Default is TRUE to show the cluster centers

colors

Colors for all the cells in the selected nodes (ordered list). First the clusters are colored, then the metaclusters. If NULL, the default ggplot colors, indexed by metacluster number, are used.

plotFile

If a filepath for a png is given (default = 2DScatterPlots.png), the plots will be plotted in the corresponding png file. If NULL, a list of ggplot objects will be returned

Details

Plot multiple 2D scatter plots in a png file. A subset of fsom$data is plotted in gray, and those of the selected clusters and metaclusters are plotted in color.

Value

If plot is TRUE, nothing is returned and a plot is drawn in which background cells are plotted in gray and the cells of the selected nodes in color. If plot is FALSE, a ggplot objects list is returned.

Examples

# Identify the files
fcs <- flowCore::read.FCS(system.file("extdata", "68983.fcs", 
                                      package = "FlowSOM"))

# Build a FlowSOM object
flowSOM.res <- FlowSOM(fcs, 
                       scale = TRUE,
                       compensate = TRUE, 
                       transform = TRUE,
                       toTransform = 8:18, 
                       colsToUse = c(9, 12, 14:18),
                       nClus = 10,
                       seed = 1)

# Make the 2D scatter plots of the clusters and metaclusters of interest
Plot2DScatters(fsom = flowSOM.res,
               channelpairs = list(c("PE-Cy7-A", "PE-Cy5-A"),
                                   c("PE-Texas Red-A", "Pacific Blue-A")),
               clusters = c(1, 48, 49, 82, 95),
               metaclusters = list(c(1, 4), 9),
               density = FALSE)
               
Plot2DScatters(fsom = flowSOM.res,
               channelpairs = list(c("PE-Texas Red-A", "Pacific Blue-A")),
               metaclusters = list(c(1, 4)),
               density = FALSE,
               colors = list(c("red", "green")))

PlotCenters

Description

Plot cluster centers on a 2D plot

Usage

PlotCenters(fsom, marker1, marker2, MST = TRUE)

Arguments

fsom

FlowSOM object, as generated by BuildMST

marker1

Marker to show on the x-axis

marker2

Marker to show on the y-axis

MST

Type of visualization, if 1 plot tree, else plot grid

Details

Plot FlowSOM nodes on a 2D scatter plot of the data

Value

Nothing is returned. A 2D scatter plot is drawn on which the nodes of the grid are indicated

See Also

PlotStars,PlotPies, PlotMarker,BuildMST

Examples

# Read from file, build self-organizing map and minimal spanning tree
   fileName <- system.file("extdata", "68983.fcs", package="FlowSOM")
   flowSOM.res <- ReadInput(fileName, compensate=TRUE,transform=TRUE,
                            scale=TRUE)
   flowSOM.res <- BuildSOM(flowSOM.res,colsToUse=c(9,12,14:18))
   flowSOM.res <- BuildMST(flowSOM.res)
   
   # Plot centers
   plot <- Plot2DScatters(flowSOM.res,
                  channelpairs = list(c("FSC-A","SSC-A")),
                  clusters = list(seq_len(NClusters(flowSOM.res))),
                  maxPoints = 0,
                  plotFile = NULL)

PlotClusters2D

Description

Plot nodes on scatter plot

Usage

PlotClusters2D(
  fsom,
  marker1,
  marker2,
  nodes,
  col = "#FF0000",
  maxBgPoints = 10000,
  pchBackground = ".",
  pchCluster = ".",
  main = "",
  xlab = fsom$prettyColnames[marker1],
  ylab = fsom$prettyColnames[marker2],
  xlim = c(min(fsom$data[, marker1]), max(fsom$data[, marker1])),
  ylim = c(min(fsom$data[, marker2]), max(fsom$data[, marker2])),
  ...
)

Arguments

fsom

FlowSOM object, as generated by BuildMST

marker1

Marker to plot on the x-axis

marker2

Marker to plot on the y-axis

nodes

Nodes of which the cells should be plotted in red

col

Colors for all the cells in the selected nodes (ordered array)

maxBgPoints

Maximum number of background points to plot

pchBackground

Character to use for background cells

pchCluster

Character to use for cells in cluster

main

Title of the plot

xlab

Label for the x axis

ylab

Label for the y axis

xlim

Limits for the x axis

ylim

Limits for the y axis

...

Other parameters to pass on to plot

Details

Plot a 2D scatter plot. All cells of fsom$data are plotted in black, and those of the selected nodes are plotted in red. The nodes in the grid are indexed starting from the left bottom, first going right, then up. E.g. In a 10x10 grid, the node at top left will have index 91.

Value

Nothing is returned. A plot is drawn in which all cells are plotted in black and the cells of the selected nodes in red.

See Also

PlotNumbers, PlotCenters, BuildMST

Examples

## Deprecated - use Plot2DScatters instead ##
 
   # Read from file, build self-organizing map and minimal spanning tree
   fileName <- system.file("extdata", "68983.fcs", package = "FlowSOM")
   flowSOM.res <- ReadInput(fileName, compensate = TRUE, transform = TRUE,
                            scale = TRUE)
   flowSOM.res <- BuildSOM(flowSOM.res, colsToUse = c(9, 12, 14:18))
  flowSOM.res <- BuildMST(flowSOM.res)
   
   # Plot cells
   ## Not run: 
   Plot2DScatters(flowSOM.res, c(1, 2), clusters = 91)
   
## End(Not run)

PlotDimRed

Description

Plot a dimensionality reduction

Usage

PlotDimRed(
  fsom,
  colsToUse = fsom$map$colsUsed,
  colorBy = "metaclusters",
  colors = NULL,
  lim = NULL,
  cTotal = NULL,
  dimred = Rtsne::Rtsne,
  extractLayout = function(dimred) {
     dimred$Y
 },
  label = TRUE,
  returnLayout = FALSE,
  seed = NULL,
  title = NULL,
  ...
)

Arguments

fsom

FlowSOM object, as generated by BuildMST

colsToUse

The columns used for the dimensionality reduction. Default = fsom$map$colsUsed.

colorBy

Defines how the dimensionality reduction will be colored. Can be "metaclusters" (default), "clusters" (or abbreviations) or a marker/channel/index.

colors

A vector of custom colors. Default returns ggplot colors for categorical variables and the FlowSOM colors for continuous variables. When using a categorical variable, the vector must be as long as the levels of the categorical variable.

lim

Limits for the colorscale

cTotal

The total amount of cells to be used in the dimensionality reduction. Default is all the cells.

dimred

A dimensionality reduction function. Default = Rtsne::Rtsne. Alternatively, a data.frame or matrix with either equal number of rows to the fsom or an OriginalID column. Recommended to put cTotal to NULL when providing a matrix (or ensuring that the dimred corresponds to subsampling the flowSOM data for cTotal cells with the same seed).

extractLayout

A function to extract the coordinates from the results of the dimred default = function(dimred)dimred$Y.

label

If label = TRUE (default), labels are added to plot.

returnLayout

If TRUE, this function returns a dataframe with the layout of dimred and the original IDs and the plot. Default = FALSE.

seed

A seed for reproducibility.

title

A title for the plot.

...

Additional arguments to pass to dimred.

Details

Plot a dimensionality reduction of fsom$data

Value

A dimensionality reduction plot made in ggplot2

Examples

file <- system.file("extdata", "68983.fcs", package="FlowSOM")
   flowSOM.res <- FlowSOM(file, compensate = TRUE, transform = TRUE, 
                  scale = TRUE,
                  colsToUse = c(9, 12, 14:18), nClus = 10, silent = FALSE,
                  xdim = 7, ydim = 7)
   PlotDimRed(flowSOM.res, cTotal = 5000, seed = 1, title = "t-SNE")
   PlotDimRed(flowSOM.res, cTotal = 5000, colorBy = "CD3", seed = 1, 
              title = "t-SNE")

PlotFileScatters

Description

Make a scatter plot per channel for all provided files

Usage

PlotFileScatters(
  input,
  fileID = "File",
  channels = NULL,
  yLim = NULL,
  yLabel = "marker",
  quantiles = NULL,
  names = NULL,
  groups = NULL,
  color = NULL,
  legend = FALSE,
  maxPoints = 50000,
  ncol = NULL,
  nrow = NULL,
  width = NULL,
  height = NULL,
  silent = FALSE,
  plotFile = "FileScatters.png"
)

Arguments

input

Either a flowSet, a flowFrame with a file ID column (e.g. output from the AggregateFlowFrames includes a "File" column) or a vector of paths pointing to FCS files

fileID

Name of the file ID column when the input is a flowFrame, default to "File" (File ID column in the AggregateFlowFrames flowFrame output).

channels

Vector of channels or markers that need to be plotted, if NULL (default), all channels from the input will be plotted

yLim

Optional vector of a lower and upper limit of the y-axis

yLabel

Determines the label of the y-axis. Can be "marker" and\or "channel" or abbrevations. Default = "marker".

quantiles

If provided (default NULL), a numeric vector with values between 0 and 1. These quantiles are indicated on the plot

names

Optional parameter to provide filenames. If NULL (default), the filenames will be numbers. Duplicated filenames will be made unique.

groups

Optional parameter to specify groups of files, should have the same length as the input. Id NULL (default), all files will be plotted in the same color

color

Optional parameter to provide colors. Should have the same lengths as the number of groups (or 1 if groups is NULL)

legend

Logical parameter to specify whether the group levels should be displayed. Default is FALSE

maxPoints

Total number of data points that will be plotted per channel, default is 50000

ncol

Number of columns in the final plot, optional

nrow

Number of rows in the final plot, optional

width

Width of png file. By default NULL the width parameter is estimated based on the input.

height

Height of png file. By default NULL the width parameter is estimated based on the input.

silent

If FALSE, prints an update every time it starts processing a new file. Default = FALSE.

plotFile

Path to png file, default is "FileScatters.png". If NULL, the output will be a list of ggplots

Value

List of ggplot objects if plot is FALSE, otherwise filePlot with plot is created.

Examples

# Preprocessing
fileName <- system.file("extdata", "68983.fcs", package = "FlowSOM")
ff <- flowCore::read.FCS(fileName)
ff <- flowCore::compensate(ff, flowCore::keyword(ff)[["SPILL"]])
ff <- flowCore::transform(ff,
         flowCore::transformList(colnames(flowCore::keyword(ff)[["SPILL"]]),
                                flowCore::logicleTransform()))

flowCore::write.FCS(ff[1:1000, ], file = "ff_tmp1.fcs")
flowCore::write.FCS(ff[1001:2000, ], file = "ff_tmp2.fcs")
flowCore::write.FCS(ff[2001:3000, ], file = "ff_tmp3.fcs")
 
# Make plot
PlotFileScatters(input = c("ff_tmp1.fcs", "ff_tmp2.fcs", "ff_tmp3.fcs"),
                 channels = c("Pacific Blue-A", 
                              "Alexa Fluor 700-A", 
                              "PE-Cy7-A"), 
                 maxPoints = 1000)

PlotFlowSOM

Description

Base layer to plot a FlowSOM result

Usage

PlotFlowSOM(
  fsom,
  view = "MST",
  nodeSizes = fsom$map$pctgs,
  maxNodeSize = 1,
  refNodeSize = max(nodeSizes),
  equalNodeSize = FALSE,
  backgroundValues = NULL,
  backgroundColors = NULL,
  backgroundLim = NULL,
  title = NULL
)

Arguments

fsom

FlowSOM object, as created by FlowSOM

view

Preferred view, options: "MST", "grid" or "matrix" with a matrix/dataframe consisting of coordinates. Default = "MST"

nodeSizes

A vector containing node sizes. These will automatically be scaled between 0 and maxNodeSize and transformed with a sqrt. Default = fsom$MST$sizes

maxNodeSize

Determines the maximum node size. Default is 1.

refNodeSize

Reference for node size against which the nodeSizes will be scaled. Default = max(nodeSizes)

equalNodeSize

If TRUE, the nodes will be equal to maxNodeSize. If FALSE (default), the nodes will be scaled to the number of cells in each cluster

backgroundValues

Values to be used for background coloring, either numerical values or something that can be made into a factor (e.g. a clustering)

backgroundColors

Color palette to be used for the background coloring. Can be either a function or an array specifying colors.

backgroundLim

Only used when backgroundValues are numerical. Defaults to min and max of the backgroundValues.

title

Title of the plot

Details

Base layer of the FlowSOM plot, where you can choose layout (MST, grid or coordinates of your own choosing), background colors and node size. Can then be extended by e.g. AddStars, AddLabels, AddPies, ...

Value

A ggplot object with the base layer of a FlowSOM plot

See Also

PlotStars, PlotVariable, PlotMarker, PlotLabels, PlotNumbers, PlotPies, QueryStarPlot, PlotSD

Examples

# Locate file on file system
fcs_file <- system.file("extdata", "68983.fcs", package = "FlowSOM")

# Build FlowSOM model
flowSOM.res <- FlowSOM(fcs_file, 
                       scale = TRUE,
                       compensate = TRUE, 
                       transform = TRUE,
                       toTransform = 8:18, 
                       colsToUse = c(9, 12, 14:18),
                       nClus = 10,
                       seed = 1)
                       
# Plot with background coloring
PlotFlowSOM(flowSOM.res,
            backgroundValues = flowSOM.res$metaclustering) %>% 
            AddLabels(seq(100))

PlotGroups

Description

Plot differences between groups

Usage

PlotGroups(fsom, groups, threshold = NULL, pThreshold = 0.05, ...)

Arguments

fsom

FlowSOM object, as generated by BuildMST

groups

Groups result as generated by CountGroups

threshold

Relative difference in groups before the node is colored

pThreshold

Threshold on p-value from wilcox-test before the node is colored. If this is not NULL, threshold will be ignored.

...

Additional arguments to pass to PlotFlowSOM

Details

Plot FlowSOM trees, where each node is represented by a star chart indicating mean marker values, the size of the node is relative to the mean percentage of cells present in each

Value

A vector containing the labels assigned to the nodes for all groups except the first

See Also

PlotStars,PlotVariable, PlotFlowSOM,PlotLabels,PlotNumbers, PlotMarker,PlotPies,QueryStarPlot, PlotSD

Examples

#Run FlowSOM
fileName <-  system.file("extdata", "68983.fcs", package="FlowSOM")
fsom <- FlowSOM(fileName, compensate = TRUE, transform = TRUE,
                      scale = TRUE, colsToUse = c(9,12,14:18), nClus = 10)

ff <- flowCore::read.FCS(fileName)
# Make an additional file without cluster 7 and double amount of cluster 5
selection <- c(which(GetClusters(fsom) %in% which(fsom$metaclustering != 7)),
                 which(GetClusters(fsom) %in% which(fsom$metaclustering == 5)))
ff_tmp <- ff[selection,]
flowCore::write.FCS(ff_tmp, file="ff_tmp.fcs")

# Compare only the file with the double amount of cluster 10
features <- GetFeatures(fsom, 
                        c(fileName, "ff_tmp.fcs"),
                        level = "clusters",
                        type = "percentages")
stats <- GroupStats(features$cluster_percentages,                     
                    groups = list("AllCells" = c(fileName),
                                  "Without_ydTcells" = c("ff_tmp.fcs")))

fold_changes <- stats["fold changes", ]
fold_changes_label <- factor(ifelse(fold_changes < -1.5, 
                           "Underrepresented compared to Group 1",
                           ifelse(fold_changes > 1.5, 
                                  "Overrepresented compared to Group 1",
                                  "--")), 
                            levels = c("--", 
                               "Underrepresented compared to Group 1",
                               "Overrepresented compared to Group 1"))
fold_changes_label[is.na(fold_changes_label)] <- "--"                                   
gr_1 <- PlotStars(fsom, 
                  title = "All Cells", 
                  nodeSizes = stats["medians AllCells", ], 
                  list_insteadof_ggarrange = TRUE)
gr_2 <- PlotStars(fsom, title = "Group 2", 
               nodeSizes = stats["medians Without_ydTcells", ], 
                backgroundValues = fold_changes_label,
               backgroundColors = c("white", "red", "blue"), 
               list_insteadof_ggarrange = TRUE)
p <- ggpubr::ggarrange(plotlist = c(list(gr_1$tree), gr_2),
                    heights = c(3, 1))
p

PlotLabels

Description

Plot labels for each cluster

Usage

PlotLabels(
  fsom,
  labels,
  maxNodeSize = 0,
  textSize = 3.88,
  textColor = "black",
  ...
)

Arguments

fsom

FlowSOM object, as generated by FlowSOM

labels

A vector of labels for every node.

maxNodeSize

Determines the maximum node size. Default is 0.

textSize

Size for geom_text. Default (=3.88) is from geom_text.

textColor

Color for geom_text. Default = black.

...

Additional arguments to pass to PlotFlowSOM

Details

Plot FlowSOM grid or tree, with in each node a label. Especially useful to show metacluster numbers

Value

Nothing is returned. A plot is drawn in which each node is represented by a label.

See Also

PlotStars, PlotVariable, PlotFlowSOM, PlotMarker, PlotNumbers, PlotPies, QueryStarPlot, PlotSD

Examples

# Read from file, build self-organizing map and minimal spanning tree
fileName <- system.file("extdata", "68983.fcs", package="FlowSOM")
ff <- flowCore::read.FCS(fileName)
ff <- flowCore::compensate(ff, flowCore::keyword(ff)[["SPILL"]])
ff <- flowCore::transform(ff,
         flowCore::transformList(colnames(flowCore::keyword(ff)[["SPILL"]]),
                                flowCore::logicleTransform()))
flowSOM.res <- FlowSOM(ff,
                       scale = TRUE,
                       colsToUse = c(9, 12, 14:18),
                       nClus = 10,
                       seed = 1)

# Plot the node IDs
PlotLabels( flowSOM.res, 
            flowSOM.res$metaclustering)

PlotManualBars

Description

Function to plot the manual labels per FlowSOM (meta)cluster in a barplot

Usage

PlotManualBars(
  fsom,
  fcs = NULL,
  manualVector,
  manualOrder = NULL,
  colors = NULL,
  list_insteadof_plots = FALSE
)

Arguments

fsom

FlowSOM object, as generated by FlowSOM or by NewData. The clusters and metaclusters will be plotted in the order of the factor levels.

fcs

FCS file that should be mapped on the FlowSOM object. Default is NULL.

manualVector

Vector with cell labels, e.g. obtained by manual gating

manualOrder

Optional vector with unique cell labels to fix in which order the cell labels should be shown

colors

Optional color vector, should have the same length as the number of unique cell labels

list_insteadof_plots

If FALSE (default), it returns multiple plots. If TRUE, it returns a list of ggplot objects

Value

Either a plot or a ggplot objects list is returned.

Examples

# Identify the files
fcs_file <- system.file("extdata", "68983.fcs", package = "FlowSOM")
gating_file <- system.file("extdata", "gatingResult.csv", package = "FlowSOM")

# Specify the cell types of interest for assigning one label per cell
cellTypes <- c("B cells",
                "gd T cells", "CD4 T cells", "CD8 T cells",
                "NK cells", "NK T cells")
                
# Load manual labels (e.g. GetFlowJoLabels can be used to extract labels from
# an fcs file)
 
gatingResult <- as.factor(read.csv(gating_file, header = FALSE)[, 1])

# Build a FlowSOM object
flowSOM.res <- FlowSOM(fcs_file,
                       scale = TRUE,
                       compensate = TRUE, 
                       transform = TRUE,
                       toTransform = 8:18, 
                       colsToUse = c(9, 12, 14:18),
                       nClus = 10,
                       seed = 1)

# Make the barplot of the manual labels
pdf("PlotManualBars.pdf")
PlotManualBars(fsom = flowSOM.res,
               fcs = fcs_file,
               manualVector = gatingResult,
               manualOrder = c(cellTypes, "Unlabeled"),
               colors = c("#F8766D", "#B79F00", "#00BA38", "#00BFC4", 
                          "#619CFF", "#F564E3", "#D3D3D3"))
dev.off()

PlotMarker

Description

Plot comparison with other clustering

Usage

PlotMarker(
  fsom,
  marker,
  refMarkers = fsom$map$colsUsed,
  title = GetMarkers(fsom, marker),
  colorPalette = FlowSOM_colors,
  lim = NULL,
  ...
)

Arguments

fsom

FlowSOM object

marker

A vector of markers/channels to plot.

refMarkers

Is used to determine relative scale of the marker that will be plotted. Default are all markers used in the clustering.

title

A vector with custom titles for the plot. Default is the marker name.

colorPalette

Color palette to use. Can be a function or a vector.

lim

Limits for the scale

...

Additional arguments to pass to PlotFlowSOM, e.g. view, backgroundValues, equalNodeSize ...

Details

Plot FlowSOM grid or tree, colored by node values for a specific marker

Value

A ggplot figure is returned in which every cluster is colored according to the MFI value for the specified marker

See Also

PlotStars, PlotVariable

Examples

# Build FlowSOM model
fileName <- system.file("extdata", "68983.fcs", package = "FlowSOM")
flowSOM.res <- FlowSOM(fileName, 
                       compensate = TRUE, transform = TRUE, scale = FALSE,
                       colsToUse = c(9, 12, 14:18),
                       nClus = 10,
                       seed = 1)
# Plot one marker
PlotMarker(flowSOM.res, 
           "CD19")
           
PlotMarker(flowSOM.res, 
           "CD19",
           colorPalette = c("gray", "red"))
           
# Plot all markers
PlotMarker(flowSOM.res,
           c(9, 12, 14:18))

# Use specific limits if the ones from the columns used for clustering
# are not relevant for  your marker of choice
PlotMarker(flowSOM.res, 
           "FSC-A",
            lim = c(55000, 130000))

# Example with additional FlowSOM plotting options
PlotMarker(flowSOM.res, 
           "CD19",
           view = "grid",
           equalNodeSize = TRUE,
           backgroundValues = 1:100 == 27,
           backgroundColors = c("white", "red"))

PlotNode Plot star chart

Description

Plot a star chart indicating median marker values of a single node

Usage

PlotNode(
  fsom,
  id,
  markers = fsom$map$colsUsed,
  colorPalette = grDevices::colorRampPalette(c("#00007F", "blue", "#007FFF", "cyan",
    "#7FFF7F", "yellow", "#FF7F00", "red", "#7F0000")),
  main = paste0("Cluster ", id)
)

Arguments

fsom

FlowSOM object, as generated by BuildMST or the first element of the list returned by FlowSOM

id

Id of the node to plot (check PlotNumbers to get the ids)

markers

Array of markers to use. Default: the markers used to build the tree

colorPalette

Color palette to be used for the markers

main

Title of the plot

Value

Nothing is returned. A plot is drawn in which the node is represented by a star chart indicating the median fluorescence intensities.

See Also

PlotStars,PlotNumbers, FlowSOM

Examples

# Read from file, build self-organizing map and minimal spanning tree
   fileName <- system.file("extdata", "68983.fcs", package="FlowSOM")
   flowSOM.res <- FlowSOM(fileName, compensate=TRUE,transform=TRUE,
                            scale=TRUE,colsToUse=c(9,12,14:18),nClus=10)
   
   # Deprecated, it is currently not possible anymore to plot an individual
   # node alone. If necessary, zooming in on a node can be approximated by
   # exagerating the size of the node.
   PlotStars(flowSOM.res, nodeSizes = c(100, rep(0,99)), maxNodeSize = 10)

PlotNumbers

Description

Plot cluster ids for each cluster

Usage

PlotNumbers(fsom, level = "clusters", maxNodeSize = 0, ...)

Arguments

fsom

FlowSOM object

level

Character string, should be either "clusters" or "metaclusters". Can be abbreviated.

maxNodeSize

Determines the maximum node size. Default is 0. See PlotFlowSOM for more options.

...

Additional arguments to pass to PlotLabels and to PlotFlowSOM

Details

Plot FlowSOM grid or tree, with in each node the cluster id.

Value

Nothing is returned. A plot is drawn in which each node is labeled by its cluster id.

See Also

PlotStars, PlotVariable, PlotFlowSOM, PlotLabels, PlotMarker, PlotPies, QueryStarPlot, PlotSD

Examples

# Read from file, build self-organizing map and minimal spanning tree
fileName <- system.file("extdata", "68983.fcs", package = "FlowSOM")
ff <- flowCore::read.FCS(fileName)
ff <- flowCore::compensate(ff, flowCore::keyword(ff)[["SPILL"]])
ff <- flowCore::transform(ff, flowCore::estimateLogicle(ff,
                                               flowCore::colnames(ff)[8:18]))
flowSOM.res <- FlowSOM(ff,
                       scale = TRUE,
                       colsToUse = c(9, 12, 14:18),
                       nClus = 10,
                       seed = 1)

# Plot the node IDs
PlotNumbers(flowSOM.res)
PlotNumbers(flowSOM.res, "metaclusters")

PlotNumbers(flowSOM.res,
            view = "grid")

PlotNumbers(flowSOM.res,
            maxNodeSize = 1,
            equalNodeSize = TRUE)

PlotOutliers

Description

Visual overview of outliers

Usage

PlotOutliers(fsom, outlierReport)

Arguments

fsom

FlowSOM object.

outlierReport

Outlier overview as generated by TestOutliers()

Value

Plot

Examples

# Identify the files
fcs <- flowCore::read.FCS(system.file("extdata", "68983.fcs", 
                                      package = "FlowSOM"))
# Build a FlowSOM object
flowSOM.res <- FlowSOM(fcs, 
                       scale = TRUE,
                       compensate = TRUE, 
                       transform = TRUE,
                       toTransform = 8:18, 
                       colsToUse = c(9, 12, 14:18),
                       nClus = 10,
                       seed = 1)
outlierReport <- TestOutliers(flowSOM.res)
p <- PlotOutliers(flowSOM.res, outlierReport)

PlotOverview2D

Description

Plot metaclusters on scatter plots

Usage

PlotOverview2D(fsom, markerlist, metaclusters, colors = NULL, ff, ...)

Arguments

fsom

FlowSOM object, as generated by FlowSOM. If using a FlowSOM object as generated by BuildMST, it needs to be wrapped in a list, list(FlowSOM = fsom, metaclustering = metaclustering).

markerlist

List in which each element is a pair of marker names

metaclusters

Metaclusters of interest

colors

Named vector with color value for each metacluster. If NULL (default) colorbrewer "paired" is interpolated

ff

flowFrame to use as reference for the marker names

...

Other parameters to pass on to PlotClusters2D

Details

Write multiple 2D scatter plots to a png file. All cells of fsom$data are plotted in black, and those of the selected metaclusters are plotted in color.

Value

Nothing is returned, but a plot is drawn for every markerpair and every metacluster. The individual cells are colored, and the center of each FlowSOM cluster is indicated with a blue cross.

See Also

PlotClusters2D

Examples

## Deprecated - use Plot2DScatters instead ##

   # Read from file, build self-organizing map and minimal spanning tree
   fileName <- system.file("extdata", "68983.fcs", package = "FlowSOM")
   flowSOM.res <- FlowSOM(fileName, 
                          compensate = TRUE, transform = TRUE, scale = TRUE,
                          colsToUse = c(9, 12, 14:18),
                          nClus = 10,
                          seed = 1)
                          
   # Plot cells
   markers_of_interest = list(c("FSC-A", "SSC-A"),
                              c("CD3", "CD19"),
                              c("TCRb", "TCRyd"),
                              c("CD4", "CD8"))
   metaclusters_of_interest = 1:10
   
   # Recommended to write to png
   
   ## Not run: 
     png("Markeroverview.png",
         width = 500 * length(markers_of_interest),
         height = 500 * length(metaclusters_of_interest))
     Plot2DScatters(flowSOM.res,
                    channelpairs = markers_of_interest,
                    metaclusters = metaclusters_of_interest)
     dev.off()
   
## End(Not run)

PlotPies

Description

Plot comparison with other clustering

Usage

PlotPies(
  fsom,
  cellTypes,
  colorPalette = grDevices::colorRampPalette(c("white", "#00007F", "blue", "#007FFF",
    "cyan", "#7FFF7F", "yellow", "#FF7F00", "red", "#7F0000")),
  ...
)

Arguments

fsom

FlowSOM object, as generated by FlowSOM

cellTypes

Array of factors indicating the celltypes

colorPalette

Color palette to use.

...

Additional arguments to pass to PlotFlowSOM

Details

Plot FlowSOM grid or tree, with pies indicating another clustering or manual gating result

Value

ggplot plot

See Also

PlotStars, PlotVariable, PlotFlowSOM, PlotLabels, PlotNumbers, PlotMarker, QueryStarPlot, PlotSD

Examples

# Identify the files
fcs_file <- system.file("extdata", "68983.fcs", package = "FlowSOM")
gating_file <- system.file("extdata", "gatingResult.csv", package = "FlowSOM")

# Specify the cell types of interest for assigning one label per cell
cellTypes <- c("B cells",
               "gd T cells", "CD4 T cells", "CD8 T cells",
               "NK cells", "NK T cells")
                
# Load manual labels (e.g. GetFlowJoLabels can be used to extract labels from
# an fcs file)
 
gatingResult <- as.factor(read.csv(gating_file, header = FALSE)[, 1])


# Build a FlowSOM tree
flowSOM.res <- FlowSOM(fcs_file,
                       scale = TRUE, 
                       compensate = TRUE, 
                       transform = TRUE,
                       toTransform = 8:18, 
                       colsToUse = c(9, 12, 14:18),
                       nClus = 10,
                       seed = 1)
   
 # Plot pies indicating the percentage of cell types present in the nodes
 PlotPies(flowSOM.res,
          gatingResult,
          backgroundValues = flowSOM.res$metaclustering)

PlotSD

Description

Plot FlowSOM grid or tree, colored by standard deviation.

Usage

PlotSD(fsom, marker = NULL, ...)

Arguments

fsom

FlowSOM object, as generated by FlowSOM

marker

If a marker/channel is given, the sd for this marker is shown. Otherwise, the maximum ratio is used.

...

Additional arguments to pass to PlotFlowSOM

Value

Nothing is returned. A plot is drawn in which each node is colored depending on its standard deviation

See Also

PlotStars, PlotVariable, PlotFlowSOM, PlotLabels, PlotNumbers, PlotMarker, PlotPies, QueryStarPlot

Examples

# Read from file, build self-organizing map and minimal spanning tree
fileName <- system.file("extdata", "68983.fcs", package  = "FlowSOM")
flowSOM.res <- ReadInput(fileName, compensate  = TRUE, transform  = TRUE,
                         scale  = TRUE)
flowSOM.res <- BuildSOM(flowSOM.res, colsToUse  = c(9, 12, 14:18))
flowSOM.res <- BuildMST(flowSOM.res)

PlotSD(flowSOM.res)

PlotStarLegend

Description

Plots star legend

Usage

PlotStarLegend(markers, colors, starHeight = 1)

Arguments

markers

Vector of markers used in legend

colors

Color palette for the legend. Can be a vector or a function.

starHeight

Star height. Default = 1.

Details

Function makes the legend of the FlowSOM star plot

Value

Returns nothing, but plots a legend for FlowSOM star plot

See Also

PlotFlowSOM

Examples

PlotStarLegend(c("CD3", "CD4", "CD8"),
               FlowSOM_colors(3))

PlotStars

Description

Plot star charts

Usage

PlotStars(
  fsom,
  markers = fsom$map$colsUsed,
  colorPalette = FlowSOM_colors,
  list_insteadof_ggarrange = FALSE,
  ...
)

Arguments

fsom

FlowSOM object, as generated by BuildMST

markers

Markers to plot (will be parsed by GetChannels)

colorPalette

Color palette to use

list_insteadof_ggarrange

If FALSE (default), the plot and the legend are combined by ggarrange. If TRUE, the separate elements are returned in a list, to allow further customization.

...

Additional arguments to pass to PlotFlowSOM

Details

Plot FlowSOM grid or tree, where each node is represented by a star chart indicating median marker values

Value

Nothing is returned. A plot is drawn in which each node is represented by a star chart indicating the median fluorescence intensities. Resets the layout back to 1 plot at the end.

See Also

PlotMarker, PlotVariable, PlotFlowSOM, PlotLabels, PlotNumbers, PlotPies, QueryStarPlot, PlotSD

Examples

# Read from file, build self-organizing map and minimal spanning tree
fileName <- system.file("extdata", "68983.fcs", package = "FlowSOM")
flowSOM.res <- FlowSOM(fileName, compensate = TRUE, transform = TRUE,
                       scale = TRUE, colsToUse = c(9, 12, 14:18))

# Plot stars indicating the MFI of the cells present in the nodes
PlotStars(flowSOM.res, backgroundValues = flowSOM.res$metaclustering)

newLayout <- igraph::layout_with_fr(flowSOM.res[["MST"]][["graph"]])
PlotStars(flowSOM.res, backgroundValues = flowSOM.res$metaclustering, 
          view = newLayout)
          
PlotStars(flowSOM.res, backgroundValues = flowSOM.res$metaclustering, 
          view = "grid")

PlotVariable

Description

Plot a variable for all nodes

Usage

PlotVariable(
  fsom,
  variable,
  variableName = "",
  colorPalette = FlowSOM_colors,
  lim = NULL,
  ...
)

Arguments

fsom

FlowSOM object

variable

A vector containing a value for every cluster

variableName

Label to show on the legend

colorPalette

Color palette to use. Can be a function or a vector.

lim

Limits for the scale

...

Additional arguments to pass to PlotFlowSOM, e.g. view, backgroundValues, equalNodeSize ...

Details

Plot FlowSOM grid or tree, colored by node values given in variable

See Also

PlotStars, QueryStarPlot, PlotFlowSOM, PlotLabels, PlotNumbers, PlotMarker, PlotPies, PlotSD

Examples

# Build FlowSOM model
fileName <- system.file("extdata", "68983.fcs", package = "FlowSOM")
flowSOM.res <- FlowSOM(fileName, 
                       compensate = TRUE, transform = TRUE, scale = FALSE,
                       colsToUse = c(9, 12, 14:18),
                       nClus = 10,
                       seed = 1)
                       
# Plot some random values
rand <- runif(flowSOM.res$map$nNodes)
PlotVariable(flowSOM.res, 
             variable = rand,
             variableName = "Random")
             
PlotVariable(flowSOM.res, 
             variable = flowSOM.res$metaclustering,
             variableName = "Metaclustering") %>% 
  AddLabels(labels = flowSOM.res$metaclustering)

Print FlowSOM object

Description

Print FlowSOM object

Usage

## S3 method for class 'FlowSOM'
print(x, ...)

Arguments

x

FlowSOM object to print information about

...

Further arguments, not used

Examples

fileName <- system.file("extdata", "68983.fcs", package = "FlowSOM")
flowSOM.res <- FlowSOM(fileName, compensate = TRUE, transform = TRUE,
                      scale = TRUE, colsToUse = c(9, 12, 14:18), nClus = 10)
print(flowSOM.res)

Calculate mean weighted cluster purity

Description

Calculate mean weighted cluster purity

Usage

Purity(realClusters, predictedClusters, weighted = TRUE)

Arguments

realClusters

array with real cluster values

predictedClusters

array with predicted cluster values

weighted

logical. Should the mean be weighted depending on the number of points in the predicted clusters

Value

Mean purity score, worst score, number of clusters with score < 0.75

Examples

# Generate some random data as an example
realClusters <- sample(1:5, 100, replace = TRUE)
predictedClusters <- sample(1:6, 100, replace = TRUE)

# Calculate the FMeasure
Purity(realClusters, predictedClusters)

query_multiple

Description

Function which takes a named list of multiple cell types, where every item is a named vector with values "high"/"low" and the names correspond to the markers or channels (e.g. as generated by parse_markertable).

Usage

query_multiple(fsom, cell_types, pdf_name = "query_multiple.pdf", ...)

Arguments

fsom

FlowSOM object

cell_types

Description of the cell types. Named list, with one named vector per cell type containing "high"/"low" values

pdf_name

Path to a pdf file to save figures

...

Additional arguments to pass to QueryStarPlot

Value

A label for every FlowSOM cluster (Unknown or one of the celltype names of the list, if selected by QueryStarPlot)

See Also

QueryStarPlot

Examples

file <- system.file("extdata", "68983.fcs", package="FlowSOM")
   ff <- flowCore::read.FCS(file)
   # Use the wrapper function to build a flowSOM object (saved in flowSOM.res)
   # and a metaclustering (saved in flowSOM.res[["metaclustering"]])
   flowSOM.res <- FlowSOM(ff,compensate = TRUE, transform = TRUE,scale = TRUE,
                  colsToUse = c(9,12,14:18), nClus = 10, silent = FALSE,
                  xdim=7, ydim=7)
   cell_types <- list("CD8 T cells" = c("PE-Cy7-A" = "high",
                                        "APC-Cy7-A" = "high",
                                        "Pacific Blue-A" = "high"),
                       "B cells" = c("PE-Cy5-A" = "high"),
                       "NK cells" = c("PE-A" = "high",
                                      "PE-Cy7-A" = "low",
                                      "APC-Cy7-A" = "low"))
   query_res <- QueryMultiple(flowSOM.res, cell_types, "query_multiple.pdf")

QueryMultiple

Description

Function which takes a named list of multiple cell types, where every item is a named vector with values "high"/"low" and the names correspond to the markers or channels (e.g. as generated by parse_markertable).

Usage

QueryMultiple(fsom, cellTypes, plotFile = "queryMultiple.pdf", ...)

Arguments

fsom

FlowSOM object

cellTypes

Description of the cell types. Named list, with one named vector per cell type containing "high"/"low" values

plotFile

Path to a pdf file to save the plots (default is queryMultiple.pdf). If NULL, no plots will be generated

...

Additional arguments to pass to QueryStarPlot

Value

A label for every FlowSOM cluster (Unknown or one of the celltype names of the list, if selected by QueryStarPlot)

Examples

file <- system.file("extdata", "68983.fcs", package = "FlowSOM")
   ff <- flowCore::read.FCS(file)
   # Use the wrapper function to build a flowSOM object (saved in flowSOM.res)
   # and a metaclustering (saved in flowSOM.res[["metaclustering"]])
   flowSOM.res <- FlowSOM(ff, compensate = TRUE, transform = TRUE, scale = TRUE,
                  colsToUse = c(9, 12, 14:18), nClus = 10, silent = FALSE,
                  xdim = 7, ydim = 7)
   cellTypes <- list("CD8 T cells" = c("PE-Cy7-A" = "high",
                                        "APC-Cy7-A" = "high",
                                        "Pacific Blue-A" = "high"),
                       "B cells" = c("PE-Cy5-A" = "high"),
                       "NK cells" = c("PE-A" = "high",
                                      "PE-Cy7-A" = "low",
                                      "APC-Cy7-A" = "low"))
   query_res <- QueryMultiple(flowSOM.res, cellTypes, "query_multiple.pdf")

QueryStarPlot

Description

Query a certain cell type

Usage

QueryStarPlot(
  fsom,
  query,
  plot = TRUE,
  colorPalette = FlowSOM_colors,
  backgroundColors = "#CA0020",
  ...
)

Arguments

fsom

FlowSOM object, as generated by BuildMST

query

Array containing "high" or "low" (or abbreviations) for the specified column names of the FlowSOM data.

plot

If true, a plot with a gradient of scores for the nodes is shown.

colorPalette

Color palette to be used for colors for "stars", "pies" or "marker". Can be either a function or an array specifying colors.

backgroundColors

Color to use for nodes with a high score in the plot. Default is red.

...

Additional arguments to pass to PlotFlowSOM

Details

Identify nodes in the tree which resemble a certain profile of "high" or "low" marker expressions.

Value

A list, containing the ids of the selected nodes, the individual scores for all nodes and the scores for each marker for each node

See Also

PlotStars, PlotVariable, PlotFlowSOM, PlotLabels, PlotNumbers, PlotMarker, PlotPies, PlotSD

Examples

file <- system.file("extdata", "68983.fcs", package="FlowSOM")
   flowSOM.res <- FlowSOM(file, compensate = TRUE, transform = TRUE, 
                  scale = TRUE, colsToUse = c(9, 12, 14:18), nClus = 10, 
                  silent = FALSE, xdim = 7, ydim = 7)
   query <- c("CD3" = "high", #CD3
              "CD4" = "low", #TCRb
              "CD8" = "high") #CD8
   query_res <- QueryStarPlot(flowSOM.res, query, equalNodeSize = TRUE)
   
   cellTypes <- factor(rep("Unlabeled", 49), 
                       levels = c("Unlabeled", "CD8 T cells"))
   cellTypes[query_res$selected] <- "CD8 T cells"
   PlotStars(flowSOM.res,
             backgroundValues = cellTypes,
             backgroundColors = c("#FFFFFF00", "#ca0020aa"))

Read FCS-files or flowFrames

Description

Take some input and return FlowSOM object containing a matrix with the preprocessed data (compensated, transformed, scaled)

Usage

ReadInput(
  input,
  pattern = ".fcs",
  compensate = FALSE,
  spillover = NULL,
  transform = FALSE,
  toTransform = NULL,
  transformFunction = flowCore::logicleTransform(),
  transformList = NULL,
  scale = FALSE,
  scaled.center = TRUE,
  scaled.scale = TRUE,
  silent = FALSE
)

Arguments

input

a flowFrame, a flowSet, a matrix with column names or an array of paths to files or directories

pattern

if input is an array of file- or directorynames, select only files containing pattern

compensate

logical, does the data need to be compensated

spillover

spillover matrix to compensate with If NULL and compensate = TRUE, we will look for $SPILL description in FCS file.

transform

logical, does the data need to be transformed

toTransform

column names or indices that need to be transformed. Will be ignored if transformList is given. If NULL and transform = TRUE, column names of $SPILL description in FCS file will be used.

transformFunction

Defaults to logicleTransform()

transformList

transformList to apply on the samples.

scale

logical, does the data needs to be rescaled

scaled.center

see scale

scaled.scale

see scale

silent

if TRUE, no progress updates will be printed. Default = FALSE

Value

FlowSOM object containing the data, which can be used as input for the BuildSOM function

See Also

scale, BuildSOM

Examples

# Read from file
fileName <- system.file("extdata", "68983.fcs", package = "FlowSOM")
flowSOM.res <- ReadInput(fileName, compensate = TRUE, transform = TRUE,
                         scale = TRUE)

# Or read from flowFrame object
ff <- flowCore::read.FCS(fileName)
ff <- flowCore::compensate(ff, flowCore::keyword(ff)[["SPILL"]])
ff <- flowCore::transform(ff,
         flowCore::transformList(colnames(flowCore::keyword(ff)[["SPILL"]]),
                                flowCore::logicleTransform()))
flowSOM.res <- ReadInput(ff, scale = TRUE)

# Build the self-organizing map and the minimal spanning tree
flowSOM.res <- BuildSOM(flowSOM.res, colsToUse = c(9, 12, 14:18))
flowSOM.res <- BuildMST(flowSOM.res)

# Apply metaclustering
metacl <- MetaClustering(flowSOM.res$map$codes,
                         "metaClustering_consensus", max = 10)

# Get metaclustering per cell
flowSOM.clustering <- metacl[flowSOM.res$map$mapping[, 1]]

Write FlowSOM clustering results to the original FCS files

Description

Write FlowSOM clustering results to the original FCS files

Usage

SaveClustersToFCS(
  fsom,
  originalFiles,
  preprocessedFiles = NULL,
  selectionColumn = NULL,
  silent = FALSE,
  outputDir = ".",
  suffix = "_FlowSOM.fcs",
  ...
)

Arguments

fsom

FlowSOM object as generated by BuildSOM

originalFiles

FCS files that should be extended

preprocessedFiles

FCS files that correspond to the input of FlowSOM, If NULL (default), the originalFiles are used.

selectionColumn

Column of the FCS file indicating the original cell ids. If NULL (default), no selection is made.

silent

If FALSE (default), print some extra output

outputDir

Directory to save the FCS files. Default to the current working directory (".")

suffix

Suffix added to the filename. Default _FlowSOM.fcs

...

Options to pass on to the read.FCS function (e.g. truncate_max_range)

Value

Saves the extended FCS file as [originalName]_FlowSOM.fcs

Examples

fileName <- system.file("extdata", "68983.fcs", package = "FlowSOM")
flowSOM.res <- FlowSOM(fileName, compensate = TRUE, transform = TRUE,
                      scale = TRUE, colsToUse = c(9, 12, 14:18), nClus = 10)
SaveClustersToFCS(flowSOM.res, fileName)

ScaleStarHeights

Description

Scales starheights

Usage

ScaleStarHeights(data, nodeSizes)

Arguments

data

Median values of relevant markers extracted from FlowSOM object

nodeSizes

A vector that is returned from ParseNodeSize

Details

Function that scales the star values between 0 and the node size

Value

A dataframe consisting of the scaled values of the stars. The stars are scaled between 0 and the maximum of all stars

See Also

PlotFlowSOM, ParseNodeSize, AutoMaxNodeSize


Build a self-organizing map

Description

Build a self-organizing map

Usage

SOM(
  data,
  xdim = 10,
  ydim = 10,
  rlen = 10,
  mst = 1,
  alpha = c(0.05, 0.01),
  radius = stats::quantile(nhbrdist, 0.67) * c(1, 0),
  init = FALSE,
  initf = Initialize_KWSP,
  distf = 2,
  silent = FALSE,
  map = TRUE,
  codes = NULL,
  importance = NULL
)

Arguments

data

Matrix containing the training data

xdim

Width of the grid

ydim

Hight of the grid

rlen

Number of times to loop over the training data for each MST

mst

Number of times to build an MST

alpha

Start and end learning rate

radius

Start and end radius

init

Initialize cluster centers in a non-random way

initf

Use the given initialization function if init == T (default: Initialize_KWSP)

distf

Distance function (1 = manhattan, 2 = euclidean, 3 = chebyshev, 4 = cosine)

silent

If FALSE, print status updates

map

If FALSE, data is not mapped to the SOM. Default TRUE.

codes

Cluster centers to start with

importance

array with numeric values. Parameters will be scaled according to importance

Value

A list containing all parameter settings and results

References

This code is strongly based on the kohonen package. R. Wehrens and L.M.C. Buydens, Self- and Super-organising Maps in R: the kohonen package J. Stat. Softw., 21(5), 2007

See Also

BuildSOM


TestOutliers

Description

Test if any cells are too far from their cluster centers

Usage

TestOutliers(
  fsom,
  madAllowed = 4,
  fsomReference = NULL,
  plotFile = NULL,
  channels = NULL
)

Arguments

fsom

FlowSOM object

madAllowed

Number of median absolute deviations allowed. Default = 4.

fsomReference

FlowSOM object to use as reference. If NULL (default), the original fsom object is used.

plotFile

If NULL (default), no plot will be created. If a filepath is given for a pdf, the plot will be written in the corresponding file

channels

If channels are given, the number of outliers in the original space for those channels will be calculated and added to the final results table.

Details

For every cluster, the distance from the cells to the cluster centers is used to label cells which deviate too far as outliers. The threshold is chosen as the median distance + madAllowed times the median absolute deviation of the distances.

Value

An outlier report

See Also

FlowSOMSubset if you want to get a subset of the current data instead of a new dataset

Examples

# Build FlowSom result
 fileName <- system.file("extdata", "68983.fcs", package = "FlowSOM")
 ff <- flowCore::read.FCS(fileName)
 flowSOM.res <- FlowSOM(ff,
                        compensate = TRUE, transform = TRUE, scale = TRUE,
                        colsToUse = c(9, 12, 14:18),
                        nClus = 10)
   
 # Map new data
 outlier_report <- TestOutliers(flowSOM.res, 
                                madAllowed = 5,
                                channels = flowSOM.res$map$colsUsed)

 # Number of cells which is an outlier for x channels                               
 outlier_on_multiple_markers <- table(rowSums(outlier_report$channel_specific != 0))          
 outlier_type <- paste(GetClusters(flowSOM.res),
                       apply(outlier_report$channel_specific, 1, paste0, collapse = ""))
 outlier_counts <- table(grep(" .*1.*", outlier_type, value = TRUE))
 outliers_of_interest <- names(which(outlier_counts > 10))
 outlier_boolean <- outlier_type %in% outliers_of_interest

UpdateFlowSOM

Description

Update old FlowSOM object to a new one and checks if it is a flowSOM object

Usage

UpdateFlowSOM(fsom)

Arguments

fsom

FlowSOM object, as generated by BuildMST or FlowSOM

Details

Determines whether or not the fsom input is of class "FlowSOM" and returns the FlowSOM object and metaclustering object inside fsom

Value

A FlowSOM object

See Also

PlotFlowSOM


UpdateMetaclusters

Description

Adapt the metacluster levels. Can be used to rename the metaclusters, split or merge existing metaclusters, add a metaclustering and/or reorder the levels of the metaclustering.

Usage

UpdateMetaclusters(
  fsom,
  newLabels = NULL,
  clusterAssignment = NULL,
  levelOrder = NULL
)

Arguments

fsom

Result of calling the FlowSOM function.

newLabels

Optional. Named vector, with the names the original metacluster names and the values the replacement. Can be used to rename or merge metaclusters.

clusterAssignment

Optional. Either a named vector, with the names the cluster numbers (characters) or a vector of length NClusters(fsom). Can be used to assign clusters to existing or new metaclusters.

levelOrder

Optional. Vector showing the preferred order of the fsom metacluster levels.

Value

Updated FlowSOM object

Examples

fileName <- system.file("extdata", "68983.fcs", package = "FlowSOM")
ff <- flowCore::read.FCS(fileName)
ff <- flowCore::compensate(ff, flowCore::keyword(ff)[["SPILL"]])
ff <- flowCore::transform(ff,
         flowCore::transformList(colnames(flowCore::keyword(ff)[["SPILL"]]),
                                flowCore::logicleTransform()))
flowSOM.res <- FlowSOM(ff,
                       scale = TRUE,
                       colsToUse = c(9, 12, 14:18), 
                       nClus = 10,
                       seed = 1)
                       
PlotStars(flowSOM.res, backgroundValues = flowSOM.res$metaclustering)
GetCounts(flowSOM.res)

# Merge MC8 and MC9
flowSOM.res <- UpdateMetaclusters(flowSOM.res, newLabels = c("8" = "8+9",
                                                             "9" = "8+9")) 
PlotStars(flowSOM.res, backgroundValues = flowSOM.res$metaclustering)
GetCounts(flowSOM.res)

# Split cluster 24 from metacluster 2 and order the metacluster levels
flowSOM.res <- UpdateMetaclusters(flowSOM.res, 
                                  clusterAssignment = c("24" = "debris?"),
                                  levelOrder = c("debris?", as.character(c(1:7)),
                                                  "8+9", "10"))
PlotStars(flowSOM.res, backgroundValues = flowSOM.res$metaclustering)
PlotNumbers(flowSOM.res, level = "metaclusters")

GetCounts(flowSOM.res)

UpdateNodeSize

Description

Update nodesize of FlowSOM object

Usage

UpdateNodeSize(
  fsom,
  count = NULL,
  reset = FALSE,
  transform = sqrt,
  maxNodeSize = 15,
  shift = 0,
  scale = NULL
)

Arguments

fsom

FlowSOM object, as generated by BuildMST

count

Absolute cell count of the sample

reset

Logical. If TRUE, all nodes get the same size

transform

Transformation function. Use e.g. square root to let counts correspond with area of node instead of radius

maxNodeSize

Maximum node size after rescaling. Default: 15

shift

Shift of the counts, defaults to 0

scale

Scaling of the counts, defaults to the maximum of the value minus the shift. With shift and scale set as default, the largest node will be maxNodeSize and an empty node will have size 0

Details

Add size property to the graph based on cellcount for each node

Value

Updated FlowSOM object

See Also

BuildMST

Examples

# Read from file, build self-organizing map and minimal spanning tree
fileName <- system.file("extdata", "68983.fcs", package="FlowSOM")
flowSOM.res <- ReadInput(fileName, compensate=TRUE,transform=TRUE,
                        scale=TRUE)
flowSOM.res <- BuildSOM(flowSOM.res,colsToUse=c(9,12,14:18))
flowSOM.res <- BuildMST(flowSOM.res)

# Give all nodes same size
PlotStars(flowSOM.res, equalNodeSize = TRUE)

# Node sizes relative to amount of cells assigned to the node
PlotStars(flowSOM.res)