Package 'FindIT2'

Title: find influential TF and Target based on multi-omics data
Description: This package implements functions to find influential TF and target based on different input type. It have five module: Multi-peak multi-gene annotaion(mmPeakAnno module), Calculate regulation potential(calcRP module), Find influential Target based on ChIP-Seq and RNA-Seq data(Find influential Target module), Find influential TF based on different input(Find influential TF module), Calculate peak-gene or peak-peak correlation(peakGeneCor module). And there are also some other useful function like integrate different source information, calculate jaccard similarity for your TF.
Authors: Guandong Shang [aut, cre]
Maintainer: Guandong Shang <[email protected]>
License: Artistic-2.0
Version: 1.13.0
Built: 2024-11-19 03:43:14 UTC
Source: https://github.com/bioc/FindIT2

Help Index


ATAC normCount of E50h-72h in Chr5

Description

ATAC normCount of E50h-72h in Chr5

Usage

data(ATAC_normCount)

Format

A matrix

Source

https://doi.org/10.1016/j.devcel.2020.07.003


calcRP_coverage

Description

calculate regulatory potential using big wig files, which is useful for ATAC or H3K27ac histone modification data.

Usage

calcRP_coverage(
  bwFile,
  Txdb,
  gene_included,
  Chrs_included,
  decay_dist = 1000,
  scan_dist = 20000,
  verbose = TRUE
)

Arguments

bwFile

bw file

Txdb

Txdb

gene_included

a character vector which represent gene set which you want to calculate RP for

Chrs_included

a character vector which represent chromosomes where you want to calculate gene RP in

decay_dist

decay distance

scan_dist

scan distance

verbose

whether you want to report detailed running message

Details

Please note that because of rtracklayer::import has some issue on 32 bit R of windows, so the calcRP_coverage can not work on this system. But if your R is 64 bit, which now be applied on the most windows R, this function still work.

Value

data.frame

Examples

if (.Platform$OS.type != "windows" & require(TxDb.Athaliana.BioMart.plantsmart28)) {
    Txdb <- TxDb.Athaliana.BioMart.plantsmart28
    seqlevels(Txdb) <- paste0("Chr", c(1:5, "M", "C"))
    bwFile <- system.file("extdata", "E50h_sampleChr5.bw", package = "FindIT2")

    RP_df <- calcRP_coverage(
        bwFile = bwFile,
        Txdb = Txdb,
        Chrs_included = "Chr5"
    )

}

calcRP_region

Description

calculate regulatory potential based on mm_geneScan result and peakCount matrix, which is useful for ATAC or H3K27ac histone modification data.

Usage

calcRP_region(
  mmAnno,
  peakScoreMt,
  Txdb,
  Chrs_included,
  decay_dist = 1000,
  log_transform = FALSE,
  verbose = TRUE
)

Arguments

mmAnno

the annotated GRange object from mm_geneScan

peakScoreMt

peak count matrix. The rownames are feature_id in mmAnno, while the colnames are sample names

Txdb

Txdb

Chrs_included

a character vector which represent chromosome where you want to calculate gene RP in. If Chromosome is not be set, it will calculate gene RP in all chromosomes in Txdb.

decay_dist

decay distance

log_transform

whether you want to log and norm your RP

verbose

whether you want to report detailed running message

Value

a MultiAssayExperiment object containg detailed peak-RP-gene relationship and sumRP info

Examples

if (require(TxDb.Athaliana.BioMart.plantsmart28)) {
    data("ATAC_normCount")
    library(SummarizedExperiment)
    Txdb <- TxDb.Athaliana.BioMart.plantsmart28
    seqlevels(Txdb) <- paste0("Chr", c(1:5, "M", "C"))

    peak_path <- system.file("extdata", "ATAC.bed.gz", package = "FindIT2")
    peak_GR <- loadPeakFile(peak_path)
    mmAnno <- mm_geneScan(peak_GR, Txdb)

    regionRP <- calcRP_region(
        mmAnno = mmAnno,
        peakScoreMt = ATAC_normCount,
        Txdb = Txdb,
        Chrs_included = "Chr5"
    )

    sumRP <- assays(regionRP)$sumRP
    fullRP <- assays(regionRP)$fullRP
}

calcRP_TFHit

Description

calculate regulatory potential based on ChIP-Seq peak data, which is useful for TF ChIP-seq data.

Usage

calcRP_TFHit(
  mmAnno,
  Txdb,
  decay_dist = 1000,
  report_fullInfo = FALSE,
  verbose = TRUE
)

Arguments

mmAnno

the annotated GRange object from mm_geneScan

Txdb

Txdb

decay_dist

decay distance

report_fullInfo

whether you want to report full peak-RP-gene info

verbose

whether you want to report detailed running message

Details

If your origin peak_GR of mmAnno have column named feature_score, calcRP_TFHit will consider this column when calculating sumRP. Otherwise, it will consider all peak Hit feature_score is 1.

Value

if report_fullInfo is TRUE, it will output GRanges with detailed info. While FALSE, it will output data frame

Examples

if (require(TxDb.Athaliana.BioMart.plantsmart28)){
    Txdb <- TxDb.Athaliana.BioMart.plantsmart28
    seqlevels(Txdb) <- paste0("Chr", c(1:5, "M", "C"))
    peak_path <- system.file("extdata", "ChIP.bed.gz", package = "FindIT2")
    peak_GR <- loadPeakFile(peak_path)
    mmAnno <- mm_geneScan(peak_GR, Txdb)

    # if you just want to get RP_df, you can set report_fullInfo FALSE
    fullRP_hit <- calcRP_TFHit(
        mmAnno = mmAnno,
        Txdb = Txdb,
        report_fullInfo = TRUE
    )

    RP_df <- metadata(fullRP_hit)$peakRP_gene

}

enhancerPromoterCor

Description

enhancerPromoterCor

Usage

enhancerPromoterCor(
  peak_GR,
  Txdb,
  up_scanPromoter = 500,
  down_scanPromoter = 500,
  up_scanEnhancer = 20000,
  down_scanEnhacner = 20000,
  peakScoreMt,
  parallel = FALSE,
  verbose = TRUE
)

Arguments

peak_GR

peak GRange with a column named feature_id representing you peak name

Txdb

Txdb

up_scanPromoter

the scan distance which is used to scan nearest promoter

down_scanPromoter

the scan distance which is used to scan nearest promoter

up_scanEnhancer

the scan distance which is used to scan feature

down_scanEnhacner

the scan distance which is used to scan feature

peakScoreMt

peak count matrix. The rownames are feature_id in peak_GR

parallel

whether you want to parallel to speed up

verbose

whether you want to report detailed running message

Value

mmAnno with Cor, pvalue,padj,qvalue column

Examples

if (require(TxDb.Athaliana.BioMart.plantsmart28)){
    data("ATAC_normCount")
    Txdb <- TxDb.Athaliana.BioMart.plantsmart28
    seqlevels(Txdb) <- paste0("Chr", c(1:5, "M", "C"))
    peak_path <- system.file("extdata", "ATAC.bed.gz", package = "FindIT2")
    peak_GR <- loadPeakFile(peak_path)[1:100]
    mm_ePLink <- enhancerPromoterCor(
    peak_GR = peak_GR,
    Txdb = Txdb,
    peakScoreMt = ATAC_normCount,
    parallel = FALSE)
}

findI(nfluential)T(F)_enrichFisher

Description

find influential TF of your input peak set compared with your whole peak sets based on TF ChIP-Seq or motif data.

Usage

findIT_enrichFisher(input_feature_id, peak_GR, TF_GR_database)

Arguments

input_feature_id

a character vector which represent peaks set which you want to find influential TF for

peak_GR

a GRange object represent your whole feature location with a column named feature_id, which your input_feature_id should a part of it.

TF_GR_database

TF peak GRange with a column named TF_id representing you TF name

Value

data.frame

Examples

data("test_featureSet")
peak_path <- system.file("extdata", "ATAC.bed.gz", package = "FindIT2")
peak_GR <- loadPeakFile(peak_path)
ChIP_peak_path <- system.file("extdata", "ChIP.bed.gz", package = "FindIT2")
ChIP_peak_GR <- loadPeakFile(ChIP_peak_path)
ChIP_peak_GR$TF_id <- "AT1G28300"

 result_findIT_enrichFisher <- findIT_enrichFisher(
    input_feature_id = test_featureSet,
    peak_GR = peak_GR,
    TF_GR_database = ChIP_peak_GR
)

findIT_enrichWilcox

Description

findIT_enrichWilcox

Usage

findIT_enrichWilcox(
  input_feature_id,
  peak_GR,
  TF_GR_database,
  background_peaks = NULL,
  background_number = 3000
)

Arguments

input_feature_id

a character vector which represent peaks set which you want to find influential TF for

peak_GR

a GRange object represent your whole feature location with a column named feature_id, which your input_feature_id should a part of it.

TF_GR_database

TF peak GRange with a column named TF_id representing you TF name

background_peaks

a character vector which represent background peak set. If you do not assign background peaks, program will sample background_number peaks as background peaks from all feature_id in your peak_GR

background_number

background peaks number

Value

data.frame

Examples

data("test_featureSet")
peak_path <- system.file("extdata", "ATAC.bed.gz", package = "FindIT2")
peak_GR <- loadPeakFile(peak_path)
ChIP_peak_path <- system.file("extdata", "ChIP.bed.gz", package = "FindIT2")
ChIP_peak_GR <- loadPeakFile(ChIP_peak_path)
ChIP_peak_GR$TF_id <- "AT1G28300"

result_findIT_enrichWilcox <- findIT_enrichWilcox(
    input_feature_id = test_featureSet,
    peak_GR = peak_GR,
    TF_GR_database = ChIP_peak_GR
)

findIT_MARA

Description

findIT_MARA

Usage

findIT_MARA(
  input_feature_id,
  peak_GR,
  peakScoreMt,
  TF_GR_database,
  log = TRUE,
  meanScale = TRUE,
  output = c("coef", "cor"),
  verbose = TRUE
)

Arguments

input_feature_id

a character vector which represent peaks set which you want to find influential TF for

peak_GR

a GRange object represent your whole feature location with a column named feature_id, which your input_feature_id should a part of it.

peakScoreMt

peak count matrix.

TF_GR_database

TF peak GRange with a column named TF_id representing you TF name. If you have TF_score column, MARA will consider it. otherwise, MARA will consider each hit is 1.

log

whether you want to log your peakScoreMt

meanScale

whether you want to mean-centered per row

output

one of 'coef' and 'cor'. Default is coef

verbose

whether you want to report detailed running message

Value

a data.frame

Examples

data("ATAC_normCount")
data("test_featureSet")

peak_path <- system.file("extdata", "ATAC.bed.gz", package = "FindIT2")
peak_GR <- loadPeakFile(peak_path)

ChIP_peak_path <- system.file("extdata", "ChIP.bed.gz", package = "FindIT2")
ChIP_peak_GR <- loadPeakFile(ChIP_peak_path)
ChIP_peak_GR$TF_id <- "AT1G28300"

set.seed(20160806)

result_findIT_MARA <- findIT_MARA(
    input_feature_id = test_featureSet,
    peak_GR = peak_GR,
    peakScoreMt = ATAC_normCount,
    TF_GR_database = ChIP_peak_GR
)

findI(nfluential)T(F)_regionRP

Description

find Influential TF of your input gene set based on regulatory potential data and TF ChIP-Seq or motif data

Usage

findIT_regionRP(
  regionRP,
  Txdb,
  TF_GR_database,
  input_genes,
  background_genes = NULL,
  background_number = 3000,
  verbose = TRUE
)

Arguments

regionRP

the MultiAssayExperiment object from calcRP_region

Txdb

Txdb

TF_GR_database

TF peak GRange with a column named TF_id representing you TF name

input_genes

a character vector which represent genes set which you want to find influential TF for

background_genes

a character vector which represent background genes set. If you do not assign background gene , program will sample background_number genes as background genes from all gene sets.

background_number

background genes number

verbose

whether you want to report detailed running message

Value

a MultiAssayExperiment object containg detailed TF-percent and TF-pvalue

Examples

if (require(TxDb.Athaliana.BioMart.plantsmart28)) {
    data("ATAC_normCount")
    data("test_geneSet")
    Txdb <- TxDb.Athaliana.BioMart.plantsmart28
    seqlevels(Txdb) <- paste0("Chr", c(1:5, "M", "C"))

    peak_path <- system.file("extdata", "ATAC.bed.gz", package = "FindIT2")
    peak_GR <- loadPeakFile(peak_path)

    ChIP_peak_path <- system.file("extdata", "ChIP.bed.gz", package = "FindIT2")
    ChIP_peak_GR <- loadPeakFile(ChIP_peak_path)
    ChIP_peak_GR$TF_id <- "AT1G28300"

    mmAnno <- mm_geneScan(peak_GR, Txdb)

    regionRP <- calcRP_region(
        mmAnno = mmAnno,
        peakScoreMt = ATAC_normCount,
        Txdb = Txdb,
        Chrs_included = "Chr5"
    )

    set.seed(20160806)
    result_findIT_regionRP <- findIT_regionRP(
        regionRP = regionRP,
        Txdb = Txdb,
        TF_GR_database = ChIP_peak_GR,
        input_genes = test_geneSet,
        background_number = 3000
    )

}

findI(nfluential)T(F)_TFHit

Description

find influential TF of your input gene set based on TF ChIP-Seq or motif data

Usage

findIT_TFHit(
  input_genes,
  Txdb,
  TF_GR_database,
  scan_dist = 20000,
  decay_dist = 1000,
  Chrs_included,
  background_genes = NULL,
  background_number = 3000,
  verbose = TRUE
)

Arguments

input_genes

a character vector which represent genes set which you want to find influential TF for

Txdb

Txdb

TF_GR_database

TF peak GRange with a column named TF_id representing you TF name

scan_dist

scan distance

decay_dist

decay distance

Chrs_included

a character vector represent chromosomes which you want to sample background genes from

background_genes

a character vector which represent background genes set. If you do not assign background gene , program will sample background_number genes as background genes from all gene sets.

background_number

background genes number

verbose

whether you want to report detailed running message

Value

data.frame

Examples

if (require(TxDb.Athaliana.BioMart.plantsmart28)) {
    data("test_geneSet")
    Txdb <- TxDb.Athaliana.BioMart.plantsmart28
    seqlevels(Txdb) <- paste0("Chr", c(1:5, "M", "C"))

    ChIP_peak_path <- system.file("extdata", "ChIP.bed.gz", package = "FindIT2")
    ChIP_peak_GR <- loadPeakFile(ChIP_peak_path)
    ChIP_peak_GR$TF_id <- "AT1G28300"

    set.seed(20160806)
    result_findIT_TFHit <- findIT_TFHit(
        input_genes = test_geneSet,
        Txdb = Txdb,
        TF_GR_database = ChIP_peak_GR
    )

}

findI(nfluential)T(F)_T(F)T(arget)Pair

Description

find influential TF of your input gene set based on public TF-Target data

Usage

findIT_TTPair(
  input_genes,
  TF_target_database,
  gene_background = NULL,
  TFHit_min = 5,
  TFHit_max = 10000
)

Arguments

input_genes

a character vector which represent genes set which you want to find influential TF for

TF_target_database

TF_target pair data with two column named TF_id and target_gene

gene_background

a character vector represent your bakcaground gene. If you do not assign background gene, program will consider all target gene as background

TFHit_min

minimal size of target gene regulated by TF

TFHit_max

maximal size of target gene regulated by TF

Value

data.frame

Examples

data("TF_target_database")
data("test_geneSet")

result_findIT_TTPair <- findIT_TTPair(
    input_genes = test_geneSet,
    TF_target_database = TF_target_database
)

getAssocPairNumber

Description

get associated peak number of gene and vice verse.

Usage

getAssocPairNumber(
  mmAnno,
  output_type = c("gene_id", "feature_id"),
  output_summary = FALSE
)

Arguments

mmAnno

the annotated GRange object from mm_geneScan or mm_nearestGene

output_type

one of 'gene_id' or 'feature_id'

output_summary

whether you want to detailed info

Value

data.frame

Examples

if (require(TxDb.Athaliana.BioMart.plantsmart28)) {
    Txdb <- TxDb.Athaliana.BioMart.plantsmart28
    seqlevels(Txdb) <- paste0("Chr", c(1:5, "M", "C"))

    peak_path <- system.file("extdata", "ChIP.bed.gz", package = "FindIT2")
    peak_GR <- loadPeakFile(peak_path)
    peakAnno <- mm_nearestGene(peak_GR, Txdb)

    getAssocPairNumber(peakAnno)

}

integrate_ChIP_RNA

Description

integrate ChIP-Seq and RNA-Seq data to find TF target genes

Usage

integrate_ChIP_RNA(
  result_geneRP,
  result_geneDiff,
  lfc_threshold = 1,
  padj_threshold = 0.05
)

Arguments

result_geneRP

the simplify result from calcRP_TFHit(report_fullInfo = FALSE) or RP_df <- metadata(fullRP_hit)$peakRP_gene.

result_geneDiff

the result from RNA diff result with three column gene_id, log2FoldChange, padj

lfc_threshold

the threshold which decide significant genes

padj_threshold

the threshold which decide significant genes

Value

a ggplot object if having significant genes in your result. If not, it will report a data.frame with integrated info.

Examples

if (require(TxDb.Athaliana.BioMart.plantsmart28)) {
    data("RNADiff_LEC2_GR")
    Txdb <- TxDb.Athaliana.BioMart.plantsmart28
    seqlevels(Txdb) <- paste0("Chr", c(1:5, "M", "C"))
    peak_path <- system.file("extdata", "ChIP.bed.gz", package = "FindIT2")
    peak_GR <- loadPeakFile(peak_path)
    mmAnno <- mm_geneScan(peak_GR, Txdb)

    result_geneRP <- calcRP_TFHit(
        mmAnno = mmAnno,
        Txdb = Txdb
    )
    # output a plot
    merge_data <- integrate_ChIP_RNA(
        result_geneRP = result_geneRP,
        result_geneDiff = RNADiff_LEC2_GR
    )
    # if you want to extract merge target data
    target_data <- merge_data$data

}

integrate_replicates

Description

integrate value from replicates

Usage

integrate_replicates(
  mt,
  colData,
  fun = NULL,
  type = c("value", "rank", "rank_zscore", "pvalue")
)

Arguments

mt

value matrix

colData

a data.frame with a single column named with "type". Rows of colData correspond to columns of mt.

fun

the function you want to use. If set NULL, program will decide integrate method according to your 'type' parameter.

type

one of 'value', 'rank', 'rank_zscore', pvalue'. value will use mean to integrate replicates, rank will use product, rank_zscore will use Stouffer's method and pvalue will use CCT(Cauchy distribution)

Value

matrix

Examples

mt <- matrix(runif(100, 0, 1), nrow = 10)
colnames(mt) <- paste0(paste0("type", 1:5), "_", rep(1:2, 5))
rownames(mt) <- paste0("TF", 1:10)

colData <- data.frame(
    type = gsub("_[0-9]", "", colnames(mt)),
    row.names = colnames(mt)
)


integrate_replicates(mt, colData, type = "value")

jaccard_findIT_enrichFisher

Description

jaccard_findIT_enrichFisher

Usage

jaccard_findIT_enrichFisher(
  input_feature_id,
  peak_GR,
  TF_GR_database,
  input_TF_id
)

Arguments

input_feature_id

a character vector which represent peaks set which you want to find influential TF for (same as your find_IT_enrichFisher parameter)

peak_GR

a GRange object represent your whole feature location with a column named feature_id, which your input_feature_id should a part of it.

TF_GR_database

TF peak GRange with a column named TF_id representing you TF name

input_TF_id

TF_id which you want to calculate jaccard index for

Value

jaccard similarity matrix

Examples

data("test_featureSet")
peak_path <- system.file("extdata", "ATAC.bed.gz", package = "FindIT2")
peak_GR <- loadPeakFile(peak_path)

ChIP_peak_path <- system.file("extdata", "ChIP.bed.gz", package = "FindIT2")
ChIP_peak_GR <- loadPeakFile(ChIP_peak_path)
ChIP_peak_GR$TF_id <- "AT1G28300"
result_findIT_enrichFisher <- findIT_enrichFisher(
    input_feature_id = test_featureSet,
    peak_GR = peak_GR,
    TF_GR_database = ChIP_peak_GR
)

jaccard_findIT_enrichFisher(
    input_feature_id = test_featureSet,
    peak_GR = peak_GR,
    TF_GR_database = ChIP_peak_GR,
    input_TF_id = result_findIT_enrichFisher$TF_id[1]
)

jaccard_findIT_TTpair

Description

jaccard_findIT_TTpair

Usage

jaccard_findIT_TTpair(input_genes, TF_target_database, input_TF_id)

Arguments

input_genes

a character vector which represent gene set which you want to find influential TF for (same as your find_IT_TTpair parameter)

TF_target_database

TF_target pair data

input_TF_id

TF_id which you want to calculate jaccard index for

Value

jaccard similarity matrix

Examples

data("TF_target_database")
data("test_geneSet")
result_findIT_TTPair <- findIT_TTPair(
    input_genes = test_geneSet,
    TF_target_database = TF_target_database
)

jaccard_findIT_TTpair(
    input_genes = test_geneSet,
    TF_target_database = TF_target_database,
    input_TF_id = result_findIT_TTPair$TF_id[1:3]
)

loadPeakFile

Description

read peak file and transform it into GRanges object

Usage

loadPeakFile(filePath, TFBS_database = FALSE)

Arguments

filePath

peak Path

TFBS_database

whether your peak file is a TFBS database file. If you want the final GRanges have a column named "TF_id", you should set TFBS_database TRUE. The GRanges with TF_id can be applied in "TF_GR_database" parameter of findIT_TFHit, findIT_enrichFisher, findIT_enrichWilcox, findIT_regionRP. If FALSE, the GRanges will have a column named "feature_id", which always be the input of "peak_GR" parameter.

Details

The GRanges with TF_id always be the input of "TF_GR_database" parameter. It represents the TFBS database like motif scan result, public database ChIP-seq site and so on.

The GRanges with feature_id always be the input of "peak_GR" parameter.

Value

GRanges object with a column named feature_id or TF_id

Examples

peakfile <- system.file("extdata", "ChIP.bed.gz", package = "FindIT2")
loadPeakFile(peakfile)

mm_geneBound

Description

find related peaks of your input genes, which is useful when you want to plot volcano plot or heatmap of peaks.

Usage

mm_geneBound(peak_GR, Txdb, input_genes, verbose = TRUE, ...)

Arguments

peak_GR

peak GRange with a column named feature_id representing you peak name

Txdb

Txdb

input_genes

a character vector which represent genes set which you want to find related peak for

verbose

whether you want to report detailed running message

...

additional arguments in distanceToNearest

Value

data.frame with three column: related peak id, your input gene id, and distance

Examples

if (require(TxDb.Athaliana.BioMart.plantsmart28)) {
    Txdb <- TxDb.Athaliana.BioMart.plantsmart28
    seqlevels(Txdb) <- paste0("Chr", c(1:5, "M", "C"))
    peak_path <- system.file("extdata", "ChIP.bed.gz", package = "FindIT2")
    peak_GR <- loadPeakFile(peak_path)
    peak_pair <- mm_geneBound(peak_GR, Txdb, c("AT5G01015", "AT5G67570"))
    peak_pair
}

mm_geneScan

Description

Annotate peaks using geneScan mode, which means every peak have more than one related genes.

Usage

mm_geneScan(
  peak_GR,
  Txdb,
  upstream = 3000,
  downstream = 3000,
  reportGeneInfo = FALSE,
  verbose = TRUE,
  ...
)

Arguments

peak_GR

peak GRange with a column named feature_id representing you peak name

Txdb

Txdb

upstream

distance to start site(upstream)

downstream

distance to start site(downstream)

reportGeneInfo

whether you want to add gene info

verbose

whether you want to report detailed running message

...

additional arguments in findOverlaps

Value

Granges object with annotated info

Examples

if (require(TxDb.Athaliana.BioMart.plantsmart28)) {
    Txdb <- TxDb.Athaliana.BioMart.plantsmart28
    seqlevels(Txdb) <- paste0("Chr", c(1:5, "M", "C"))
    peak_path <- system.file("extdata", "ChIP.bed.gz", package = "FindIT2")
    peak_GR <- loadPeakFile(peak_path)
    peakAnno <- mm_geneScan(peak_GR, Txdb)
    peakAnno
}

mm_nearestGene

Description

Annotate peaks using nearest gene mode, which means every peak only have one related gene.

Usage

mm_nearestGene(peak_GR, Txdb, reportGeneInfo = FALSE, verbose = TRUE, ...)

Arguments

peak_GR

peak GRange with a column named feature_id representing you peak name

Txdb

Txdb

reportGeneInfo

whether you want to report full gene info

verbose

whether you want to report detailed running message

...

additional arguments in distanceToNearest

Value

Granges object with annotated info

Examples

if (require(TxDb.Athaliana.BioMart.plantsmart28)) {
    Txdb <- TxDb.Athaliana.BioMart.plantsmart28
    seqlevels(Txdb) <- paste0("Chr", c(1:5, "M", "C"))

    peak_path <- system.file("extdata", "ChIP.bed.gz", package = "FindIT2")
    peak_GR <- loadPeakFile(peak_path)
    peakAnno <- mm_nearestGene(peak_GR, Txdb)
    peakAnno
}

peakGeneCor

Description

peakGeneCor

Usage

peakGeneCor(mmAnno, peakScoreMt, geneScoreMt, parallel = FALSE, verbose = TRUE)

Arguments

mmAnno

the annotated GRange object from mm_geneScan or mm_nearestGene

peakScoreMt

peak count matrix. The rownames are feature_id in mmAnno, while the colnames are sample names.

geneScoreMt

gene count matirx. The rownames are gene_id in mmAnno, while the colnames are sample names.

parallel

whehter you want to using bplapply to speed up calculation

verbose

whether you want to report detailed running message

Value

mmAnno with Cor, pvalue,padj,qvalue column

Examples

if (require(TxDb.Athaliana.BioMart.plantsmart28)){
    Txdb <- TxDb.Athaliana.BioMart.plantsmart28
    seqlevels(Txdb) <- paste0("Chr", c(1:5, "M", "C"))
    data("RNA_normCount")
    data("ATAC_normCount")
    peak_path <- system.file("extdata", "ATAC.bed.gz", package = "FindIT2")
    peak_GR <- loadPeakFile(peak_path)[1:100]
    mmAnno <- mm_geneScan(peak_GR, Txdb)

    ATAC_colData <- data.frame(
        row.names = colnames(ATAC_normCount),
        type = gsub("_R[0-9]", "", colnames(ATAC_normCount))
    )

    ATAC_normCount_merge <- integrate_replicates(ATAC_normCount, ATAC_colData)
    RNA_colData <- data.frame(
        row.names = colnames(RNA_normCount),
        type = gsub("_R[0-9]", "", colnames(RNA_normCount))
    )
    RNA_normCount_merge <- integrate_replicates(RNA_normCount, RNA_colData)
    mmAnnoCor <- peakGeneCor(
        mmAnno = mmAnno,
        peakScoreMt = ATAC_normCount_merge,
        geneScoreMt = RNA_normCount_merge,
        parallel = FALSE
    )

    mmAnnoCor

}

plot_annoDistance

Description

plot the distance distribution of mmAnno from mm_nearestGene, which helps you decide whehter your TF is promoter or enhancer dominant

Usage

plot_annoDistance(mmAnno, quantile = c(0.01, 0.99))

Arguments

mmAnno

the annotated GRange object from mm_nearestGene

quantile

the quantile of distanceToTSS you want to show

Value

a ggplot2 object

Examples

if (require(TxDb.Athaliana.BioMart.plantsmart28)) {
    Txdb <- TxDb.Athaliana.BioMart.plantsmart28
    seqlevels(Txdb) <- paste0("Chr", c(1:5, "M", "C"))

    peak_path <- system.file("extdata", "ChIP.bed.gz", package = "FindIT2")
    peak_GR <- loadPeakFile(peak_path)
    peakAnno <- mm_nearestGene(peak_GR, Txdb)
    plot_annoDistance(peakAnno)

}

plot_peakGeneAlias_summary

Description

plot_peakGeneAlias_summary

Usage

plot_peakGeneAlias_summary(
  mmAnno,
  mmAnno_corFilter = NULL,
  output_type = c("gene_id", "feature_id"),
  fillColor = "#ca6b67"
)

Arguments

mmAnno

the annotated GRange object from mm_geneScan or mm_nearestGene

mmAnno_corFilter

the filter mmAnno object according to p-value or cor, defalut is NULL

output_type

one of 'gene_id' or 'feature_id'

fillColor

the bar plot color

Value

a ggplot object

Examples

if (require(TxDb.Athaliana.BioMart.plantsmart28)) {
    Txdb <- TxDb.Athaliana.BioMart.plantsmart28
    seqlevels(Txdb) <- paste0("Chr", c(1:5, "M", "C"))

    peak_path <- system.file("extdata", "ChIP.bed.gz", package = "FindIT2")
    peak_GR <- loadPeakFile(peak_path)
    peakAnno <- mm_nearestGene(peak_GR, Txdb)

    plot_peakGeneAlias_summary(peakAnno)

}

plot_peakGeneCor

Description

plot_peakGeneCor

Usage

plot_peakGeneCor(
  mmAnnoCor,
  select_gene,
  addLine = TRUE,
  addFullInfo = TRUE,
  sigShow = c("pvalue", "padj", "qvalue")
)

Arguments

mmAnnoCor

the annotated GRange object from peakGeneCor or enhancerPromoterCor

select_gene

a gene_id which you want to show

addLine

whether add cor line

addFullInfo

whether add full feature info on plot

sigShow

one of 'pvalue' 'padj' 'qvalue'

Value

ggplot2 object

Examples

if (require(TxDb.Athaliana.BioMart.plantsmart28)) {
    data("RNA_normCount")
    data("ATAC_normCount")
    Txdb <- TxDb.Athaliana.BioMart.plantsmart28
    seqlevels(Txdb) <- paste0("Chr", c(1:5, "M", "C"))
    peak_path <- system.file("extdata", "ATAC.bed.gz", package = "FindIT2")
    peak_GR <- loadPeakFile(peak_path)[1:100]
    mmAnno <- mm_geneScan(peak_GR, Txdb)

    ATAC_colData <- data.frame(
        row.names = colnames(ATAC_normCount),
        type = gsub("_R[0-9]", "", colnames(ATAC_normCount))
    )

    integrate_replicates(ATAC_normCount, ATAC_colData) -> ATAC_normCount_merge
    RNA_colData <- data.frame(
        row.names = colnames(RNA_normCount),
        type = gsub("_R[0-9]", "", colnames(RNA_normCount))
    )
    integrate_replicates(RNA_normCount, RNA_colData) -> RNA_normCount_merge
    mmAnnoCor <- peakGeneCor(
        mmAnno = mmAnno,
        peakScoreMt = ATAC_normCount_merge,
        geneScoreMt = RNA_normCount_merge,
        parallel = FALSE
    )

    plot_peakGeneCor(mmAnnoCor, select_gene = "AT5G01010")

}

RNA normCount of E50h-72h in Chr5

Description

RNA normCount of E50h-72h in Chr5

Usage

data(RNA_normCount)

Format

A matrix

Source

https://doi.org/10.1016/j.devcel.2020.07.003


RNA diff result from LEC2_GR VS LEC2_DMSO

Description

RNA diff result from LEC2_GR VS LEC2_DMSO

Usage

data(RNADiff_LEC2_GR)

Format

a data frame

Source

https://doi.org/10.1016/j.devcel.2020.07.003


test_featureSet

Description

test_featureSet

Usage

data(test_featureSet)

Format

character vector represent your interesting feature_id set

Details

For the detailed progress producing input_feature_id, you can see ?test_geneSet


test_geneSet

Description

test_geneSet

Usage

data(test_geneSet)

Format

character vector represent your interesting gene set

Examples

## Not run: 
# source
if (require(TxDb.Athaliana.BioMart.plantsmart28)) {
    library(FindIT2)
    Txdb <- TxDb.Athaliana.BioMart.plantsmart28
    seqlevels(Txdb) <- paste0("Chr", c(1:5, "M", "C"))
    ChIP_peak_path <- system.file("extdata", "ChIP.bed.gz", package = "FindIT2")
    ChIP_peak_GR <- loadPeakFile(ChIP_peak_path)
    ATAC_peak_path <- system.file("extdata", "ATAC.bed.gz", package = "FindIT2")
    ATAC_peak_GR <- loadPeakFile(ATAC_peak_path)

    mmAnno_geneScan <- mm_geneScan(
        peak_GR = ChIP_peak_GR,
        Txdb = Txdb,
        upstream = 2e4,
        downstream = 2e4
    )

    peakRP_gene <- calcRP_TFHit(
        mmAnno = mmAnno_geneScan,
        Txdb = Txdb,
        report_fullInfo = FALSE
    )

    data("RNADiff_LEC2_GR")
     merge_result <- integrate_ChIP_RNA(
        result_geneRP = peakRP_gene,
        result_geneDiff = RNADiff_LEC2_GR
    )

    target_result <- merge_result$data
    test_geneSet <- target_result$gene_id[1:50]

    related_peaks <- mm_geneBound(
        peak_GR = ATAC_peak_GR,
        Txdb = Txdb,
        input_genes = test_geneSet
    )
    test_featureSet <- unique(related_peaks$feature_id)
    # save(test_geneSet, file = "data/test_geneSet.rda", version = 2)
    # save(test_featureSet, file = "data/test_featureSet.rda", version = 2)
}

## End(Not run)

TF-target database

Description

TF-target database

Usage

data(TF_target_database)

Format

a data frame

Source

http://bioinformatics.psb.ugent.be/webtools/iGRN/pages/download

Examples

## Not run: 
# source
library(dplyr)
data <- read.table("~/reference/annoation/Athaliana/TF_target/iGRN_network_full.txt",
                  sep = "\t",
                  stringsAsFactors = FALSE)

data %>%
rename(TF_id = V1, target_gene = V2) %>%
select(TF_id, target_gene) %>%
TF_target_database <- filter(TF_id %in% c("AT1G28300",
"AT5G63790", "AT5G24110", "AT3G23250")) %>%
as.data.frame()

save(TF_target_database, file = "inst/extdata/TF_target_database.rda", version = 2,
     compress = "bzip2")


## End(Not run)