# -------------------------------------------- # CITATION file created with {cffr} R package # See also: https://docs.ropensci.org/cffr/ # -------------------------------------------- cff-version: 1.2.0 message: 'To cite package "EpipwR" in publications use:' type: software license: Artistic-2.0 title: 'EpipwR: Efficient Power Analysis for EWAS with Continuous or Binary Outcomes' version: 1.1.0 doi: 10.1101/2024.09.06.611713 identifiers: - type: doi value: 10.32614/CRAN.package.EpipwR abstract: A quasi-simulation based approach to performing power analysis for EWAS (Epigenome-wide association studies) with continuous or binary outcomes. 'EpipwR' relies on empirical EWAS datasets to determine power at specific sample sizes while keeping computational cost low. EpipwR can be run with a variety of standard statistical tests, controlling for either a false discovery rate or a family-wise type I error rate. authors: - family-names: Barth given-names: Jackson email: Jackson_Barth@Baylor.edu orcid: https://orcid.org/0009-0009-6307-9928 - family-names: Reynolds given-names: Austin preferred-citation: type: article title: 'EpipwR: Efficient Power Analysis for EWAS with Continuous Outcomes' authors: - family-names: Barth given-names: Jackson email: Jackson_Barth@Baylor.edu orcid: https://orcid.org/0009-0009-6307-9928 - family-names: Reynolds given-names: Austin W. journal: bioRxiv year: '2024' notes: Preprint doi: 10.1101/2024.09.06.611713 url: https://www.biorxiv.org/content/10.1101/2024.09.06.611713v1 repository: https://bioc.r-universe.dev repository-code: https://github.com/jbarth216/EpipwR commit: d393930e988f6f7e37064f8f1e1cf7d0edde8d23 url: https://github.com/jbarth216/EpipwR contact: - family-names: Barth given-names: Jackson email: Jackson_Barth@Baylor.edu orcid: https://orcid.org/0009-0009-6307-9928