Package 'EGAD'

Title: Extending guilt by association by degree
Description: The package implements a series of highly efficient tools to calculate functional properties of networks based on guilt by association methods.
Authors: Sara Ballouz [aut, cre], Melanie Weber [aut, ctb], Paul Pavlidis [aut], Jesse Gillis [aut, ctb]
Maintainer: Sara Ballouz <[email protected]>
License: GPL-2
Version: 1.35.0
Built: 2024-11-29 05:25:00 UTC
Source: https://github.com/bioc/EGAD

Help Index


Calculating network assortativity

Description

The function calculates the assortativity of a network, that measures the preference of interactions between similar nodes. As in most literature, 'similarity' is here defined in terms of node degrees.

Usage

assortativity(network)

Arguments

network

matrix indicating network structure (symmetric)

Value

Numeric value

Examples

network <- matrix( sample(c(0,1),36, replace=TRUE), nrow=6,byrow=TRUE)
assort_value <- assortativity(network)

Human GENCODE annotations (v22)

Description

A dataset containing identifiers for gene transcripts

Format

A data frame with 60483 rows and 10 variables:

chr

chromosome

start

chromosomal start position, in base pairs

end

chromosomal end position, in base pairs

strand

chromosomal strand, + or -

un

unknown

ensemblID

ENSEMBL identifier

type

type of transcript

stat

status of transcript

name

HUGO identifier

entrezID

Entrez identifier

@source ftp://ftp.sanger.ac.uk/pub/gencode/Gencode_human/release_22/


Mouse GENCODE annotations (M7)

Description

A dataset containing identifiers for gene transcripts

Format

A data frame with 46517 rows and 10 variables:

chr

chromosome

start

chromosomal start position, in base pairs

end

chromosomal end position, in base pairs

strand

chromosomal strand, + or -

un

unknown

ensemblID

ENSEMBL identifier

type

type of transcript

stat

status of transcript

name

HUGO identifier

entrezID

Entrez identifier

@source ftp://ftp.sanger.ac.uk/pub/gencode/Gencode_mouse/release_M7/


Calculating AUC for functional groups from ranked lists

Description

The function calculates the AUC for a functional group analytically using an optimal ranked list of genes that indicates association between genes and groups.

Usage

auc_multifunc(annotations, optimallist)

Arguments

annotations

binary matrix indicating which list elements are in which functional groups.

optimallist

Ranked list (multifunctionality analysis, see calculate_multifunc).

Value

aucs array of aucs for each group in annotations

Examples

annotations <- c(rep(0,10))
annotations[c(1,3,5)] <- 1 
optimallist <- 10:1
aurocs_mf <- auc_multifunc(annotations, optimallist)

Area under the precision recall curve

Description

The function calculates the area under the precision-recall curve

Usage

auprc(scores, labels)

Arguments

scores

numeric array

labels

binary array

Value

auprc Numeric value

Examples

labels <- c(rep(0,10))
labels[c(1,3,5)] <- 1 
scores <- 10:1
auprc <- auprc(scores, labels)

Area under the receiver operating characteristic curve

Description

The function calculates the area under the receiver operating characteristic (ROC) curve analytically

Usage

auroc_analytic(ranks, labels)

Arguments

ranks

numeric array

labels

binary array

Value

auroc Numeric value

Examples

labels <- c(rep(0,10))
labels[c(1,3,5)] <- 1 
scores <- 10:1
auroc <- auroc_analytic(scores, labels)

BIOGRID v3.4.126

Description

A data frame containing protein-protein interactions

Format

A data frame with 211506 rows and 2 variables:

entrezID_A

List of Entrez identifiers, interactor A

entrezID_B

List of Entrez identifiers, interactor B

@source http://thebiogrid.org/


Builds a binary network

Description

The function creates a gene-by-gene matrix with binary entries indicating interaction (1) or no interaction (0) between the genes.

Usage

build_binary_network(data, list)

Arguments

data

2-column matrix, each row a pair indicating a relationship or interaction

list

string array of genes/labels/ids

Value

net matrix binary characterizing interactions

Examples

data <- cbind(edgeA=c('gene1','gene2'),edgeB=c('gene3','gene3'))
list <- c('gene1','gene2','gene3')
network <- build_binary_network(data,list)

Builds a coexpression network from an expressionSet

Description

The function generates a dense coexpression network from expression data stored in the expressionSet data type. Correlation coefficicents are used as to weight the edges of the nodes (genes). Calls build_coexp_network.

Usage

build_coexp_expressionSet(
  exprsSet,
  gene.list,
  method = "spearman",
  flag = "rank"
)

Arguments

exprsSet

data class ExpressionSet

gene.list

array of gene labels

method

correlation method to use, default Spearman's rho

flag

string to indicate if the network should be ranked

Value

net Matrix symmetric

Examples

exprs <- matrix( rnorm(1000), ncol=10,byrow=TRUE)
gene.list <- paste('gene',1:100, sep='')
sample.list <- paste('sample',1:10, sep='')
rownames(exprs) <- gene.list
colnames(exprs) <- sample.list
network <- build_coexp_expressionSet(exprs, gene.list, method='pearson')

Builds a coexpression network given a GEO ID

Description

The function generates a dense coexpression network from expression data stored in GEO. The expression data is downloaded from GEO. Correlation coefficicents are used as to weight the edges of the nodes (genes). Calls get_expression_matrix_from_GEO and build_coexp_network.

Usage

build_coexp_GEOID(gseid, gene.list, method = "spearman", flag = "rank")

Arguments

gseid

string GEO ID of expression experiment

gene.list

array of gene labels

method

correlation method to use, default Spearman's rho

flag

string to indicate if the network should be ranked

Value

net Matrix symmetric


Builds a coexpression network from an expressionSet

Description

The function generates a dense coexpression network from expression data stored as a matrix, with the genes as row labels, and samples as column labels. Correlation coefficicents are used as to weight the edges of the nodes (genes). Calls cor.

Usage

build_coexp_network(exprs, gene.list, method = "spearman", flag = "rank")

Arguments

exprs

matrix of expression data

gene.list

array of gene labels

method

correlation method to use, default Spearman's rho

flag

string to indicate if the network should be ranked

Value

net Matrix symmetric

Examples

exprs <- matrix( rnorm(1000), ncol=10,byrow=TRUE)
gene.list <- paste('gene',1:100, sep='')
sample.list <- paste('sample',1:10, sep='')
rownames(exprs) <- gene.list
colnames(exprs) <- sample.list
network <- build_coexp_network(exprs, gene.list)

Builds a semantic similarity network

Description

The function builds a semantic similarity network given a data and labels

Usage

build_semantic_similarity_network(genes.labels, genes)

Arguments

genes.labels

matrix with rows as genes and columns as a function/label

genes

array of gene IDs

Value

net Numeric value

Examples

genes.labels <- matrix( sample(c(0,1), 100, replace=TRUE),ncol=10,nrow=10)
rownames(genes.labels) <- 1:10
genes <- 1:10
net <- build_semantic_similarity_network(genes.labels, genes)

Builds a weighted network

Description

The function creates a gene-by-gene matrix with binary entries indicating interaction (1) or no interaction (0) between the genes.

Usage

build_weighted_network(data, list)

Arguments

data

3-column matrix, each row a pair indicating a relationship or interaction, and the last column the weight

list

string array of genes/labels/ids

Value

net matrix characterizing interactions

Examples

data <- cbind(edgeA=c('gene1','gene2'),edgeB=c('gene3','gene3'), weight=c(0.5, 0.9))
list <- c('gene1','gene2','gene3')
network <- build_weighted_network(data,list)

Performing multifunctionality analysis

Description

The function performs multifunctionality analysis ([1]) for a set of annotated genes and creates a rank based optimallist. For annotations use an ontology that is large enough to serve as a prior (e.g. GO, Phenocarta).

Usage

calculate_multifunc(genes.labels)

Arguments

genes.labels

Annotation matrix

Value

gene.mfs Returns matrix with evaluation of gene function prediction by given labels:

Examples

genes.labels <- matrix( sample(c(0,1), 100, replace=TRUE),ncol=10,nrow=10)
rownames(genes.labels) = paste('gene', 1:10, sep='')
colnames(genes.labels) = paste('label', 1:10, sep='')
mf <- calculate_multifunc(genes.labels)

Plot smoothed curve

Description

The function plots a smoothed curve using the convolve function.

Usage

conv_smoother(X, Y, window, raw = FALSE, output = FALSE, ...)

Arguments

X

numeric array

Y

numeric array

window

numeric value indicating size of window to use

raw

boolean

output

boolean

...

other input into the plot function

Value

smoothed X,Y and std Y matrix

Examples

x <- 1:1000
y <- rnorm(1000)
conv <- conv_smoother(x,y,10)

Example of annotations

Description

This dataset includes


Example of binary network

Description

This dataset includes

Format

Matrices and vectors


Example of binary network

Description

This dataset includes

Format

Matrices and vectors


Example of binary network

Description

This dataset includes

Format

entrezID

chromosomal start position, in base pairs

name

HUGO gene identifier

species

species

disease

disease


Builds an extended network from a binary network

Description

The function extends a binary network by using the inverse of the path length between nodes as a weighted edge

Usage

extend_network(net, max = 6)

Arguments

net

matrix binary and symmetric

max

numeric maximum number of jumps

Value

ext_net matrix dense and symmetric

Examples

net <- matrix( sample(c(0,1),36, replace=TRUE), nrow=6,byrow=TRUE)
ext_net <- extend_network(net)

Filter on matrix

Description

The function filters out the rows or columns of a matrix such that the size of the group is exclusively between given min and max values

Usage

filter_network(network, flag = 1, min = 0, max = 1, ids = NA)

Arguments

network

numeric matrix

flag

numeric 1 for row filtering, 2 for column filtering

min

numeric value

max

numeric value

ids

array to filter on

Value

network numeric matrix

Examples

net <- matrix( rnorm(10000), nrow=100)
filt_net <- filter_network(net,1,10,100)

Filter on columns

Description

The function filters out the columns of a matrix such that the size of the group is exclusively between given min and max values

Usage

filter_network_cols(network, min = 0, max = 1, ids = NA)

Arguments

network

numeric matrix

min

numeric value

max

numeric value

ids

array

Value

network numeric matrix

Examples

genes.labels <- matrix( sample( c(0,1), 10000, replace=TRUE), nrow=100)
rownames(genes.labels) = paste('gene', 1:100, sep='')
colnames(genes.labels) = paste('function', 1:100, sep='')
genes.labels <- filter_network_cols(genes.labels,50,200)

genes.labels <- matrix( sample( c(0,1), 10000, replace=TRUE), nrow=100)
rownames(genes.labels) = paste('gene', 1:100, sep='')
colnames(genes.labels) = paste('function', 1:100, sep='')
genes.labels <- filter_network_cols(genes.labels,ids = paste('function', 1:20, sep=''))

Filter on rows

Description

The function filters out the rows of a matrix such that the size of the group is exclusively between given min and max values

Usage

filter_network_rows(network, min = 0, max = 1, ids = NA)

Arguments

network

numeric matrix

min

numeric value

max

numeric value

ids

array to filter on

Value

network numeric matrix

Examples

genes.labels <- matrix( sample( c(0,1), 10000, replace=TRUE), nrow=100)
rownames(genes.labels) = paste('gene', 1:100, sep='')
colnames(genes.labels) = paste('function', 1:100, sep='')
genes.labels <- filter_network_rows(genes.labels,50,200)

genes.labels <- matrix( sample( c(0,1), 10000, replace=TRUE), nrow=100)
rownames(genes.labels) = paste('gene', 1:100, sep='')
colnames(genes.labels) = paste('function', 1:100, sep='')
genes.labels <- filter_network_rows(genes.labels,ids = paste('gene', 1:20, sep=''))

Filter on orthologs

Description

The function filters away the labels for the genes that are not in the orthologs list

Usage

filter_orthologs(annotations, genelist, orthologs)

Arguments

annotations

binary matrix

genelist

array of gene ids

orthologs

array to filter on

Value

annotations_filtered binary matrix

Examples

genes.labels <- matrix( sample( c(0,1), 1000, replace=TRUE), nrow=100)
rownames(genes.labels) = paste('gene', 1:100, sep='')
colnames(genes.labels) = paste('function', 1:10, sep='')
gene.list <- paste('gene', 1:100, sep='')
orthologs <- paste('gene', (1:50)*2, sep='')
genes.labels.filt <- filter_orthologs(genes.labels, gene.list, orthologs)

Fmeasure of precision-recall

Description

The function calculates fmeasure for a given beta of a precision-recall curve

Usage

fmeasure(recall, precis, beta = 1)

Arguments

recall

numeric array

precis

numeric array

beta

numeric value, default is 1

Value

fmeasure Numeric value

Examples

labels <- c(rep(0,10))
labels[c(1,3,5)] <- 1 
scores <- 10:1
prc <- get_prc(scores, labels)
fm <- fmeasure(prc[,1], prc[,2])

Genes from BIOGRID v3.4.126

Description

An array containing identifiers for genes in biogrid

Format

Array

genes

List of Entrez identifiers

@source http://thebiogrid.org/


Calculates the area under a curve

Description

The function calculates the area under the curve defined by x and y

Usage

get_auc(x, y)

Arguments

x

numeric array

y

numeric array

Value

auc numeric value

Examples

x <- 1:100
y <- 1:100 
auc <- get_auc(x,y)

Downloading and filtering BIOGRID

Description

The function downloads the specifed version of biogrid for a particular taxon

Usage

get_biogrid(species = "9606", version = "3.5.181", interactions = "physical")

Arguments

species

numeric taxon of species

version

string of biogrid version

interactions

string stating either physical or genetic interactions

Value

biogrid data.frame with interactions


Get counts

Description

The function formats the count distribution from the histogram function

Usage

get_counts(hist)

Arguments

hist

histogram

Value

x,y

Examples

x <- runif(1000)
counts <- get_counts( hist(x, plot=FALSE))

Get density

Description

The function formats the density distribution from the histogram function

Usage

get_density(hist)

Arguments

hist

histogram

Value

array

Examples

x <- runif(1000)
density <- get_density( hist(x, plot=FALSE))

Obtain expression matrix from the GEMMA database

Description

The function downloads and parses the expression matrix from the GEMMA database, specified by the GEO ID

Usage

get_expression_data_gemma(gseid, filtered = "true")

Arguments

gseid

GEO ID of the expression experiment

filtered

flag to indicate whether or not the data is QC

Value

list of genes and the expression matrix


Obtain expression matrix from GEO database

Description

The function downloads and parses the expression matrix from the GEO file specified by the GEO ID

Usage

get_expression_matrix_from_GEO(gseid)

Arguments

gseid

GEO ID of the expression experiment

Value

list of genes and the expression matrix


Downloading and filtering Phenocarta

Description

The function downloads the latest version of phenocarta

Usage

get_phenocarta(species = "human", type = "all")

Arguments

species

string

type

string

Value

data data.frame with phenocarta data


Build precision-recall curve

Description

The function calculates the recall and precision

Usage

get_prc(ranks, labels)

Arguments

ranks

numeric array

labels

binary array

Value

recall,precision numeric arrays

Examples

labels <- c(rep(0,10))
labels[c(1,3,5)] <- 1 
scores <- 10:1
ranks <- rank(scores)
prc <- get_prc(ranks, labels)

Build receiver operating characteristic curve

Description

The function calculates the FPR and TRPR for the receiver operating characteristic (ROC)

Usage

get_roc(ranks, labels)

Arguments

ranks

numeric array

labels

binary array

Value

FPR,TPR numeric arrays

Examples

labels <- c(rep(0,10))
labels[c(1,3,5)] <- 1 
scores <- 10:1
ranks <- rank(scores)
roc <- get_roc(ranks, labels)

GO - human

Description

A dataset of the gene GO associations

Format

A data frame with 2511938 rows and 4 variables:

name

gene symbol

entrezID

entrez identifier

GO

gene ontology term ID

evidence

evidence code

@source http://geneontology.org/


GO - mouse

Description

A dataset of the gene GO associations

Format

A data frame with 2086086 rows and 4 variables:

name

gene symbol

entrezID

entrez identifier

GO

gene ontology term ID

evidence

evidence code

@source http://geneontology.org/


Gene ontology vocabulary

Description

A dataset of the gene ontology vocabulary

Format

A data frame with 42266 rows and 3 variables:

GOID

GO identifier

term

GO description

domain

GO domain

@source http://geneontology.org/


Creating gene annotations

Description

The function annotates a list of genes according to a given ontology. It creates a binary matrix associating genes (rows) with labels (columns).

Usage

make_annotations(data, listA, listB)

Arguments

data

2-column matrix, each row a pair indicating a relationship or interaction

listA

string array of genes

listB

string array of labels/functions

Value

net matrix binary

Examples

gene.list <- paste('gene', 1:100, sep='')
labels.list <- paste('labels', 1:10, sep='')
data <- matrix(0,nrow=100, ncol=2)
data[,1] <- sample(gene.list, 100, replace=TRUE)
data[,2] <- sample(labels.list, 100, replace=TRUE)
net <- make_annotations(data, gene.list, labels.list)

Creating gene-by-gene network

Description

The function creates a gene-by-gene matrix with binary entries indicating interaction (1) or no interaction (0) between the genes.

Usage

make_gene_network(data, list)

Arguments

data

2-column matrix, each row a pair indicating a relationship or interaction

list

string array of genes

Value

net matrix binary characterizing interactions

Examples

gene.list <- paste('gene', 1:100, sep='')
data <- matrix(0,nrow=100, ncol=2)
data[,1] <- sample(gene.list, 100)
data[,2] <- sample(gene.list, 100)
net <- make_gene_network(data, gene.list)

Creating list of all genes in the data set.

Description

The function extracts the list of all genes in the data set

Usage

make_genelist(gene_data_interacting)

Arguments

gene_data_interacting

2-column matrix, each row a pair indicating a relationship or interaction

Value

list array of data labels

Examples

gene.list <- paste('gene', 1:100, sep='')
data <- matrix(0,nrow=100, ncol=2)
data[,1] <- sample(gene.list, 50, replace=TRUE)
data[,2] <- sample(gene.list, 50, replace=TRUE)
genes <- make_genelist(data)

Make a color transparent (Taken from an answer on StackOverflow by Nick Sabbe)

Description

Make a color transparent (Taken from an answer on StackOverflow by Nick Sabbe)

Usage

make_transparent(color, alpha = 100)

Arguments

color

color number, string or hexidecimal code

alpha

numeric transparency

Value

someColor rgb


Evaluating Gene Function Prediction

Description

The function performs gene function prediction based on 'guilt by association' using cross validation ([1]). Performance and significance are evaluated by calculating the AUROC or AUPRC of each functional group.

Usage

neighbor_voting(
  genes.labels,
  network,
  nFold = 3,
  output = "AUROC",
  FLAG_DRAW = FALSE
)

Arguments

genes.labels

numeric array

network

numeric array symmetric, gene-by-gene matrix

nFold

numeric value, default is 3

output

string, default is AUROC

FLAG_DRAW

binary flag to draw roc plot

Value

scores numeric matrix with a row for each gene label and columns auc: the average area under the ROC or PR curve for the neighbor voting predictor across cross validation replicates avg_node_degree: the average node degree degree_null_auc: the area the ROC or PR curve for the node degree predictor

Examples

genes.labels <- matrix( sample( c(0,1), 1000, replace=TRUE), nrow=100)
rownames(genes.labels) = paste('gene', 1:100, sep='')
colnames(genes.labels) = paste('function', 1:10, sep='')
net <- cor( matrix( rnorm(10000), ncol=100), method='spearman')
rownames(net) <- paste('gene', 1:100, sep='')
colnames(net) <- paste('gene', 1:100, sep='')

aurocs <- neighbor_voting(genes.labels, net, output = 'AUROC') 

avgprcs <- neighbor_voting(genes.labels, net, output = 'PR')

Calculate node degree

Description

The function calculates the node degree of a network

Usage

node_degree(net)

Arguments

net

numeric matrix

Value

node_degree numeric array

Examples

net <- cor( matrix(rnorm(1000), ncol=10)) 
n <- 10
net <- matrix(rank(net, na.last = 'keep', ties.method = 'average'), nrow = n, ncol = n)
net <- net/max(net, na.rm=TRUE)
nd <- node_degree(net)

Gene orthologs

Description

A list containing identifiers for the subsets of gene orthologs

Format

List orthologs for 5 species

dros

List of Entrez identifiers, Drosophila

celeg

List of Entrez identifiers, C. elegans

yeast

List of Entrez identifiers, Yeast

mouse

List of Entrez identifiers, Mouse

zf

List of Entrez identifiers, Zebrafish

@source http://useast.ensembl.org/index.html/


Phenocarta

Description

A dataset of gene disease associations

Format

A data frame with 142272 rows and 4 variables:

entrezID

chromosomal start position, in base pairs

name

HUGO gene identifier

species

species

disease

disease

@source http://www.chibi.ubc.ca/Gemma/phenotypes.html


Plot densities

Description

The function plots multiple density curves and compares their modes

Usage

plot_densities(
  hists,
  id,
  col = c("lightgrey"),
  xlab = "",
  ylab = "Density",
  mode = "hist"
)

Arguments

hists

list of histogram objects or density objects

id

string

col

color for shading

xlab

string x-axis label

ylab

string y-axis label

mode

flag indicating histogram or density

Value

null

Examples

aurocsA <- density((runif(1000)+runif(1000)+runif(1000)+runif(1000))/4)
aurocsB <- density((runif(1000)+runif(1000)+runif(1000))/3)
aurocsC <- density(runif(1000))
hists <- list(aurocsA, aurocsB, aurocsC)
temp <- plot_densities(hists,'', mode='density')

Plot density comparisons

Description

The function plots two density curves and compares their modes

Usage

plot_density_compare(
  aucA,
  aucB,
  col = "lightgrey",
  xlab = "AUROC (neighbor voting)",
  ylab = "Density",
  mode = TRUE
)

Arguments

aucA

numeric array of aurocs

aucB

numeric array of aurocs

col

color of lines

xlab

string label

ylab

string label

mode

boolean to plot mode or mean

Value

null

Examples

aurocsA <- (runif(1000)+runif(1000)+runif(1000)+runif(1000))/4
aurocsB <- runif(1000)
plot_density_compare(aurocsA, aurocsB)

Plot distribution histogram

Description

The function plots a the distribution of AUROCs

Usage

plot_distribution(
  auc,
  b = 20,
  col = "lightgrey",
  xlab = "",
  ylab = "Density",
  xlim = c(0.4, 1),
  ylim = c(0, 5),
  med = TRUE,
  avg = TRUE,
  density = TRUE,
  bars = FALSE
)

Arguments

auc

numeric aucs

b

array of breaks

col

color of line

xlab

string label

ylab

string label

xlim

range of values for xaxis

ylim

range of values for yaxis

med

boolean to plot median auc

avg

boolean to plot average auc

density

boolean

bars

boolena for barplot

Value

auc list and quartiles

Examples

aurocs <- (runif(1000)+runif(1000)+runif(1000)+runif(1000))/4
d <- plot_distribution(aurocs)

Plot network heatmap

Description

The function draws a heatmap to visualize a network

Usage

plot_network_heatmap(net, colrs)

Arguments

net

a numeric matrix of edge weights

colrs

a range of colors to plot the network

Value

null

Examples

network <- cor(matrix( rnorm(10000), nrow=100))
plot_network_heatmap(network)

Plot precision recall curve

Description

The function calculates the precision and recall and plots the curve

Usage

plot_prc(scores, labels)

Arguments

scores

numeric array

labels

binary array

Value

prc numeric arrays

Examples

labels <- c(rep(0,10))
labels[c(1,3,5)] <- 1 
scores <- 10:1
roc <- plot_prc(scores, labels)

Plot receiver operating characteristic curve

Description

The function calculates the FPR and TRPR for the receiver operating characteristic (ROC) and plots the curve

Usage

plot_roc(scores, labels)

Arguments

scores

numeric array

labels

binary array

Value

FPR,TPR numeric arrays

Examples

labels <- c(rep(0,10))
labels[c(1,3,5)] <- 1 
scores <- 10:1
roc <- plot_roc(scores, labels)

Plot ROC overlay

Description

The function plots a density overlay of ROCs given the scores and labels

Usage

plot_roc_overlay(scores.mat, labels.mat, nbins = 100)

Arguments

scores.mat

numeric array

labels.mat

numeric array

nbins

numeric value

Value

list of Z(matrix) and roc_sum (average ROC curve)

Examples

genes.labels <- matrix( c(rep(1, 1000), rep(0,9000)), nrow=1000, byrow=TRUE)
rownames(genes.labels) = paste('gene', 1:1000, sep='')
colnames(genes.labels) = paste('function', 1:10, sep='')

scores <- matrix( rnorm(10000), nrow=1000)
scores <- apply(scores, 2, rank) 
rownames(scores) = paste('gene', 1:1000, sep='')
colnames(scores) = paste('function', 1:10, sep='')

z <- plot_roc_overlay(scores, genes.labels)

Plot value comparisons

Description

The function plots a scatter

Usage

plot_value_compare(
  aucA,
  aucB,
  xlab = "AUROC",
  ylab = "AUROC",
  xlim = c(0, 1),
  ylim = c(0, 1)
)

Arguments

aucA

numeric array of aucs

aucB

numeric array of aucs

xlab

string label

ylab

string label

xlim

range of values for xaxis

ylim

range of values for yaxis

Value

null


Performing Gene Function Prediction

Description

The function performs gene function prediction on the whole data set using the 'guilt by association'-principle ([1]).

Usage

predictions(genes.labels, network)

Arguments

genes.labels

numeric array

network

numeric array symmetric, gene-by-gene matrix

Value

scores numeric matrix

Examples

genes.labels <- matrix( sample( c(0,1), 1000, replace=TRUE), nrow=100)
rownames(genes.labels) = paste('gene', 1:100, sep='')
colnames(genes.labels) = paste('function', 1:10, sep='')
net <- cor( matrix( rnorm(10000), ncol=100), method='spearman')
rownames(net) <- paste('gene', 1:100, sep='')
colnames(net) <- paste('gene', 1:100, sep='')

preds <- predictions(genes.labels, net)

Rep function for matrices

Description

The function generates a matrix by binding the columns and rows

Usage

repmat(X, m, n)

Arguments

X

numeric matrix

m

numeric value, repeat rows m times

n

numeric value, repeat columns n times

Value

list of genes and the expression matrix

Examples

genes.labels <- matrix( sample( c(0,1), 1000, replace=TRUE), nrow=100)
expand <- repmat( genes.labels, 1,2)

Performing 'Guilt by Association' Analysis

Description

The function runs and evaluates gene function prediction based on the 'guilt by association'-principle using neighbor voting (neighbor_voting) [1]. As a measure of performance and significance of results, AUCs of all evaluated functional groups are calculated.

Usage

run_GBA(network, labels, min = 20, max = 1000, nfold = 3)

Arguments

network

numeric array symmetric, gene-by-gene matrix

labels

numeric array

min

numeric value to limit gene function size

max

numeric value to limit gene function size

nfold

numeric value, default is 3

Value

list roc.sub, genes, auroc

Examples

genes.labels <- matrix( sample( c(0,1), 1000, replace=TRUE), nrow=100)
rownames(genes.labels) = paste('gene', 1:100, sep='')
colnames(genes.labels) = paste('function', 1:10, sep='')
net <- cor( matrix( rnorm(10000), ncol=100), method='spearman')
rownames(net) <- paste('gene', 1:100, sep='')
colnames(net) <- paste('gene', 1:100, sep='')

gba <- run_GBA(net, genes.labels, min=10)