Title: | Image processing and analysis toolbox for R |
---|---|
Description: | EBImage provides general purpose functionality for image processing and analysis. In the context of (high-throughput) microscopy-based cellular assays, EBImage offers tools to segment cells and extract quantitative cellular descriptors. This allows the automation of such tasks using the R programming language and facilitates the use of other tools in the R environment for signal processing, statistical modeling, machine learning and visualization with image data. |
Authors: | Andrzej Oleś, Gregoire Pau, Mike Smith, Oleg Sklyar, Wolfgang Huber, with contributions from Joseph Barry and Philip A. Marais |
Maintainer: | Andrzej Oleś <[email protected]> |
License: | LGPL |
Version: | 4.49.0 |
Built: | 2024-11-18 03:23:42 UTC |
Source: | https://github.com/bioc/EBImage |
Methods for function abind
from package abind useful for combining Image
arrays.
An Image
object or an array, containing the combined data arrays of the input objects.
abind(...)
...
Arguments to abind
signature(... = "Image")
This method is defined primarily for the sake of preserving the class of the combined Image
objects. Unlike the original abind
function, if dimnames
for all combined objects are NULL
it does not introduce a list of empty dimnames
for each dimension.
signature(... = "ANY")
Dispatches to the original abind
function.
Andrzej Oleś, [email protected], 2017
combine
provides a more convenient interface to merging images into an image sequence. Use tile
to lay out images next to each other in a regular grid.
f = system.file("images", "sample-color.png", package="EBImage") x = readImage(f) ## combine images horizontally y = abind(x, x, along=1) display(y) ## stack images one on top of the other z = abind(x, x, along=2) display(z)
f = system.file("images", "sample-color.png", package="EBImage") x = readImage(f) ## combine images horizontally y = abind(x, x, along=1) display(y) ## stack images one on top of the other z = abind(x, x, along=2) display(z)
Labels connected (connected sets) objects in a binary image.
bwlabel(x)
bwlabel(x)
x |
An |
All pixels for each connected set of foreground (non-zero) pixels
in x
are set to an unique increasing integer, starting from 1.
Hence, max(x)
gives the number of connected objects in x
.
A Grayscale
Image
object or an array, containing the
labelled version of x
.
Gregoire Pau, 2009
computeFeatures
, propagate
, watershed
, paintObjects
, colorLabels
## simple example x = readImage(system.file('images', 'shapes.png', package='EBImage')) x = x[110:512,1:130] display(x, title='Binary') y = bwlabel(x) display(normalize(y), title='Segmented') ## read nuclei images x = readImage(system.file('images', 'nuclei.tif', package='EBImage')) display(x) ## computes binary mask y = thresh(x, 10, 10, 0.05) y = opening(y, makeBrush(5, shape='disc')) display(y, title='Cell nuclei binary mask') ## bwlabel z = bwlabel(y) display(normalize(z), title='Cell nuclei') nbnuclei = apply(z, 3, max) cat('Number of nuclei=', paste(nbnuclei, collapse=','),'\n') ## paint nuclei in color cols = c('black', sample(rainbow(max(z)))) zrainbow = Image(cols[1+z], dim=dim(z)) display(zrainbow, title='Cell nuclei (recolored)')
## simple example x = readImage(system.file('images', 'shapes.png', package='EBImage')) x = x[110:512,1:130] display(x, title='Binary') y = bwlabel(x) display(normalize(y), title='Segmented') ## read nuclei images x = readImage(system.file('images', 'nuclei.tif', package='EBImage')) display(x) ## computes binary mask y = thresh(x, 10, 10, 0.05) y = opening(y, makeBrush(5, shape='disc')) display(y, title='Cell nuclei binary mask') ## bwlabel z = bwlabel(y) display(normalize(z), title='Cell nuclei') nbnuclei = apply(z, 3, max) cat('Number of nuclei=', paste(nbnuclei, collapse=','),'\n') ## paint nuclei in color cols = c('black', sample(rainbow(max(z)))) zrainbow = Image(cols[1+z], dim=dim(z)) display(zrainbow, title='Cell nuclei (recolored)')
channel
handles color space conversions between image modes.
rgbImage
combines Grayscale
images into a Color
one.
toRGB
is a wrapper function for convenient grayscale to RGB color space conversion; the call toRGB(x)
returns the result of channel(x, 'rgb')
.
channel(x, mode) rgbImage(red, green, blue) toRGB(x)
channel(x, mode) rgbImage(red, green, blue) toRGB(x)
x |
An |
mode |
A character value specifying the target mode for conversion. See Details. |
red , green , blue
|
|
Conversion modes:
rgb
Converts a Grayscale
image or an array
into a Color
image, replicating RGB channels.
gray, grey
Converts a Color
image into a
Grayscale
image, using uniform 1/3 RGB weights.
luminance
Luminance-preserving Color
to Grayscale
conversion
using CIE 1931 luminance weights: 0.2126 * R + 0.7152 * G + 0.0722 * B.
red, green, blue
Extracts the red
, green
or
blue
channel from a Color
image. Returns a
Grayscale
image.
asred, asgreen, asblue
Converts a Grayscale
image or an array into a Color
image of the specified hue.
NOTE: channel
changes the pixel intensities, unlike colorMode
which just changes the way that EBImage renders an image.
An Image
object or an array.
Oleg Sklyar, [email protected]
x = readImage(system.file("images", "shapes.png", package="EBImage")) display(x) y = channel(x, 'asgreen') display(y) ## rgbImage x = readImage(system.file('images', 'nuclei.tif', package='EBImage')) y = readImage(system.file('images', 'cells.tif', package='EBImage')) display(x, title='Cell nuclei') display(y, title='Cell bodies') cells = rgbImage(green=1.5*y, blue=x) display(cells, title='Cells')
x = readImage(system.file("images", "shapes.png", package="EBImage")) display(x) y = channel(x, 'asgreen') display(y) ## rgbImage x = readImage(system.file('images', 'nuclei.tif', package='EBImage')) y = readImage(system.file('images', 'cells.tif', package='EBImage')) display(x, title='Cell nuclei') display(y, title='Cell bodies') cells = rgbImage(green=1.5*y, blue=x) display(cells, title='Cells')
Improve contrast locally by performing adaptive histogram equalization.
clahe(x, nx = 8, ny = nx, bins = 256, limit = 2, keep.range = FALSE)
clahe(x, nx = 8, ny = nx, bins = 256, limit = 2, keep.range = FALSE)
x |
an |
nx |
integer, number of contextual regions in the X direction (min 2, max 256) |
ny |
integer, number of contextual regions in the Y direction (min 2, max 256) |
bins |
integer, number of greybins for histogram ("dynamic range"). Smaller values (eg. 128) speed up processing while still producing good quality output. |
limit |
double, normalized clip limit (higher values give more contrast). A clip limit smaller than 0 results in standard (non-contrast limited) AHE. |
keep.range |
logical, retain image minimum and maximum values rather then use the full available range |
Adaptive histogram equalization (AHE) is a contrast enhancement technique which overcomes the limitations of standard histogram equalization. Unlike ordinary histogram equalization the adaptive method redistributes the lightness values of the image based on several histograms, each corresponding to a distinct section of the image. It is therefore useful for improving the local contrast and enhancing the definitions of edges in each region of an image. However, AHE has a tendency to overamplify noise in relatively homogeneous regions of an image. Contrast limited adaptive histogram equalization (CLAHE) prevents this by limiting the amplification.
The function is based on the implementation by Karel Zuiderveld [1].
This implementation assumes that the X- and Y image dimensions are an integer
multiple of the X- and Y sizes of the contextual regions.
The input image x
should contain pixel values in the range from 0 to 1,
inclusive; values lower than 0 or higher than 1 are clipped before applying
the filter. Internal processing is performed in 16-bit precision.
If the image contains multiple channels or frames,
the filter is applied to each one of them separately.
An Image
object or an array, containing the filtered version
of x
.
The interpolation step of the original implementation by Karel Zuiderveld [1] was modified to use double precision arithmetic in order to make the filter rotationally invariant for even-sized contextual regions, and the result is properly rounded rather than truncated towards 0 in order to avoid a systematic shift of pixel values.
Andrzej Oleś, [email protected], 2017
[1] K. Zuiderveld: Contrast Limited Adaptive Histogram Equalization. In: P. Heckbert: Graphics Gems IV, Academic Press 1994
x = readImage(system.file("images", "sample-color.png", package="EBImage")) y = clahe(x) display(y)
x = readImage(system.file("images", "sample-color.png", package="EBImage")) y = clahe(x) display(y)
Color codes the labels of object masks by a random permutation.
colorLabels(x, normalize = TRUE)
colorLabels(x, normalize = TRUE)
x |
an |
normalize |
if TRUE normalizes the resulting color image |
Performs color coding of object masks, which are typically obtained using the bwlabel
function. Each label from x
is assigned an unique color. The colors are distributed among the labels using a random permutation. If normalize
is set to TRUE
the intensity values of the resulting image are mapped to the [0,1] range.
An Image
object containing color coded objects of x
.
Bernd Fischer, Andrzej Oles, 2013-2014
x = readImage(system.file('images', 'shapes.png', package='EBImage')) x = x[110:512,1:130] y = bwlabel(x) z = colorLabels(y) display(z, title='Colored segmentation')
x = readImage(system.file('images', 'shapes.png', package='EBImage')) x = x[110:512,1:130] y = bwlabel(x) z = colorLabels(y) display(z, title='Colored segmentation')
Maps a greyscale image to color using a color palette.
colormap(x, palette = heat.colors(256L))
colormap(x, palette = heat.colors(256L))
x |
an |
palette |
character vector containing the color palette |
The colormap
function first linearly maps the pixel intensity values
of x
to the integer range 1:length(palette)
. It then
uses these values as indices to the provided color palette to create
a color version of the original image.
The default palette contains 256 colors, which is the typical number of different shades in a 8bit grayscale image.
An Image
object of color mode Color
, containing the color-mapped version
of x
.
Andrzej Oleś, [email protected], 2016
x = readImage(system.file("images", "sample.png", package="EBImage")) ## posterize an image using the topo.colors palette y = colormap(x, topo.colors(8)) display(y, method="raster") ## mimic MatLab's 'jet.colors' colormap jet.colors = colorRampPalette(c("#00007F", "blue", "#007FFF", "cyan", "#7FFF7F", "yellow", "#FF7F00", "red", "#7F0000")) y = colormap(x, jet.colors(256)) display(y, method="raster")
x = readImage(system.file("images", "sample.png", package="EBImage")) ## posterize an image using the topo.colors palette y = colormap(x, topo.colors(8)) display(y, method="raster") ## mimic MatLab's 'jet.colors' colormap jet.colors = colorRampPalette(c("#00007F", "blue", "#007FFF", "cyan", "#7FFF7F", "yellow", "#FF7F00", "red", "#7F0000")) y = colormap(x, jet.colors(256)) display(y, method="raster")
Merges images to create image sequences.
combine(x, y, ...)
combine(x, y, ...)
x |
An |
y |
An |
... |
|
The function combine
uses abind
to merge multi-dimensional
arrays along the dimension depending on the
color mode of x
. If x
is a Grayscale
image or an array,
image objects are combined along the third dimension, whereas when
x
is a Color
image they are combined along the fourth dimension, leaving room on the third dimension for color
channels.
An Image
object or an array.
Gregoire Pau, Andrzej Oles, 2013
The method abind
provides a more flexible interface which allows to specify the dimension along which to combine the images.
## combination of color images img = readImage(system.file("images", "sample-color.png", package="EBImage"))[257:768,,] x = combine(img, flip(img), flop(img)) display(x, all=TRUE) ## Blurred images x = resize(img, 128, 128) xt = list() for (t in seq(0.1, 5, length.out=9)) xt=c(xt, list(gblur(x, s=t))) xt = combine(xt) display(xt, title='Blurred images', all=TRUE)
## combination of color images img = readImage(system.file("images", "sample-color.png", package="EBImage"))[257:768,,] x = combine(img, flip(img), flop(img)) display(x, all=TRUE) ## Blurred images x = resize(img, 128, 128) xt = list() for (t in seq(0.1, 5, length.out=9)) xt=c(xt, list(gblur(x, s=t))) xt = combine(xt) display(xt, title='Blurred images', all=TRUE)
Computes morphological and texture features from image objects.
computeFeatures(x, ref, methods.noref=c("computeFeatures.moment", "computeFeatures.shape"), methods.ref=c("computeFeatures.basic", "computeFeatures.moment", "computeFeatures.haralick"), xname="x", refnames, properties=FALSE, expandRef=standardExpandRef, ...) computeFeatures.basic(x, ref, properties=FALSE, basic.quantiles=c(0.01, 0.05, 0.5, 0.95, 0.99), xs, ...) computeFeatures.shape(x, properties=FALSE, xs, ...) computeFeatures.moment(x, ref, properties=FALSE, xs, ...) computeFeatures.haralick(x, ref , properties=FALSE, haralick.nbins=32, haralick.scales=c(1, 2), xs, ...) standardExpandRef(ref, refnames, filter = gblob())
computeFeatures(x, ref, methods.noref=c("computeFeatures.moment", "computeFeatures.shape"), methods.ref=c("computeFeatures.basic", "computeFeatures.moment", "computeFeatures.haralick"), xname="x", refnames, properties=FALSE, expandRef=standardExpandRef, ...) computeFeatures.basic(x, ref, properties=FALSE, basic.quantiles=c(0.01, 0.05, 0.5, 0.95, 0.99), xs, ...) computeFeatures.shape(x, properties=FALSE, xs, ...) computeFeatures.moment(x, ref, properties=FALSE, xs, ...) computeFeatures.haralick(x, ref , properties=FALSE, haralick.nbins=32, haralick.scales=c(1, 2), xs, ...) standardExpandRef(ref, refnames, filter = gblob())
x |
An |
ref |
A matrix or a list of matrices, containing the intensity values of the reference objects. |
methods.noref |
A character vector containing the function names
to be called to compute features without reference intensities. Default is
|
methods.ref |
A character vector containing the function names
to be called to compute features with reference intensities. Default is
|
xname |
A character string naming the object layer. Default is
|
refnames |
A character vector naming the reference intensity
layers. Default are the names of |
properties |
A logical. If |
expandRef |
A function used to expand the reference
images. Default is |
basic.quantiles |
A numerical vector indicating the quantiles to compute. |
haralick.nbins |
An integer indicating the number of bins using to compute the Haralick matrix. See Details. |
haralick.scales |
A integer vector indicating the number of scales to use to compute the Haralick features. |
xs |
An optional temporary object created by
|
filter |
The filter applied to reference images using |
... |
Optional arguments passed to the feature computation functions. |
Features are named x.y.f, where x is the object layer, y the reference
image layer and f the feature name. Examples include cell.dna.mean
,
indicating mean DNA intensity computed in the cell or
nucleus.tubulin.cx
, indicating the x center of mass of tubulin
computed in the nucleus region.
The function computeFeatures
computes sets of
features. Features are organized in 4 sets, each computed by a
different function. The function computeFeatures.basic
computes spatial-independent statistics on pixel intensities:
b.mean: mean intensity
b.sd: standard deviation intensity
b.mad: mad intensity
b.q*: quantile intensity
The function computeFeatures.shape
computes features that
quantify object shape:
s.area: area size (in pixels)
s.perimeter: perimeter (in pixels)
s.radius.mean: mean radius (in pixels)
s.radius.sd: standard deviation of the mean radius (in pixels)
s.radius.max: max radius (in pixels)
s.radius.min: min radius (in pixels)
The function computeFeatures.moment
computes features
related to object image moments, which can be computed with or without
reference intensities:
m.cx: center of mass x (in pixels)
m.cy: center of mass y (in pixels)
m.majoraxis: elliptical fit major axis (in pixels)
m.eccentricity: elliptical eccentricity defined by sqrt(1-minoraxis^2/majoraxis^2). Circle eccentricity is 0 and straight line eccentricity is 1.
m.theta: object angle (in radians)
The function computeFeatures.haralick
computes features
that quantify pixel texture. Features are named according to
Haralick's original paper.
If properties
if FALSE
(by default), computeFeatures
returns a matrix of n cells times p features, where p depends of
the options given to the function. Returns NULL
if no object is
present.
If properties
if TRUE
, computeFeatures
returns a matrix of p features times 2 properties (translation and
rotation invariance). Feature properties are useful to filter out
features that may not be needed for specific tasks, e.g. cell
position when doing cell classification.
Gregoire Pau, [email protected], 2011
R. M. Haralick, K Shanmugam and Its'Hak Deinstein (1979). Textural Features for Image Classification. IEEE Transactions on Systems, Man and Cybernetics.
## load and segment nucleus y = readImage(system.file("images", "nuclei.tif", package="EBImage"))[,,1] x = thresh(y, 10, 10, 0.05) x = opening(x, makeBrush(5, shape='disc')) x = bwlabel(x) display(y, title="Cell nuclei") display(x, title="Segmented nuclei") ## compute shape features fts = computeFeatures.shape(x) fts ## compute features ft = computeFeatures(x, y, xname="nucleus") cat("median features are:\n") apply(ft, 2, median) ## compute feature properties ftp = computeFeatures(x, y, properties=TRUE, xname="nucleus") ftp
## load and segment nucleus y = readImage(system.file("images", "nuclei.tif", package="EBImage"))[,,1] x = thresh(y, 10, 10, 0.05) x = opening(x, makeBrush(5, shape='disc')) x = bwlabel(x) display(y, title="Cell nuclei") display(x, title="Segmented nuclei") ## compute shape features fts = computeFeatures.shape(x) fts ## compute features ft = computeFeatures(x, y, xname="nucleus") cat("median features are:\n") apply(ft, 2, median) ## compute feature properties ftp = computeFeatures(x, y, properties=TRUE, xname="nucleus") ftp
Display images in an interactive JavaScript viewer or using R's built-in graphics capabilities.
display(x, method, ...) ## S3 method for class 'Image' plot(x, ...)
display(x, method, ...) ## S3 method for class 'Image' plot(x, ...)
x |
an |
method |
the way of displaying images. Defaults to |
... |
arguments to be passed to the specialized display functions; for details see the sections on individual display methods. |
The default method
used for displaying images depends on whether called from and interactive R session. If interactive()
is TRUE
images are displayed with the "browser"
method, otherwise the "raster"
method is used. This dynamic behavior can be overridden by setting options("EBImage.display")
to either "browser"
or "raster"
.
plot.Image
S3 method is a wrapper for display(..., method="raster")
The "browser"
method runs an interactive JavaScript image viewer. A list of available features along with corresponding mouse and keyboard actions is shown by pressing 'h'. This method takes the following additional arguments.
embed
logical(1), include images in the document as data URIs. Defaults to TRUE
in non-interactive context (e.g. static R Markdown documents), otherwise to FALSE
.
tempDir
character(1), file path for storing any temporary image files. Defaults to tempfile("")
...
arguments passed to createWidget
, such as fixed width
and height
(in CSS units), elementId
, or preRenderHook
.
The "raster"
method displays images as R raster graphics. The user coordinates of the plotting region are set to the image pixel coordinates with the origin (0, 0)
in the upper left corner.
By default only the first frame of an image stack is shown; a different frame
can also be specified. When all=TRUE
the whole image stack is rendered and the frames are automatically positioned next to each other in a grid. The grid layout can be modified through nx
and spacing
and margin
.
This method provides to following additional arguments to display
.
interpolate
a logical vector (or scalar) indicating whether to apply linear interpolation to the image when drawing.
frame
a numeric indicating the frame number to display; only effective when all = FALSE
.
all
logical, defaulting to FALSE
. If set to TRUE
, all frames of a stacked image are displayed arranged in a grid, otherwise (default) just a single frame specified in frame
is displayed. The grid layout can be controlled by nx
, spacing
and margin
.
drawGrid
a logical indicating whether to draw grid lines between individual frames. Defaults to TRUE
unless spacing
is non-zero. Line color, type and width can be specified through graphical parameters col
, lty
and lwd
, respectively; see par
for details.
nx
integer. Specifies the number images in a row. Negative numbers are interpreted as the number of images in a column, e.g. use -1
to display a single row containing all the frames.
spacing
numeric. Specifies the separation between frames as a fraction of frame dimensions (positive numbers <1) or in pixels (numbers >=1). It can be either a single number or a vector of length 2, in which case its elements correspond to the horizontal and vertical spacing, respectively.
margin
numeric. Specifies the outer margins around the image, or a grid of images. Similarly as for spacing
, different horizontal and vertical margins can be defined by providing a vector.
...
graphical parameters passed to par
Andrzej Oles, [email protected], 2012-2017
## Display a single image x = readImage(system.file("images", "sample-color.png", package="EBImage"))[257:768,,] display(x) ## Display a thresholded sequence ... y = readImage(system.file("images", "sample.png", package="EBImage"))[366:749, 58:441] z = lapply(seq(from=0.5, to=5, length.out=6), function(s) gblur(y, s, boundary="replicate") ) z = combine(z) ## ... using the interactive viewer ... display(z) ## ... or using R's build-in raster device display(z, method = "raster", all = TRUE) ## Display the last frame display(z, method = "raster", frame = numberOfFrames(z, type = "render")) ## Customize grid appearance display(z, method = "raster", all = TRUE, nx = 2, spacing = 0.05, margin = 20, bg = "black")
## Display a single image x = readImage(system.file("images", "sample-color.png", package="EBImage"))[257:768,,] display(x) ## Display a thresholded sequence ... y = readImage(system.file("images", "sample.png", package="EBImage"))[366:749, 58:441] z = lapply(seq(from=0.5, to=5, length.out=6), function(s) gblur(y, s, boundary="replicate") ) z = combine(z) ## ... using the interactive viewer ... display(z) ## ... or using R's build-in raster device display(z, method = "raster", all = TRUE) ## Display the last frame display(z, method = "raster", frame = numberOfFrames(z, type = "render")) ## Customize grid appearance display(z, method = "raster", all = TRUE, nx = 2, spacing = 0.05, margin = 20, bg = "black")
Output and render functions for using the interactive image viewer within Shiny applications and interactive R Markdown documents.
displayOutput(outputId, width = "100%", height = "500px") renderDisplay(expr, env = parent.frame(), quoted = FALSE)
displayOutput(outputId, width = "100%", height = "500px") renderDisplay(expr, env = parent.frame(), quoted = FALSE)
outputId |
output variable to read from |
width , height
|
Must be a valid CSS unit (like |
expr |
An expression that generates the image viewer (typicall through a call to |
env |
The environment in which to evaluate |
quoted |
Is |
# Only run this example in interactive R sessions if (interactive()) { options(device.ask.default = FALSE) require("shiny") ui <- fluidPage( # Application title titlePanel("Image display"), # Sidebar with a select input for the image sidebarLayout( sidebarPanel( selectInput("image", "Sample image:", list.files(system.file("images", package="EBImage"))) ), # Show a plot of the generated distribution mainPanel( tabsetPanel( tabPanel("Static raster", plotOutput("raster")), tabPanel("Interactive browser", displayOutput("widget")) ) ) ) ) server <- function(input, output) { img <- reactive({ f = system.file("images", input$image, package="EBImage") readImage(f) }) output$widget <- renderDisplay({ display(img()) }) output$raster <- renderPlot({ plot(img(), all=TRUE) }) } # Run the application shinyApp(ui = ui, server = server) }
# Only run this example in interactive R sessions if (interactive()) { options(device.ask.default = FALSE) require("shiny") ui <- fluidPage( # Application title titlePanel("Image display"), # Sidebar with a select input for the image sidebarLayout( sidebarPanel( selectInput("image", "Sample image:", list.files(system.file("images", package="EBImage"))) ), # Show a plot of the generated distribution mainPanel( tabsetPanel( tabPanel("Static raster", plotOutput("raster")), tabPanel("Interactive browser", displayOutput("widget")) ) ) ) ) server <- function(input, output) { img <- reactive({ f = system.file("images", input$image, package="EBImage") readImage(f) }) output$widget <- renderDisplay({ display(img()) }) output$raster <- renderPlot({ plot(img(), all=TRUE) }) } # Run the application shinyApp(ui = ui, server = server) }
Computes the distance map transform of a binary image. The distance map is a matrix which contains for each pixel the distance to its nearest background pixel.
distmap(x, metric=c('euclidean', 'manhattan'))
distmap(x, metric=c('euclidean', 'manhattan'))
x |
An |
metric |
A character indicating which metric to use, L1 distance ( |
A fast algorithm of complexity O(M*N*log(max(M,N))), where (M,N) are the
dimensions of x
, is used to compute the distance map.
An Image
object or an array, with pixels
containing the distances to the nearest background points.
Gregoire Pau, [email protected], 2008
M. N. Kolountzakis, K. N. Kutulakos. Fast Computation of the Euclidean Distance Map for Binary Images, Infor. Proc. Letters 43 (1992).
x = readImage(system.file("images", "shapes.png", package="EBImage")) display(x) dx = distmap(x) display(dx/10, title='Distance map of x')
x = readImage(system.file("images", "shapes.png", package="EBImage")) display(x) dx = distmap(x) display(dx/10, title='Distance map of x')
Draw a circle on an image.
drawCircle(img, x, y, radius, col, fill=FALSE, z=1)
drawCircle(img, x, y, radius, col, fill=FALSE, z=1)
img |
An |
x , y , radius
|
numerics indicating the center and the radius of the circle. |
col |
A numeric or a character string specifying the color of the circle. |
fill |
A logical indicating whether the circle should be filled.
Default is |
z |
A numeric indicating on which frame of the image the circle should be drawn. Default is 1. |
An Image
object or an array, containing the transformed version
of img
.
Gregoire Pau, 2010
## Simple white circle x = matrix(0, nrow=300, ncol=300) y = drawCircle(x, 100, 200, 47, col=1) display(y) ## Simple filled yellow circle x = channel(y, 'rgb') y = drawCircle(x, 200, 140, 57, col='yellow', fill=TRUE) display(y)
## Simple white circle x = matrix(0, nrow=300, ncol=300) y = drawCircle(x, 100, 200, 47, col=1) display(y) ## Simple filled yellow circle x = channel(y, 'rgb') y = drawCircle(x, 200, 140, 57, col='yellow', fill=TRUE) display(y)
EBImage
is an image processing and analysis package for R. Its primary
goal is to enable automated analysis of large sets of images such as those
obtained in high throughput automated microscopy.
EBImage
relies on the Image
object to store and process images
but also works on multi-dimensional arrays.
Image methods
Image
as.Image
, is.Image
, as.raster
colorMode
, imageData
getFrame
, numberOfFrames
Image I/O, display
readImage
, writeImage
display
image
Spatial transforms
resize
, flip
, flop
, transpose
rotate
, translate
, affine
Image segmentation, objects manipulation
thresh
, bwlabel
, otsu
watershed
, propagate
ocontour
paintObjects
, rmObjects
, reenumerate
Image enhancement, filtering
normalize
filter2
, gblur
, medianFilter
Morphological operations
makeBrush
erode
, dilate
, opening
, closing
whiteTopHat
, blackTopHat
, selfComplementaryTopHat
distmap
floodFill
, fillHull
Color space manipulation
rgbImage
, channel
, toRGB
Image stacking, combining, tiling
stackObjects
combine
tile
, untile
Drawing on images
drawCircle
Features extraction
computeFeatures
computeFeatures.basic
, computeFeatures.moment
, computeFeatures.shape
, computeFeatures.haralick
standardExpandRef
Defunct
blur
, equalize
drawtext
, drawfont
getFeatures
, hullFeatures
, zernikeMoments
edgeProfile
, edgeFeatures
,
haralickFeatures
, haralickMatrix
moments
, cmoments
, smoments
, rmoments
Oleg Sklyar, [email protected], Copyright 2005-2007
Gregoire Pau, [email protected]
Wolfgang Huber, [email protected]
Andrzej Oles, [email protected]
Mike Smith, [email protected]
European Bioinformatics Institute European Molecular Biology Laboratory Wellcome Trust Genome Campus Hinxton Cambridge CB10 1SD UK
The code of propagate
is based on the CellProfiler
with permission granted to distribute this particular part under LGPL, the
corresponding copyright (Jones, Carpenter) applies.
The source code is released under LGPL
(see the LICENSE
file in the package root for the complete license wording).
This library is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation; either version 2.1 of the License, or (at your option) any later version. This library is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
See the GNU Lesser General Public License for more details. For LGPL license wording see http://www.gnu.org/licenses/lgpl.html
example(readImage) example(display) example(rotate) example(propagate)
example(readImage) example(display) example(rotate) example(propagate)
These functions are defunct and no longer available.
The following functions are defunct and no longer available; use the replacement indicated below.
animate
: display
blur
: gblur
drawtext
: see package vignette for documentation on how to add text labels to images
drawfont
: see package vignette for documentation on how to add text labels to images
getFeatures
: computeFeatures
getNumberOfFrames
: numberOfFrames
hullFeatures
: computeFeatures.shape
zernikeMoments
: computeFeatures
edgeProfile
: computeFeatures
edgeFeatures
: computeFeatures.shape
haralickFeatures
: computeFeatures
haralickMatrix
: computeFeatures
moments
: computeFeatures.moment
cmoments
: computeFeatures.moment
rmoments
: computeFeatures.moment
smoments
: computeFeatures.moment
dilateGreyScale
: dilate
erodeGreyScale
: erode
openingGreyScale
: opening
closingGreyScale
: closing
whiteTopHatGreyScale
: whiteTopHat
blackTopHatGreyScale
: blackTopHat
selfcomplementaryTopHatGreyScale
: selfComplementaryTopHat
Equalize the image histogram to a specified range and number of levels.
equalize(x, range = c(0, 1), levels = 256)
equalize(x, range = c(0, 1), levels = 256)
x |
an |
range |
numeric vector of length 2, the output range of the equalized histogram |
levels |
number of grayscale levels (Grayscale images) or intensity levels of each channel (Color images) |
Histogram equalization is an adaptive image contrast adjustment method. It flattens the image histogram by performing linearization of the cumulative distribution function of pixel intensities.
Individual channels of Color
images and frames of image stacks are equalized separately.
An Image
object or an array, containing the transformed version
of x
.
Andrzej Oles, [email protected], 2014
x = readImage(system.file('images', 'cells.tif', package='EBImage')) hist(x) y = equalize(x) hist(y) display(y, title='Equalized Grayscale Image') x = readImage(system.file('images', 'sample-color.png', package='EBImage')) hist(x) y = equalize(x) hist(y) display(y, title='Equalized Grayscale Image')
x = readImage(system.file('images', 'cells.tif', package='EBImage')) hist(x) y = equalize(x) hist(y) display(y, title='Equalized Grayscale Image') x = readImage(system.file('images', 'sample-color.png', package='EBImage')) hist(x) y = equalize(x) hist(y) display(y, title='Equalized Grayscale Image')
Fill holes in objects.
fillHull(x)
fillHull(x)
x |
An |
fillHull
fills holes in the objects defined in x
, where
objects are sets of pixels with the same unique integer value.
An Image
object or an array, containing the transformed version
of x
.
Gregoire Pau, Oleg Sklyar; 2007
x = readImage(system.file('images', 'nuclei.tif', package='EBImage')) display(x) y = thresh(x, 10, 10, 0.05) display(y, title='Cell nuclei') y = fillHull(y) display(y, title='Cell nuclei without holes')
x = readImage(system.file('images', 'nuclei.tif', package='EBImage')) display(x) y = thresh(x, 10, 10, 0.05) display(y, title='Cell nuclei') y = fillHull(y) display(y, title='Cell nuclei without holes')
Filters an image using the fast 2D FFT convolution product.
filter2(x, filter, boundary = c("circular", "replicate"))
filter2(x, filter, boundary = c("circular", "replicate"))
x |
An |
filter |
An |
boundary |
Behaviour at image borders. The default is to wrap the image around borders. For other modes see details. |
Linear filtering is useful to perform low-pass filtering (to blur
images, remove noise...) and high-pass filtering (to detect
edges, sharpen images). The function makeBrush
is useful to
generate filters.
The default "circular"
behaviour at boundaries is to wrap the image around borders.
In the "replicate"
mode pixels outside the bounds of the image are assumed to equal the nearest border pixel value.
Numeric values of boundary
yield linear convolution by padding the image with the given value(s).
If x
contains multiple frames, the filter is applied separately to each frame.
An Image
object or an array, containing the filtered version
of x
.
Andrzej Oleś, Gregoire Pau
makeBrush
, convolve
, fft
, blur
x = readImage(system.file("images", "sample-color.png", package="EBImage")) display(x, title='Sample') ## Low-pass disc-shaped filter f = makeBrush(21, shape='disc', step=FALSE) display(f, title='Disc filter') f = f/sum(f) y = filter2(x, f) display(y, title='Filtered image') ## Low-pass filter with linear padded boundary y = filter2(x, f, boundary=c(0,.5,1)) display(y, title='Filtered image with linear padded boundary') ## High-pass Laplacian filter la = matrix(1, nc=3, nr=3) la[2,2] = -8 y = filter2(x, la) display(y, title='Filtered image') ## High-pass Laplacian filter with replicated boundary y = filter2(x, la, boundary='replicate') display(y, title='Filtered image with replicated boundary')
x = readImage(system.file("images", "sample-color.png", package="EBImage")) display(x, title='Sample') ## Low-pass disc-shaped filter f = makeBrush(21, shape='disc', step=FALSE) display(f, title='Disc filter') f = f/sum(f) y = filter2(x, f) display(y, title='Filtered image') ## Low-pass filter with linear padded boundary y = filter2(x, f, boundary=c(0,.5,1)) display(y, title='Filtered image with linear padded boundary') ## High-pass Laplacian filter la = matrix(1, nc=3, nr=3) la[2,2] = -8 y = filter2(x, la) display(y, title='Filtered image') ## High-pass Laplacian filter with replicated boundary y = filter2(x, la, boundary='replicate') display(y, title='Filtered image with replicated boundary')
Fill regions in images.
floodFill(x, pts, col, tolerance=0)
floodFill(x, pts, col, tolerance=0)
x |
An |
pts |
Coordinates of the start filling points given as either of the following: a vector of the form |
col |
Fill color. This argument should be a numeric for Grayscale images and an R color for Color images. Values are recycled such that their length matches the number of points in |
tolerance |
Color tolerance used during the fill. |
Flood fill is performed using the fast scan line algorithm. Filling
starts at pts
and grows in connected areas where the absolute
difference of the pixels intensities (or colors) remains below
tolerance
.
An Image
object or an array, containing the transformed version
of x
.
Gregoire Pau, Oleg Sklyar; 2007
x = readImage(system.file("images", "shapes.png", package="EBImage")) ## fill a shape with 50% shade of gray y = floodFill(x, c(67, 146), 0.5) display(y) ## fill with color y = toRGB(y) y = floodFill(y, c(48, 78), 'orange') display(y) ## fill multiple shapes with different colors y = y[110:512,1:130,] points = rbind(c(50, 50), c(100, 50), c(150, 50)) colors = c("red", "green", "blue") y = floodFill(y, points, colors) display(y) ## area fill x = readImage(system.file("images", "sample.png", package="EBImage")) y = floodFill(x, rbind(c(200, 400), c(200, 325)), 1, tolerance=0.1) display(y) ## application to image stacks f = system.file("images", "nuclei.tif", package="EBImage") x = readImage(f)[1:250,1:250,] x = opening(thresh(x, 12, 12), makeBrush(5, shape='disc')) xy = lapply(getFrames(bwlabel(x)), function(x) computeFeatures.moment(x)[,1:2]) y = floodFill(toRGB(x), xy, c("red", "green", "blue")) display(y)
x = readImage(system.file("images", "shapes.png", package="EBImage")) ## fill a shape with 50% shade of gray y = floodFill(x, c(67, 146), 0.5) display(y) ## fill with color y = toRGB(y) y = floodFill(y, c(48, 78), 'orange') display(y) ## fill multiple shapes with different colors y = y[110:512,1:130,] points = rbind(c(50, 50), c(100, 50), c(150, 50)) colors = c("red", "green", "blue") y = floodFill(y, points, colors) display(y) ## area fill x = readImage(system.file("images", "sample.png", package="EBImage")) y = floodFill(x, rbind(c(200, 400), c(200, 325)), 1, tolerance=0.1) display(y) ## application to image stacks f = system.file("images", "nuclei.tif", package="EBImage") x = readImage(f)[1:250,1:250,] x = opening(thresh(x, 12, 12), makeBrush(5, shape='disc')) xy = lapply(getFrames(bwlabel(x)), function(x) computeFeatures.moment(x)[,1:2]) y = floodFill(toRGB(x), xy, c("red", "green", "blue")) display(y)
Filters an image with a low-pass Gaussian filter.
gblur(x, sigma, radius = 2 * ceiling(3 * sigma) + 1, ...)
gblur(x, sigma, radius = 2 * ceiling(3 * sigma) + 1, ...)
x |
An |
sigma |
A numeric denoting the standard deviation of the Gaussian filter used for blurring. |
radius |
The radius of the filter in pixels. Default is |
... |
Arguments passed to |
The Gaussian filter is created with the function makeBrush
.
An Image
object or an array, containing the filtered version
of x
.
Oleg Sklyar, [email protected], 2005-2007
x = readImage(system.file("images", "sample.png", package="EBImage")) display(x) y = gblur(x, sigma=8) display(y, title='gblur(x, sigma=8)')
x = readImage(system.file("images", "sample.png", package="EBImage")) display(x) y = gblur(x, sigma=8) display(y, title='gblur(x, sigma=8)')
EBImage
uses the Image
class to store and process
images. Images are stored as multi-dimensional arrays containing the pixel
intensities. Image
extends the base class array
and
uses the colormode
slot to store how the color information of
the multi-dimensional data is handled.
The colormode
slot can be either Grayscale
or Color
.
In either mode, the first two dimensions of the underlying array are understood to be the spatial dimensions of the image.
In the Grayscale
mode the remaining dimensions contain other image frames.
In the Color
mode, the third dimension contains color channels of the image, while higher dimensions contain image frames.
The number of channels is not limited and can be any number >= 1; these can be, for instance, the red, green, blue and, possibly, alpha channel.
Note that grayscale images containing an alpha channel are stored with colormode=Color
.
All methods from the EBImage
package work either with Image
objects or
multi-dimensional arrays. In the latter case, the color mode is assumed to be Grayscale
.
Image(data, dim, colormode) as.Image(x) is.Image(x) ## S3 method for class 'Image' as.array(x, ...) ## S3 method for class 'Image' as.raster(x, max = 1, i = 1L, ...) colorMode(y) colorMode(y) <- value imageData(y) imageData(y) <- value getFrame(y, i, type = c('total', 'render')) getFrames(y, i, type = c('total', 'render')) numberOfFrames(y, type = c('total', 'render'))
Image(data, dim, colormode) as.Image(x) is.Image(x) ## S3 method for class 'Image' as.array(x, ...) ## S3 method for class 'Image' as.raster(x, max = 1, i = 1L, ...) colorMode(y) colorMode(y) <- value imageData(y) imageData(y) <- value getFrame(y, i, type = c('total', 'render')) getFrames(y, i, type = c('total', 'render')) numberOfFrames(y, type = c('total', 'render'))
data |
A vector or array containing the pixel intensities of an image. If missing, the default 1x1 zero-filled array is used. |
dim |
A vector containing the final dimensions of an |
colormode |
A numeric or a character string containing the color mode which can be
either |
x |
An R object. |
y |
An |
max |
Number giving the maximum of the color values range. |
i |
Number(s) of frame(s). A single number in case of |
value |
For |
type |
A character string containing |
... |
further arguments passed to or from other methods. |
Depending on type
, numberOfFrames
returns the total number of frames contained
in the object y
or the number of rendered frames. The total number of frames is independent
of the color mode and equals to the product of all the dimensions except the two first ones. The
number of rendered frames is equal to the total number of frames in the Grayscale
color mode, or
to the product of all the dimensions except the three first ones in the Color
color mode.
getFrame
returns the i-th frame contained in the image y
. If type
is total
, the
function is unaware of the color mode and returns an xy-plane. For type=render
, the function returns the
i-th image as shown by the display
function.
Image
and as.Image
return a new Image
object.
is.Image
returns TRUE if x
is an Image
object and FALSE otherwise.
as.raster
coerces an Image object to its raster representation. For stacked images the i
-th frame is returned (by default the first one).
colorMode
returns the color mode of y
and colorMode<-
changes the color mode
of y
.
imageData
returns the array contained in an Image
object.
Oleg Sklyar, [email protected], 2005-2007
readImage
, writeImage
, display
s1 = exp(12i*pi*seq(-1, 1, length.out=300)^2) y = Image(outer(Im(s1), Re(s1))) display(normalize(y)) x = Image(rnorm(300*300*3),dim=c(300,300,3), colormode='Color') display(x) w = matrix(seq(0, 1, length.out=300), nc=300, nr=300) m = abind::abind(w, t(w), along=3) z = Image(m, colormode='Color') display(normalize(z)) y = Image(matrix(c('red', 'violet', '#ff51a5', 'yellow'), nrow=10, ncol=10)) display(y, interpolate=FALSE) ## colorMode example x = readImage(system.file('images', 'nuclei.tif', package='EBImage')) x = x[,,1:3] display(x, title='Cell nuclei') colorMode(x) = Color display(x, title='Cell nuclei in RGB')
s1 = exp(12i*pi*seq(-1, 1, length.out=300)^2) y = Image(outer(Im(s1), Re(s1))) display(normalize(y)) x = Image(rnorm(300*300*3),dim=c(300,300,3), colormode='Color') display(x) w = matrix(seq(0, 1, length.out=300), nc=300, nr=300) m = abind::abind(w, t(w), along=3) z = Image(m, colormode='Color') display(normalize(z)) y = Image(matrix(c('red', 'violet', '#ff51a5', 'yellow'), nrow=10, ncol=10)) display(y, interpolate=FALSE) ## colorMode example x = readImage(system.file('images', 'nuclei.tif', package='EBImage')) x = x[,,1:3] display(x, title='Cell nuclei') colorMode(x) = Color display(x, title='Cell nuclei in RGB')
Read images from files and URLs, and write images to files.
readImage(files, type, all = TRUE, names = sub("\\.[^.]*$", "", basename(files)), ...) writeImage(x, files, type, quality = 100, bits.per.sample, compression = "none", ...)
readImage(files, type, all = TRUE, names = sub("\\.[^.]*$", "", basename(files)), ...) writeImage(x, files, type, quality = 100, bits.per.sample, compression = "none", ...)
files |
a character vector of file names or URLs. |
type |
image type (optional). Supported values are: |
all |
logical: when the file contains more than one image should all frames be read, or only the first one? |
names |
a character vector used for frame names. Should have the same length as files. |
x |
an |
bits.per.sample |
a numeric scalar specifying the number of bits per sample (only for |
compression |
the desired compression algorithm (only for |
quality |
a numeric ranging from 1 to 100 (default) controlling the quality of the JPEG output. |
... |
arguments passed to the corresponding functions from the jpeg, png, and tiff packages. |
readImage
loads all images from the files
vector and returns them stacked into a single Image
object containing an array of doubles ranging from 0 (black) to 1 (white). All images need to be of the same type
and have the same dimensions and color mode. If type
is missing, the appropriate file format is determined from file name extension. Color mode is determined automatically based on the number of channels. When the function fails to read an image it skips to the next element of the files
vector issuing a warning message. Non-local files can be read directly from a valid URL.
writeImage
writes images into files specified by files
, were the number of files
needs to be equal 1 or the number of frames. Given an image containing multiple frames and a single file name either the whole stack is written into a single TIFF file, or each frame is saved to an individual JPEG/PNG file (for files = "image.*"
frames are saved into image-X.*
files, where X
equals the frame number less one; for an image containing n
frames this results in file names numbered from 0 to n-1
).
When writing JPEG files the compression quality can be specified using quality
. Valid values range from 100 (highest quality) to 1 (lowest quality). For TIFF files additional information about the desired number of bits per sample (bits.per.sample
) and the compression algorithm (compression
) can be provided. For a complete list of supported values please consult the documentation of the tiff package.
readImage
returns a new Image
object.
writeImage
returns an invisible vector of file names.
Image formats have a limited dynamic range (e.g. JPEG: 8 bit, TIFF: 16 bit) and writeImage
may cause some loss of accuracy. In specific, writing 16 bit image data to formats other than TIFF will strip the 8 LSB. When writing TIFF files a dynamic range check is performed and an appropriate value of bits.per.sample
is set automatically.
Andrzej Oles, [email protected], 2012
Image
, display
, readJPEG
/writeJPEG
, readPNG
/writePNG
, readTIFF
/writeTIFF
## Read and display an image f = system.file("images", "sample-color.png", package="EBImage") x = readImage(f) display(x) ## Read and display a multi-frame TIFF y = readImage(system.file("images", "nuclei.tif", package="EBImage")) display(y) ## Read an image directly from a remote location by specifying its URL try({ im = readImage("http://www-huber.embl.de/EBImage/ExampleImages/berlin.tif") display(im, title = "Berlin Impressions") }) ## Convert a PNG file into JPEG tempfile = tempfile("", , ".jpeg") writeImage(x, tempfile, quality = 85) cat("Converted '", f, "' into '", tempfile, "'.\n", sep="") ## Save a frame sequence files = writeImage(y, tempfile("", , ".jpeg"), quality = 85) cat("Files created: ", files, sep="\n")
## Read and display an image f = system.file("images", "sample-color.png", package="EBImage") x = readImage(f) display(x) ## Read and display a multi-frame TIFF y = readImage(system.file("images", "nuclei.tif", package="EBImage")) display(y) ## Read an image directly from a remote location by specifying its URL try({ im = readImage("http://www-huber.embl.de/EBImage/ExampleImages/berlin.tif") display(im, title = "Berlin Impressions") }) ## Convert a PNG file into JPEG tempfile = tempfile("", , ".jpeg") writeImage(x, tempfile, quality = 85) cat("Converted '", f, "' into '", tempfile, "'.\n", sep="") ## Save a frame sequence files = writeImage(y, tempfile("", , ".jpeg"), quality = 85) cat("Files created: ", files, sep="\n")
Computes signed curvature along a line.
localCurvature(x, h, maxk)
localCurvature(x, h, maxk)
x |
A data frame or matrix of dimensions N x 2 containing the coordinates
of the line, where N is the number of points. The points should be ordered according
to their position on the line. The columns should contain the x and y coordinates.
The curvature calculation is unaffected by any permutation of the columns.
Directly accepts a list element from |
h |
Specifies the length of the smoothing window. See |
maxk |
See |
localCurvature
fits a local non-parametric smoothing line (polynomial of degree 2)
at each point along the line segment, and computes the curvature locally using numerical derivatives.
Returns a list
containing the contour coordinates x
, the signed curvature at each point curvature
and the arc length of the contour length
.
Joseph Barry, Wolfgang Huber, 2013
## curvature goes as the inverse of the radius of a circle range=seq(3.5,33.5,by=2) plotRange=seq(0.5,33.5,length.out=100) circleRes=array(dim=length(range)) names(circleRes)=range for (i in seq_along(1:length(range))) { y=as.Image(makeBrush('disc', size=2*range[i])) y=ocontour(y)[[1]] circleRes[i]=abs(mean(localCurvature(x=y,h=range[i])$curvature, na.rm=TRUE)) } plot(range, circleRes, ylim=c(0,max(circleRes, na.rm=TRUE)), xlab='Circle Radius', ylab='Curvature', type='p', xlim=range(plotRange)) points(plotRange, 1/plotRange, type='l') ## Calculate curvature x = readImage(system.file("images", "shapes.png", package="EBImage"))[25:74, 60:109] x = resize(x, 200) y = gblur(x, 3) > .3 display(y) contours = ocontour(bwlabel(y)) c = localCurvature(x=contours[[1]], h=11) i = c$curvature >= 0 pos = neg = array(0, dim(x)) pos[c$contour[i,]+1] = c$curvature[i] neg[c$contour[!i,]+1] = -c$curvature[!i] display(10*(rgbImage(pos, , neg)), title = "Image curvature")
## curvature goes as the inverse of the radius of a circle range=seq(3.5,33.5,by=2) plotRange=seq(0.5,33.5,length.out=100) circleRes=array(dim=length(range)) names(circleRes)=range for (i in seq_along(1:length(range))) { y=as.Image(makeBrush('disc', size=2*range[i])) y=ocontour(y)[[1]] circleRes[i]=abs(mean(localCurvature(x=y,h=range[i])$curvature, na.rm=TRUE)) } plot(range, circleRes, ylim=c(0,max(circleRes, na.rm=TRUE)), xlab='Circle Radius', ylab='Curvature', type='p', xlim=range(plotRange)) points(plotRange, 1/plotRange, type='l') ## Calculate curvature x = readImage(system.file("images", "shapes.png", package="EBImage"))[25:74, 60:109] x = resize(x, 200) y = gblur(x, 3) > .3 display(y) contours = ocontour(bwlabel(y)) c = localCurvature(x=contours[[1]], h=11) i = c$curvature >= 0 pos = neg = array(0, dim(x)) pos[c$contour[i,]+1] = c$curvature[i] neg[c$contour[!i,]+1] = -c$curvature[!i] display(10*(rgbImage(pos, , neg)), title = "Image curvature")
Process an image using Perreault's modern constant-time median filtering algorithm [1, 2].
medianFilter(x, size, cacheSize=512)
medianFilter(x, size, cacheSize=512)
x |
an |
size |
integer, median filter radius. |
cacheSize |
integer, the L2 cache size of the system CPU in kB. |
Median filtering is useful as a smoothing technique, e.g. in the removal of speckling noise.
For a filter of radius size
, the median kernel is a 2*size+1
times 2*size+1
square.
The input image x
should contain pixel values in the range from 0 to 1,
inclusive; values lower than 0 or higher than 1 are clipped before applying
the filter. Internal processing is performed using 16-bit precision. The
behavior at image boundaries is such as the source image has been padded with
pixels whose values equal the nearest border pixel value.
If the image contains multiple channels or frames, the filter is applied to each one of them separately.
An Image
object or an array, containing the filtered version
of x
.
Joseph Barry, [email protected], 2012
Andrzej Oleś, [email protected], 2016
[1] S. Perreault and P. Hebert, "Median Filtering in Constant Time", IEEE Trans Image Process 16(9), 2389-2394, 2007
[2] http://nomis80.org/ctmf.html
x = readImage(system.file("images", "nuclei.tif", package="EBImage")) display(x, title='Nuclei') y = medianFilter(x, 5) display(y, title='Filtered nuclei')
x = readImage(system.file("images", "nuclei.tif", package="EBImage")) display(x, title='Nuclei') y = medianFilter(x, 5) display(y, title='Filtered nuclei')
Functions to perform morphological operations on binary and grayscale images.
dilate(x, kern) erode(x, kern) opening(x, kern) closing(x, kern) whiteTopHat(x, kern) blackTopHat(x, kern) selfComplementaryTopHat(x, kern) makeBrush(size, shape=c('box', 'disc', 'diamond', 'Gaussian', 'line'), step=TRUE, sigma=0.3, angle=45)
dilate(x, kern) erode(x, kern) opening(x, kern) closing(x, kern) whiteTopHat(x, kern) blackTopHat(x, kern) selfComplementaryTopHat(x, kern) makeBrush(size, shape=c('box', 'disc', 'diamond', 'Gaussian', 'line'), step=TRUE, sigma=0.3, angle=45)
x |
An |
kern |
An |
size |
A numeric containing the size of the brush in pixels. This should be an odd number; even numbers are rounded to the next odd one, i.e., |
shape |
A character vector indicating the shape of the brush. Can
be |
step |
a logical indicating if the brush is binary. Default is
|
sigma |
An optional numeric containing the standard deviation of
the |
angle |
An optional numeric containing the angle at which the line should be drawn. The angle is one between the top of the image and the line. |
dilate
applies the mask kern
by positioning its center over every pixel of the
image x
, the output value of the pixel is the maximum value of x
covered by the mask. In case of binary images this is equivalent of putting the mask over every background pixel, and setting it to foreground if any of the pixels covered by the mask is from the foreground.
erode
applies the mask kern
by positioning its center over every pixel of the
image x
, the output value of the pixel is the minimum value of x
covered by the mask. In case of binary images this is equivalent of putting the mask over every foreground pixel, and setting it to background if any of the pixels covered by the mask is from the background.
opening
is an erosion followed by a dilation and closing
is a dilation followed by an erosion.
whiteTopHat
returns the difference between the original image x
and its opening by the structuring element kern
.
blackTopHat
subtracts the original image x
from its closing by the structuring element kern
.
selfComplementaryTopHat
is the sum of the whiteTopHat
and the blackTopHat
, simplified
the difference between the closing
and the opening
of the image.
makeBrush
generates brushes of various sizes and shapes that can be used
as structuring elements.
Morphological functions position the center of the structuring element over each pixel in the input image. For pixels close to the edge of an image, parts of the neighborhood defined by the structuring element may extend past the border of the image. In such a case, a value is assigned to these undefined pixels, as if the image was padded with additional rows and columns. The value of these padding pixels varies for dilation and erosion operations. For dilation, pixels beyond the image border are assigned the minimum value afforded by the data type, which in case of binary images is equivalent of setting them to background. For erosion, pixels beyond the image border are assigned the maximum value afforded by the data type, which in case of binary images is equivalent of setting them to foreground.
dilate
, erode
, opening
, whiteTopHat
, blackTopHat
and
selfComplementaryTopHat
return the transformed Image
object
or array x
, after the corresponding morphological operation.
makeBrush
generates a 2D matrix containing the desired brush.
Morphological operations are implemented using the efficient Urbach-Wilkinson algorithm [1]. Its required computing time is independent of both the image content and the number of gray levels used.
Ilia Kats <[email protected]> (2012), Andrzej Oles <[email protected]> (2015)
[1] E. R. Urbach and M.H.F. Wilkinson, "Efficient 2-D grayscale morphological transformations with arbitrary flat structuring elements", IEEE Trans Image Process 17(1), 1-8, 2008
x = readImage(system.file("images", "shapes.png", package="EBImage")) kern = makeBrush(5, shape='diamond') display(x) display(kern, title='Structuring element') display(erode(x, kern), title='Erosion of x') display(dilate(x, kern), title='Dilatation of x') ## makeBrush display(makeBrush(99, shape='diamond')) display(makeBrush(99, shape='disc', step=FALSE)) display(2000*makeBrush(99, shape='Gaussian', sigma=10))
x = readImage(system.file("images", "shapes.png", package="EBImage")) kern = makeBrush(5, shape='diamond') display(x) display(kern, title='Structuring element') display(erode(x, kern), title='Erosion of x') display(dilate(x, kern), title='Dilatation of x') ## makeBrush display(makeBrush(99, shape='diamond')) display(makeBrush(99, shape='disc', step=FALSE)) display(2000*makeBrush(99, shape='Gaussian', sigma=10))
Linearly scale the intensity values of an image to a specified range.
## S4 method for signature 'Image' normalize(object, separate=TRUE, ft=c(0,1), inputRange) ## S4 method for signature 'array' normalize(object, separate=TRUE, ft=c(0,1), inputRange)
## S4 method for signature 'Image' normalize(object, separate=TRUE, ft=c(0,1), inputRange) ## S4 method for signature 'array' normalize(object, separate=TRUE, ft=c(0,1), inputRange)
object |
an |
separate |
if |
ft |
a numeric vector of 2 values, target minimum and maximum intensity values after normalization |
inputRange |
a numeric vector of 2 values, sets the range of the input intensity values; values exceeding this range are clipped |
normalize
performs linear interpolation of the intensity values of an image to the specified range ft
. If inputRange
is not set the whole dynamic range of the image is used as input. By specifying inputRange
the input intensity range of the image can be limited to [min, max]. Values exceeding this range are clipped, i.e. intensities lower/higher than min
/max
are set to min
/max
.
An Image
object or an array, containing the transformed version
of object
.
Oleg Sklyar, [email protected], 2006-2007 Andrzej Oles, [email protected], 2013
x = readImage(system.file('images', 'shapes.png', package='EBImage')) x = x[110:512,1:130] y = bwlabel(x) display(x, title='Original') print(range(y)) y = normalize(y) print(range(y)) display(y, title='Segmented')
x = readImage(system.file('images', 'shapes.png', package='EBImage')) x = x[110:512,1:130] y = bwlabel(x) display(x, title='Original') print(range(y)) y = normalize(y) print(range(y)) display(y, title='Segmented')
Computes the oriented contour of objects.
ocontour(x)
ocontour(x)
x |
An |
A list of matrices, containing the coordinates of object oriented contours.
Gregoire Pau, [email protected], 2008
x = readImage(system.file("images", "shapes.png", package="EBImage")) x = x[1:120,50:120] display(x) oc = ocontour(x) plot(oc[[1]], type='l') points(oc[[1]], col=2)
x = readImage(system.file("images", "shapes.png", package="EBImage")) x = x[1:120,50:120] display(x) oc = ocontour(x) plot(oc[[1]], type='l') points(oc[[1]], col=2)
Returns a threshold value based on Otsu's method, which can be then used to reduce the grayscale image to a binary image.
otsu(x, range = c(0, 1), levels = 256)
otsu(x, range = c(0, 1), levels = 256)
x |
A |
range |
Numeric vector of length 2 specifying the histogram range used for thresholding. |
levels |
Number of grayscale levels. |
Otsu's thresholding method [1] is useful to automatically perform clustering-based image thresholding. The algorithm assumes that the distribution of image pixel intensities follows a bi-modal histogram, and separates those pixels into two classes (e.g. foreground and background). The optimal threshold value is determined by minimizing the combined intra-class variance.
The threshold value is calculated for each image frame separately resulting in a output vector of length equal to the total number of frames in the image.
The default number of levels
corresponds to the number of gray levels of an 8bit image. It is recommended to adjust this value according to the bit depth of the processed data, i.e. set levels
to 2^16 = 65536 when working with 16bit images.
A vector of length equal to the total number of frames in x
. Each vector element contains the Otsu's threshold value calculated for the corresponding image frame.
Philip A. Marais [email protected], Andrzej Oles [email protected], 2014
[1] Nobuyuki Otsu, "A threshold selection method from gray-level histograms". IEEE Trans. Sys., Man., Cyber. 9 (1): 62-66. doi:10.1109/TSMC.1979.4310076 (1979)
x = readImage(system.file("images", "sample.png", package="EBImage")) display(x) ## threshold using Otsu's method y = x > otsu(x) display(y)
x = readImage(system.file("images", "sample.png", package="EBImage")) display(x) ## threshold using Otsu's method y = x > otsu(x) display(y)
Higlight objects in images by outlining and/or painting them.
paintObjects(x, tgt, opac=c(1, 1), col=c('red', NA), thick=FALSE, closed=FALSE)
paintObjects(x, tgt, opac=c(1, 1), col=c('red', NA), thick=FALSE, closed=FALSE)
x |
An |
tgt |
An |
opac |
A numeric vector of two opacity values for drawing object boundaries and object bodies. Opacity ranges from 0 to 1, with 0 being fully transparent and 1 fully opaque. |
col |
A character vector of two R colors for drawing object
boundaries and object bodies. By default, object boundaries are
painted in |
thick |
A logical indicating whether to use thick boundary contours. Default is |
closed |
A logical indicating whether object contours should be closed along image edges or remain open. |
An Image
object or an array, containing the painted version of tgt
.
Oleg Sklyar, [email protected], 2006-2007 Andrzej Oles, [email protected], 2015
bwlabel
, watershed
, computeFeatures
, colorLabels
## load images nuc = readImage(system.file('images', 'nuclei.tif', package='EBImage')) cel = readImage(system.file('images', 'cells.tif', package='EBImage')) img = rgbImage(green=cel, blue=nuc) display(img, title='Cells') ## segment nuclei nmask = thresh(nuc, 10, 10, 0.05) nmask = opening(nmask, makeBrush(5, shape='disc')) nmask = fillHull(nmask) nmask = bwlabel(nmask) display(normalize(nmask), title='Cell nuclei mask') ## segment cells, using propagate and nuclei as 'seeds' ctmask = opening(cel>0.1, makeBrush(5, shape='disc')) cmask = propagate(cel, nmask, ctmask) display(normalize(cmask), title='Cell mask') ## using paintObjects to highlight objects res = paintObjects(cmask, img, col='#ff00ff') res = paintObjects(nmask, res, col='#ffff00') display(res, title='Segmented cells')
## load images nuc = readImage(system.file('images', 'nuclei.tif', package='EBImage')) cel = readImage(system.file('images', 'cells.tif', package='EBImage')) img = rgbImage(green=cel, blue=nuc) display(img, title='Cells') ## segment nuclei nmask = thresh(nuc, 10, 10, 0.05) nmask = opening(nmask, makeBrush(5, shape='disc')) nmask = fillHull(nmask) nmask = bwlabel(nmask) display(normalize(nmask), title='Cell nuclei mask') ## segment cells, using propagate and nuclei as 'seeds' ctmask = opening(cel>0.1, makeBrush(5, shape='disc')) cmask = propagate(cel, nmask, ctmask) display(normalize(cmask), title='Cell mask') ## using paintObjects to highlight objects res = paintObjects(cmask, img, col='#ff00ff') res = paintObjects(nmask, res, col='#ffff00') display(res, title='Segmented cells')
Find boundaries between adjacent regions in an image, where seeds have been already identified in the individual regions to be segmented. The method finds the Voronoi region of each seed on a manifold with a metric controlled by local image properties. The method is motivated by the problem of finding the borders of cells in microscopy images, given a labelling of the nuclei in the images.
Algorithm and implementation are from Jones et al. [1].
propagate(x, seeds, mask=NULL, lambda=1e-4)
propagate(x, seeds, mask=NULL, lambda=1e-4)
x |
An |
seeds |
An |
mask |
An optional |
lambda |
A numeric value. The regularization parameter used in the
metric, determining the trade-off between the Euclidean distance in the
image plane and the contribution of the gradient of |
The method operates by computing a discretized approximation of the Voronoi regions for given seed points on a Riemann manifold with a metric controlled by local image features.
Under this metric, the infinitesimal distance d between points v and v+dv is defined by:
d^2 = ( (t(dv)*g)^2 + lambda*t(dv)*dv )/(lambda + 1)
,
where g is the gradient of image x
at point v.
lambda
controls the weight of the Euclidean distance term.
When lambda
tends to infinity, d tends to the Euclidean
distance. When lambda
tends to 0, d tends to the intensity
gradient of the image.
The gradient is computed on a neighborhood of 3x3 pixels.
Segmentation of the Voronoi regions in the vicinity of flat areas
(having a null gradient) with small values of lambda
can
suffer from artifacts coming from the metric approximation.
An Image
object or an array, containing the labelled objects.
The implementation is based on CellProfiler C++ source code [2, 3].
An LGPL license was granted by Thouis Jones to use this part of
CellProfiler's code for the propagate
function.
The original CellProfiler code is from Anne Carpenter <[email protected]>, Thouis Jones <[email protected]>, In Han Kang <[email protected]>. Responsible for this implementation: Greg Pau.
[1] T. Jones, A. Carpenter and P. Golland, "Voronoi-Based Segmentation of Cells on Image Manifolds", CVBIA05 (535-543), 2005
[2] A. Carpenter, T.R. Jones, M.R. Lamprecht, C. Clarke, I.H. Kang, O. Friman, D. Guertin, J.H. Chang, R.A. Lindquist, J. Moffat, P. Golland and D.M. Sabatini, "CellProfiler: image analysis software for identifying and quantifying cell phenotypes", Genome Biology 2006, 7:R100
[3] CellProfiler: http://www.cellprofiler.org
## a paraboloid mountain in a plane n = 400 x = (n/4)^2 - matrix( (rep(1:n, times=n) - n/2)^2 + (rep(1:n, each=n) - n/2)^2, nrow=n, ncol=n) x = normalize(x) ## 4 seeds seeds = array(0, dim=c(n,n)) seeds[51:55, 301:305] = 1 seeds[301:305, 101:105] = 2 seeds[201:205, 141:145] = 3 seeds[331:335, 351:355] = 4 lambda = 10^seq(-8, -1, by=1) segmented = Image(dim=c(dim(x), length(lambda))) for(i in seq_along(lambda)) { prop = propagate(x, seeds, lambda=lambda[i]) prop = prop/max(prop) segmented[,,i] = prop } display(x, title='Image') display(seeds/max(seeds), title='Seeds') display(segmented, title="Voronoi regions", all=TRUE)
## a paraboloid mountain in a plane n = 400 x = (n/4)^2 - matrix( (rep(1:n, times=n) - n/2)^2 + (rep(1:n, each=n) - n/2)^2, nrow=n, ncol=n) x = normalize(x) ## 4 seeds seeds = array(0, dim=c(n,n)) seeds[51:55, 301:305] = 1 seeds[301:305, 101:105] = 2 seeds[201:205, 141:145] = 3 seeds[331:335, 351:355] = 4 lambda = 10^seq(-8, -1, by=1) segmented = Image(dim=c(dim(x), length(lambda))) for(i in seq_along(lambda)) { prop = propagate(x, seeds, lambda=lambda[i]) prop = prop/max(prop) segmented[,,i] = prop } display(x, title='Image') display(seeds/max(seeds), title='Seeds') display(segmented, title="Voronoi regions", all=TRUE)
The following functions perform all spatial linear transforms: reflection, rotation, translation, resizing, and general affine transform.
flip(x) flop(x) rotate(x, angle, filter = "bilinear", output.dim, output.origin, ...) translate(x, v, filter = "none", ...) resize(x, w, h, output.dim = c(w, h), output.origin = c(0, 0), antialias = FALSE, ...) affine(x, m, filter = c("bilinear", "none"), output.dim, bg.col = "black", antialias = TRUE)
flip(x) flop(x) rotate(x, angle, filter = "bilinear", output.dim, output.origin, ...) translate(x, v, filter = "none", ...) resize(x, w, h, output.dim = c(w, h), output.origin = c(0, 0), antialias = FALSE, ...) affine(x, m, filter = c("bilinear", "none"), output.dim, bg.col = "black", antialias = TRUE)
x |
An |
angle |
A numeric specifying the image rotation angle in degrees. |
v |
A vector of 2 numbers denoting the translation vector in pixels. |
w , h
|
Width and height of the resized image. One of these arguments can be missing to enable proportional resizing. |
filter |
A character string indicating the interpolating sampling filter. Valid values are 'none' or 'bilinear'. See Details. |
output.dim |
A vector of 2 numbers indicating the dimension of the output image.
For |
output.origin |
A vector of 2 numbers indicating the output coordinates of the origin in pixels. |
m |
A 3x2 matrix describing the affine transformation. See Details. |
bg.col |
Color used to fill the background pixels, defaults to "black". In the case of multi-frame images the value is recycled, and individual background for each frame can be specified by providing a vector. |
antialias |
If |
... |
Arguments to be passed to |
flip
mirrors x
around the image horizontal axis (vertical reflection).
flop
mirrors x
around the image vertical axis (horizontal reflection).
rotate
rotates the image clockwise by the given angle around the
origin specified in output.origin
. If no output.origin
is
provided, the result will be centered in a recalculated bounding box unless
output.dim
is provided.
resize
scales the image x
to the desired dimensions.
The transformation origin can be specified in output.origin
.
For example, zooming about the output.origin
can be achieved by setting
output.dim
to a value different from c(w, h)
.
affine
returns the affine transformation of x
, where
pixels coordinates, denoted by the matrix px
, are
transformed to cbind(px, 1)%*%m
.
All spatial transformations except flip
and flop
are based on the
general affine
transformation. Spatial interpolation can be either
none
, also called nearest neighbor, where the resulting pixel value equals to
the closest pixel value, or bilinear
, where the new
pixel value is computed by bilinear approximation of the 4 neighboring pixels. The
bilinear
filter gives smoother results.
An Image
object or an array, containing the transformed version
of x
.
Gregoire Pau, 2012
x <- readImage(system.file("images", "sample.png", package="EBImage")) display(x) display( flip(x) ) display( flop(x) ) display( resize(x, 128) ) display( rotate(x, 30) ) display( translate(x, c(120, -20)) ) m <- matrix(c(0.6, 0.2, 0, -0.2, 0.3, 300), nrow=3) display( affine(x, m) )
x <- readImage(system.file("images", "sample.png", package="EBImage")) display(x) display( flip(x) ) display( flop(x) ) display( resize(x, 128) ) display( rotate(x, 30) ) display( translate(x, c(120, -20)) ) m <- matrix(c(0.6, 0.2, 0, -0.2, 0.3, 300), nrow=3) display( affine(x, m) )
The rmObjects
functions deletes objects from an image
by setting their pixel intensity values to 0.
reenumerate
re-enumerates all objects in an image from 0 (background)
to the actual number of objects.
rmObjects(x, index, reenumerate = TRUE) reenumerate(x)
rmObjects(x, index, reenumerate = TRUE) reenumerate(x)
x |
An |
index |
A numeric vector (or a list of vectors if |
reenumerate |
Logical, should all the objects in the image be re-indexed afterwards (default). |
An Image
object or an array, containing the new objects.
Oleg Sklyar, [email protected], 2006-2007
## make objects x = readImage(system.file('images', 'shapes.png', package='EBImage')) x = x[110:512,1:130] y = bwlabel(x) ## number of objects found max(y) display(normalize(y), title='Objects') ## remove every second letter objects = list( seq.int(from = 2, to = max(y), by = 2), seq.int(from = 1, to = max(y), by = 2) ) z = rmObjects(combine(y, y), objects) display(normalize(z), title='Object removal') ## the number of objects left in each image apply(z, 3, max) ## perform object removal without re-enumerating z = rmObjects(y, objects, reenumerate = FALSE) ## labels of objects left unique(as.vector(z))[-1L] ## re-index objects z = reenumerate(z) unique(as.vector(z))[-1L]
## make objects x = readImage(system.file('images', 'shapes.png', package='EBImage')) x = x[110:512,1:130] y = bwlabel(x) ## number of objects found max(y) display(normalize(y), title='Objects') ## remove every second letter objects = list( seq.int(from = 2, to = max(y), by = 2), seq.int(from = 1, to = max(y), by = 2) ) z = rmObjects(combine(y, y), objects) display(normalize(z), title='Object removal') ## the number of objects left in each image apply(z, 3, max) ## perform object removal without re-enumerating z = rmObjects(y, objects, reenumerate = FALSE) ## labels of objects left unique(as.vector(z))[-1L] ## re-index objects z = reenumerate(z) unique(as.vector(z))[-1L]
Places detected objects into an image stack.
stackObjects(x, ref, combine=TRUE, bg.col='black', ext)
stackObjects(x, ref, combine=TRUE, bg.col='black', ext)
x |
An |
ref |
An |
combine |
If |
bg.col |
Background pixel color. |
ext |
A numeric controlling the size of the output image.
If missing, |
stackObjects
creates a set of n
images of size
(2*ext+1
, 2*ext+1
), where n
is the number of objects
in x
, and places each object of x
in this set.
If not specified, ext
is estimated using the 98% quantile of
m.majoraxis/2, where m.majoraxis
is the semi-major axis
descriptor extracted from computeFeatures.moment
, taken over
all the objects of the image x
.
An Image
object containing the stacked objects contained in
x
. If x
contains multiple images and if combine
is TRUE
, stackObjects
returns a list of Image
objects.
Oleg Sklyar, [email protected], 2006-2007
combine
, tile
, computeFeatures.moment
## simple example x = readImage(system.file('images', 'shapes.png', package='EBImage')) x = x[110:512,1:130] y = bwlabel(x) display(normalize(y), title='Objects') z = stackObjects(y, normalize(y)) display(z, title='Stacked objects') ## load images nuc = readImage(system.file('images', 'nuclei.tif', package='EBImage')) cel = readImage(system.file('images', 'cells.tif', package='EBImage')) img = rgbImage(green=cel, blue=nuc) display(img, title='Cells') ## segment nuclei nmask = thresh(nuc, 10, 10, 0.05) nmask = opening(nmask, makeBrush(5, shape='disc')) nmask = fillHull(bwlabel(nmask)) ## segment cells, using propagate and nuclei as 'seeds' ctmask = opening(cel>0.1, makeBrush(5, shape='disc')) cmask = propagate(cel, nmask, ctmask) ## using paintObjects to highlight objects res = paintObjects(cmask, img, col='#ff00ff') res = paintObjects(nmask, res, col='#ffff00') display(res, title='Segmented cells') ## stacked cells st = stackObjects(cmask, img) display(st, title='Stacked objects')
## simple example x = readImage(system.file('images', 'shapes.png', package='EBImage')) x = x[110:512,1:130] y = bwlabel(x) display(normalize(y), title='Objects') z = stackObjects(y, normalize(y)) display(z, title='Stacked objects') ## load images nuc = readImage(system.file('images', 'nuclei.tif', package='EBImage')) cel = readImage(system.file('images', 'cells.tif', package='EBImage')) img = rgbImage(green=cel, blue=nuc) display(img, title='Cells') ## segment nuclei nmask = thresh(nuc, 10, 10, 0.05) nmask = opening(nmask, makeBrush(5, shape='disc')) nmask = fillHull(bwlabel(nmask)) ## segment cells, using propagate and nuclei as 'seeds' ctmask = opening(cel>0.1, makeBrush(5, shape='disc')) cmask = propagate(cel, nmask, ctmask) ## using paintObjects to highlight objects res = paintObjects(cmask, img, col='#ff00ff') res = paintObjects(nmask, res, col='#ffff00') display(res, title='Segmented cells') ## stacked cells st = stackObjects(cmask, img) display(st, title='Stacked objects')
Thresholds an image using a moving rectangular window.
thresh(x, w=5, h=5, offset=0.01)
thresh(x, w=5, h=5, offset=0.01)
x |
An |
w , h
|
Half width and height of the moving rectangular window. |
offset |
Thresholding offset from the averaged value. |
This function returns the binary image resulting from the comparison
between an image and its filtered version with a rectangular window.
It is equivalent of doing
{
f = matrix(1, nc=2*w+1, nr=2*h+1);
f = f/sum(f);
x > (filter2(x, f, boundary="replicate") + offset)
}
but faster. The function filter2
provides hence more
flexibility than thresh
.
An Image
object or an array, containing the transformed version
of x
.
Oleg Sklyar, [email protected], 2005-2007
filter2
x = readImage(system.file('images', 'nuclei.tif', package='EBImage')) display(x) y = thresh(x, 10, 10, 0.05) display(y)
x = readImage(system.file('images', 'nuclei.tif', package='EBImage')) display(x) y = thresh(x, 10, 10, 0.05) display(y)
Given a sequence of frames, tile
generates a single image with frames tiled.
untile
is the inverse function and divides an image into a sequence of images.
tile(x, nx=10, lwd=1, fg.col="#E4AF2B", bg.col="gray") untile(x, nim, lwd=1)
tile(x, nx=10, lwd=1, fg.col="#E4AF2B", bg.col="gray") untile(x, nim, lwd=1)
x |
An |
nx |
The number of tiled images in a row. |
lwd |
The width of the grid lines between tiled images, can be 0. |
fg.col |
The color of the grid lines. |
bg.col |
The color of the background for extra tiles. |
nim |
A numeric vector of 2 elements for the number of images in both directions. |
After object segmentation, tile
is a useful addition to stackObjects
to have an overview of the segmented objects.
An Image
object or an array, containing the tiled/untiled version
of x
.
Oleg Sklyar, [email protected], 2006-2007
## make a set of blurred images img = readImage(system.file("images", "sample-color.png", package="EBImage"))[257:768,,] x = resize(img, 128, 128) xt = list() for (t in seq(0.1, 5, length.out=9)) xt=c(xt, list(gblur(x, s=t))) xt = combine(xt) display(xt, title='Blurred images') ## tile xt = tile(xt, 3) display(xt, title='Tiles') ## untile xu = untile(img, c(3, 3)) display(xu, title='Blocks')
## make a set of blurred images img = readImage(system.file("images", "sample-color.png", package="EBImage"))[257:768,,] x = resize(img, 128, 128) xt = list() for (t in seq(0.1, 5, length.out=9)) xt=c(xt, list(gblur(x, s=t))) xt = combine(xt) display(xt, title='Blurred images') ## tile xt = tile(xt, 3) display(xt, title='Tiles') ## untile xu = untile(img, c(3, 3)) display(xu, title='Blocks')
Transposes an image by swapping its spatial dimensions.
transpose(x)
transpose(x)
x |
an |
The transposition of an image is performed by swapping the X and Y indices of its array representation.
A transformed version of x
with its first two dimensions transposed.
The function is implemented using an efficient cash-oblivious algorithm which is typically faster than R's aperm
and t
functions.
Andrzej Oles, [email protected], 2012-2017
x = readImage(system.file("images", "sample-color.png", package="EBImage")) y = transpose(x) display(x, title='Original') display(y, title='Transposed') ## performing the transposition of an image twice should result in the original image z = transpose(y) identical(x, z)
x = readImage(system.file("images", "sample-color.png", package="EBImage")) y = transpose(x) display(x, title='Original') display(y, title='Transposed') ## performing the transposition of an image twice should result in the original image z = transpose(y) identical(x, z)
Watershed transformation and watershed based object detection.
watershed(x, tolerance=1, ext=1)
watershed(x, tolerance=1, ext=1)
x |
An |
tolerance |
The minimum height of the object in the units of image
intensity between its highest point (seed) and the point where it
contacts another object (checked for every contact pixel). If the
height is smaller than the tolerance, the object will be combined with
one of its neighbors, which is the highest. Tolerance should be chosen
according to the range of |
ext |
Radius of the neighborhood in pixels for the detection of neighboring objects. Higher value smoothes out small objects. |
The algorithm identifies and separates objects that stand out of the background (zero). It inverts the image and uses water to fill the resulting valleys (pixels with high intensity in the source image) until another object or background is met. The deepest valleys become indexed first, starting from 1.
The function bwlabel
is a simpler, faster alternative to
segment connected objects from binary images.
An Grayscale
Image
object or an array, containing the
labelled version of x
.
Oleg Sklyar, [email protected], 2007
x = readImage(system.file('images', 'shapes.png', package='EBImage')) x = x[110:512,1:130] display(x, title='Binary') y = distmap(x) display(normalize(y), title='Distance map') w = watershed(y) display(normalize(w), title='Watershed')
x = readImage(system.file('images', 'shapes.png', package='EBImage')) x = x[110:512,1:130] display(x, title='Binary') y = distmap(x) display(normalize(y), title='Distance map') w = watershed(y) display(normalize(w), title='Watershed')