Title: | A DownStream Chemo-Proteomics Analysis Pipeline |
---|---|
Description: | Doscheda focuses on quantitative chemoproteomics used to determine protein interaction profiles of small molecules from whole cell or tissue lysates using Mass Spectrometry data. The package provides a shiny application to run the pipeline, several visualisations and a downloadable report of an experiment. |
Authors: | Bruno Contrino, Piero Ricchiuto |
Maintainer: | Bruno Contrino <[email protected]> |
License: | GPL-3 |
Version: | 1.29.0 |
Built: | 2024-12-19 06:25:42 UTC |
Source: | https://github.com/bioc/Doscheda |
Description
## S4 method for signature 'ChemoProtSet' boxplot(x, ...)
## S4 method for signature 'ChemoProtSet' boxplot(x, ...)
x |
object of class 'ChemoProtSet' |
... |
other plotting options |
boxplot for objects of class ChemoProtSet
An S4 class to run the doscheda pipeline
input
A data.frame containing the input data
normData
A data.frame containin a processed and standardised version of the input data
finalData
A data.frame containing the final data produced by the pipline
parameters
A list containing all the parameters required to make the pipeline run successfully
datasets
A list containing other potentially useful datasets
Plot of the correlation between all the channels in the data.
corrPlot(x, ...) ## S4 method for signature 'ChemoProtSet' corrPlot(x, ...)
corrPlot(x, ...) ## S4 method for signature 'ChemoProtSet' corrPlot(x, ...)
x |
object of class 'ChemoProtSet' |
... |
corrplot options |
correlation plot for objects of class ChemoProtSet
ex <- processedExample ex <- runNormalisation(ex) ex <- fitModel(ex) corrPlot(ex)
ex <- processedExample ex <- runNormalisation(ex) ex <- fitModel(ex) corrPlot(ex)
Description
densityPlot(x, rankProteins = FALSE, ...) ## S4 method for signature 'ChemoProtSet' densityPlot(x, rankProteins = FALSE, ...)
densityPlot(x, rankProteins = FALSE, ...) ## S4 method for signature 'ChemoProtSet' densityPlot(x, rankProteins = FALSE, ...)
x |
object of class 'ChemoProtSet' |
rankProteins |
plot a the set of ranked proteins or plot the density of the channels |
... |
other plot options |
density plot for objects of class ChemoProtSet
ex <- processedExample ex <- runNormalisation(ex) ex <- fitModel(ex) densityPlot(ex)
ex <- processedExample ex <- runNormalisation(ex) ex <- fitModel(ex) densityPlot(ex)
The Doscheda package provides three categories of important functions: foo, bar and baz.
The foo functions ...
Run a version of the pipline with some extra features and a simple user experience. The application is documented in detail at here
doschedaApp()
doschedaApp()
Launches shiny application
A fabricated data set to run the Doscheda pipeline from peptide intensity.
data(doschedaData)
data(doschedaData)
An object of class data.frame
with 21140 rows and 15 columns.
data(doschedaData) head(doschedaData)
data(doschedaData) head(doschedaData)
Method to fit a model to an object of class 'ChemoProtSet'
fitModel(x) ## S4 method for signature 'ChemoProtSet' fitModel(x)
fitModel(x) ## S4 method for signature 'ChemoProtSet' fitModel(x)
x |
object of class 'ChemoProtSet' |
object of class ChemoProtSet
channelNames <- c('Abundance..F1..126..Control..REP_1', 'Abundance..F1..127..Sample..REP_1', 'Abundance..F1..128..Sample..REP_1', 'Abundance..F1..129..Sample..REP_1', 'Abundance..F1..130..Sample..REP_1', 'Abundance..F1..131..Sample..REP_1', 'Abundance..F2..126..Control..REP_2', 'Abundance..F2..127..Sample..REP_2', 'Abundance..F2..128..Sample..REP_2', 'Abundance..F2..129..Sample..REP_2', 'Abundance..F2..130..Sample..REP_2', 'Abundance..F2..131..Sample..REP_2') ex <- new('ChemoProtSet') ex<- setParameters(x = ex,chansVal = 6, repsVal = 2,dataTypeStr = 'intensity', modelTypeStr = 'linear',PDBool = FALSE,removePepsBool = FALSE, incPDofPDBool = FALSE,incGeneFileBool = FALSE,organismStr = 'H.sapiens', pearsonThrshVal = 0.4) ex<- setData(x = ex, dataFrame = doschedaData, dataChannels = channelNames, accessionChannel = 'Master.Protein.Accessions', sequenceChannel = 'Sequence', qualityChannel = 'Qvality.PEP' ) ex <- removePeptides(ex,removePeps = FALSE) ex <- runNormalisation(ex) ex <- fitModel(ex) ex ex <- processedExample ex <- runNormalisation(ex) ex <- fitModel(ex) ex
channelNames <- c('Abundance..F1..126..Control..REP_1', 'Abundance..F1..127..Sample..REP_1', 'Abundance..F1..128..Sample..REP_1', 'Abundance..F1..129..Sample..REP_1', 'Abundance..F1..130..Sample..REP_1', 'Abundance..F1..131..Sample..REP_1', 'Abundance..F2..126..Control..REP_2', 'Abundance..F2..127..Sample..REP_2', 'Abundance..F2..128..Sample..REP_2', 'Abundance..F2..129..Sample..REP_2', 'Abundance..F2..130..Sample..REP_2', 'Abundance..F2..131..Sample..REP_2') ex <- new('ChemoProtSet') ex<- setParameters(x = ex,chansVal = 6, repsVal = 2,dataTypeStr = 'intensity', modelTypeStr = 'linear',PDBool = FALSE,removePepsBool = FALSE, incPDofPDBool = FALSE,incGeneFileBool = FALSE,organismStr = 'H.sapiens', pearsonThrshVal = 0.4) ex<- setData(x = ex, dataFrame = doschedaData, dataChannels = channelNames, accessionChannel = 'Master.Protein.Accessions', sequenceChannel = 'Sequence', qualityChannel = 'Qvality.PEP' ) ex <- removePeptides(ex,removePeps = FALSE) ex <- runNormalisation(ex) ex <- fitModel(ex) ex ex <- processedExample ex <- runNormalisation(ex) ex <- fitModel(ex) ex
Accessor function for the datasets slot of a ChemoProtSet object.
getDatasets(x) ## S4 method for signature 'ChemoProtSet' getDatasets(x)
getDatasets(x) ## S4 method for signature 'ChemoProtSet' getDatasets(x)
x |
object of class ChemoProtSet |
object of class ChemoProtSet
ex <- new('ChemoProtSet') getDatasets(ex)
ex <- new('ChemoProtSet') getDatasets(ex)
Accessor function for the finalData slot of a ChemoProtSet object.
getFinal(x) ## S4 method for signature 'ChemoProtSet' getFinal(x)
getFinal(x) ## S4 method for signature 'ChemoProtSet' getFinal(x)
x |
object of class ChemoProtSet |
object of class ChemoProtSet
ex <- new('ChemoProtSet') getParameters(ex)
ex <- new('ChemoProtSet') getParameters(ex)
Accessor function for the Input slot of a ChemoProtSet object.
getInput(x) ## S4 method for signature 'ChemoProtSet' getInput(x)
getInput(x) ## S4 method for signature 'ChemoProtSet' getInput(x)
x |
object of class ChemoProtSet |
object of class ChemoProtSet
ex <- new('ChemoProtSet') getInput(ex)
ex <- new('ChemoProtSet') getInput(ex)
Accessor function for the normData slot of a ChemoProtSet object.
getNorm(x) ## S4 method for signature 'ChemoProtSet' getNorm(x)
getNorm(x) ## S4 method for signature 'ChemoProtSet' getNorm(x)
x |
object of class ChemoProtSet |
object of class ChemoProtSet
ex <- new('ChemoProtSet') getNorm(ex)
ex <- new('ChemoProtSet') getNorm(ex)
Accessor function for the parameters slot of a ChemoProtSet object.
getParameters(x) ## S4 method for signature 'ChemoProtSet' getParameters(x)
getParameters(x) ## S4 method for signature 'ChemoProtSet' getParameters(x)
x |
object of class ChemoProtSet |
object of class ChemoProtSet
ex <- new('ChemoProtSet') getParameters(ex)
ex <- new('ChemoProtSet') getParameters(ex)
Genereate a report that includes several plots and descriptions for an experiment that has been anaylsed using Doscheda
makeReport(x)
makeReport(x)
x |
Object of class 'ChemoProtSet' |
html report of processed 'ChemoProtSet' object
## Not run: ex<- new('ChemoProtSet') makeReport(ex) ## End(Not run)
## Not run: ex<- new('ChemoProtSet') makeReport(ex) ## End(Not run)
Shows the ranked means with a running median calculated with a window size of 10
meanSdPlot(x, ...) ## S4 method for signature 'ChemoProtSet' meanSdPlot(x, ...)
meanSdPlot(x, ...) ## S4 method for signature 'ChemoProtSet' meanSdPlot(x, ...)
x |
object of class 'ChemoProtSet' |
... |
other plot options |
meanSd plot for objects of class ChemoProtSet
ex <- processedExample ex <- runNormalisation(ex) ex <- fitModel(ex) meanSdPlot(ex)
ex <- processedExample ex <- runNormalisation(ex) ex <- fitModel(ex) meanSdPlot(ex)
Plot of Principal Component Analysis for the first two principal components of the experimental data.
pcaPlot(x, ...) ## S4 method for signature 'ChemoProtSet' pcaPlot(x, ...)
pcaPlot(x, ...) ## S4 method for signature 'ChemoProtSet' pcaPlot(x, ...)
x |
object of class 'ChemoProtSet' |
... |
other plot options |
PCA plot for objects of class ChemoProtSet
ex <- processedExample ex <- runNormalisation(ex) ex <- fitModel(ex) pcaPlot(ex) ex <- processedExample ex <- runNormalisation(ex) ex <- fitModel(ex) pcaPlot(ex)
ex <- processedExample ex <- runNormalisation(ex) ex <- fitModel(ex) pcaPlot(ex) ex <- processedExample ex <- runNormalisation(ex) ex <- fitModel(ex) pcaPlot(ex)
Description
## S3 method for class 'ChemoProtSet' plot(x, sigmoidCoef = "rb50", ...)
## S3 method for class 'ChemoProtSet' plot(x, sigmoidCoef = "rb50", ...)
x |
object of class 'ChemoProtSet' |
sigmoidCoef |
the sigmoidal coeffcient, one of ('difference', 'slope', 'rb50'). Obselete if modelType is 'linear' |
... |
other plotting options |
plot for objects of class ChemoProtSet
A processed fabricated data set to run the Doscheda pipeline from peptide intensity.
data(processedExample)
data(processedExample)
An object of class ChemoProtSet
of length 1.
data(processedExample) str(processedExample)
data(processedExample) str(processedExample)
Method to remove peptides from input data of an object of class 'ChemoProtSet'
removePeptides(x, changePearson = NA, removePeps = TRUE) ## S4 method for signature 'ChemoProtSet' removePeptides(x, changePearson = NA, removePeps = TRUE)
removePeptides(x, changePearson = NA, removePeps = TRUE) ## S4 method for signature 'ChemoProtSet' removePeptides(x, changePearson = NA, removePeps = TRUE)
x |
object of class 'ChemoProtSet' |
changePearson |
option to change the peasrson threshold cut-off parameter |
removePeps |
boolean value indicating whether peptide removal should take place |
object of class ChemoProtSet
## Not run: channelNames <- c('Abundance..F1..126..Control..REP_1', 'Abundance..F1..127..Sample..REP_1', 'Abundance..F1..128..Sample..REP_1', 'Abundance..F1..129..Sample..REP_1', 'Abundance..F1..130..Sample..REP_1', 'Abundance..F1..131..Sample..REP_1', 'Abundance..F2..126..Control..REP_2', 'Abundance..F2..127..Sample..REP_2', 'Abundance..F2..128..Sample..REP_2', 'Abundance..F2..129..Sample..REP_2', 'Abundance..F2..130..Sample..REP_2', 'Abundance..F2..131..Sample..REP_2') ex <- new('ChemoProtSet') ex<- setParameters(x = ex,chansVal = 6, repsVal = 2, dataTypeStr = 'intensity', modelTypeStr = 'linear', PDBool = FALSE,removePepsBool = FALSE,incPDofPDBool = FALSE, incGeneFileBool = FALSE,organismStr = 'H.sapiens', pearsonThrshVal = 0.4) ex<- setData(x = ex, dataFrame = doschedaData, dataChannels = channelNames, accessionChannel = 'Master.Protein.Accessions', sequenceChannel = 'Sequence', qualityChannel = 'Qvality.PEP' ) ex <- removePeptides(ex,removePeps = FALSE) ex ## End(Not run)
## Not run: channelNames <- c('Abundance..F1..126..Control..REP_1', 'Abundance..F1..127..Sample..REP_1', 'Abundance..F1..128..Sample..REP_1', 'Abundance..F1..129..Sample..REP_1', 'Abundance..F1..130..Sample..REP_1', 'Abundance..F1..131..Sample..REP_1', 'Abundance..F2..126..Control..REP_2', 'Abundance..F2..127..Sample..REP_2', 'Abundance..F2..128..Sample..REP_2', 'Abundance..F2..129..Sample..REP_2', 'Abundance..F2..130..Sample..REP_2', 'Abundance..F2..131..Sample..REP_2') ex <- new('ChemoProtSet') ex<- setParameters(x = ex,chansVal = 6, repsVal = 2, dataTypeStr = 'intensity', modelTypeStr = 'linear', PDBool = FALSE,removePepsBool = FALSE,incPDofPDBool = FALSE, incGeneFileBool = FALSE,organismStr = 'H.sapiens', pearsonThrshVal = 0.4) ex<- setData(x = ex, dataFrame = doschedaData, dataChannels = channelNames, accessionChannel = 'Master.Protein.Accessions', sequenceChannel = 'Sequence', qualityChannel = 'Qvality.PEP' ) ex <- removePeptides(ex,removePeps = FALSE) ex ## End(Not run)
Plot of Fold Change between replicate i and replicate j at at a given concentration
replicatePlot(x, conc, repIndex1, repIndex2, ...) ## S4 method for signature 'ChemoProtSet' replicatePlot(x, conc, repIndex1, repIndex2, ...)
replicatePlot(x, conc, repIndex1, repIndex2, ...) ## S4 method for signature 'ChemoProtSet' replicatePlot(x, conc, repIndex1, repIndex2, ...)
x |
object of class 'ChemoProtSet' |
conc |
concentration of channel |
repIndex1 |
index of replicate on x axis |
repIndex2 |
index of replicate on y axis |
... |
options |
Replicate plot for objects of class ChemoProtSet
ex <- processedExample ex <- runNormalisation(ex) ex <- fitModel(ex) replicatePlot(ex,0,1,2)
ex <- processedExample ex <- runNormalisation(ex) ex <- fitModel(ex) replicatePlot(ex,0,1,2)
A wrapper for the whole Doscheda pipeline, if users want to avoid using the separate steps.
runDoscheda(dataFrame, dataChannels, accessionChannel, chansVal, repsVal, dataTypeStr, modelTypeStr, PDBool = TRUE, removePepsBool = NA, incPDofPDBool = FALSE, PDofPDname = NA, incGeneFileBool = FALSE, organismStr = "h.sapiens", sigmoidConc = NA, pearsonThrshVal = 0.4, uniquePeps = NA, sequenceChannel = NA, qualityChannel = NA, pdofpdChannel = NA, incGeneID = FALSE, geneIDFile = NA, normType = "loess")
runDoscheda(dataFrame, dataChannels, accessionChannel, chansVal, repsVal, dataTypeStr, modelTypeStr, PDBool = TRUE, removePepsBool = NA, incPDofPDBool = FALSE, PDofPDname = NA, incGeneFileBool = FALSE, organismStr = "h.sapiens", sigmoidConc = NA, pearsonThrshVal = 0.4, uniquePeps = NA, sequenceChannel = NA, qualityChannel = NA, pdofpdChannel = NA, incGeneID = FALSE, geneIDFile = NA, normType = "loess")
dataFrame |
data.frame of the input data set |
dataChannels |
column names of dataFrame that correspond to data channels. These should be ordered in the format: rep1_concentration_0, ..., rep1_concentration_n, rep2_concentration_0, ... |
accessionChannel |
string that is the same as the column name for the protein accessions in dataFrame |
chansVal |
number of channels / concentrations in experiment |
repsVal |
number of replicates in experiment |
dataTypeStr |
string describing the data type of input data set. This can be 'LFC' for log fold-changes, 'FC' for fold-changes and 'intensity' for peptide intensities |
modelTypeStr |
string describing the type of model applied. This can be 'linear' for a linear model or 'sigmoid' for a sigmoidal model |
PDBool |
boolean value indicating if the input data is from Proteome Discoverer 2.1 or not |
removePepsBool |
boolean value indicating if peptide removal will take place. Only valid if input data is peptide intensities |
incPDofPDBool |
boolean value indicating if the input data contais a pull-down of pull-down colum |
PDofPDname |
string with the same name as colulmn containing pull-down of pull-down data. NA if this is not applicable |
incGeneFileBool |
boolean value indicating if the data requires a protein accession to gene ID conversion file |
organismStr |
string giving the name of organism. the options are: 'H.sapiens', 'D. melanogaster', 'C. elegans', 'R. norvegicus', 'M. musculus'. This is only needed if PDbool is FALSE |
sigmoidConc |
vector of numerical values for concentrations of channels in the case of a sigmoidal fit |
pearsonThrshVal |
numerial value between -1 and 1 which determines the cut-off used to discard peptides during peptide removal |
uniquePeps |
string that is the same as the column name for the number of unique peptides in dataFrame |
sequenceChannel |
string that is the same as the column name for the peptide sequences in dataFrame |
qualityChannel |
string that is the same as the column name for the peptide quality score in dataFrame |
pdofpdChannel |
string that is the same as the column name for the pull-down of pull-down data in dataFrame |
incGeneID |
boolean value indicating if a protein accession to gene ID file is supplied |
geneIDFile |
data.frame containing a protein accession to gene ID conversion file |
normType |
string indicating the type of normalisation that should take place ('loess', 'median', 'none') |
object of class ChemoProtSet
channelNames <- c('Abundance..F1..126..Control..REP_1', 'Abundance..F1..127..Sample..REP_1', 'Abundance..F1..128..Sample..REP_1', 'Abundance..F1..129..Sample..REP_1', 'Abundance..F1..130..Sample..REP_1', 'Abundance..F1..131..Sample..REP_1', 'Abundance..F2..126..Control..REP_2', 'Abundance..F2..127..Sample..REP_2', 'Abundance..F2..128..Sample..REP_2', 'Abundance..F2..129..Sample..REP_2', 'Abundance..F2..130..Sample..REP_2', 'Abundance..F2..131..Sample..REP_2') ex <- runDoscheda(dataFrame = doschedaData, dataChannels = channelNames, chansVal = 6, repsVal = 2,dataTypeStr = 'intensity', modelTypeStr = 'linear',PDBool = FALSE,removePepsBool = FALSE, accessionChannel = 'Master.Protein.Accessions', sequenceChannel = 'Sequence',qualityChannel = 'Qvality.PEP', incPDofPDBool = FALSE, incGeneFileBool = FALSE, organismStr = 'H.sapiens', pearsonThrshVal = 0.4)
channelNames <- c('Abundance..F1..126..Control..REP_1', 'Abundance..F1..127..Sample..REP_1', 'Abundance..F1..128..Sample..REP_1', 'Abundance..F1..129..Sample..REP_1', 'Abundance..F1..130..Sample..REP_1', 'Abundance..F1..131..Sample..REP_1', 'Abundance..F2..126..Control..REP_2', 'Abundance..F2..127..Sample..REP_2', 'Abundance..F2..128..Sample..REP_2', 'Abundance..F2..129..Sample..REP_2', 'Abundance..F2..130..Sample..REP_2', 'Abundance..F2..131..Sample..REP_2') ex <- runDoscheda(dataFrame = doschedaData, dataChannels = channelNames, chansVal = 6, repsVal = 2,dataTypeStr = 'intensity', modelTypeStr = 'linear',PDBool = FALSE,removePepsBool = FALSE, accessionChannel = 'Master.Protein.Accessions', sequenceChannel = 'Sequence',qualityChannel = 'Qvality.PEP', incPDofPDBool = FALSE, incGeneFileBool = FALSE, organismStr = 'H.sapiens', pearsonThrshVal = 0.4)
Method to remove peptides from input data of an object of class 'ChemoProtSet'
runNormalisation(x, normalise = "loess") ## S4 method for signature 'ChemoProtSet' runNormalisation(x, normalise = "loess")
runNormalisation(x, normalise = "loess") ## S4 method for signature 'ChemoProtSet' runNormalisation(x, normalise = "loess")
x |
object of class 'ChemoProtSet' |
normalise |
string indicating the type of normalisation that should take place ('loess', 'median', 'none') |
object of class ChemoProtSet
ex <- processedExample ex <- runNormalisation(ex) ex
ex <- processedExample ex <- runNormalisation(ex) ex
This method will subset the orginal data set into the required columns, standardising column names in the process.
setData(x, dataFrame, dataChannels, accessionChannel, uniquePeps = NA, sequenceChannel = NA, qualityChannel = NA, pdofpdChannel = NA, incGeneID = FALSE, geneIDFile = NA) ## S4 method for signature 'ChemoProtSet' setData(x, dataFrame, dataChannels, accessionChannel, uniquePeps = NA, sequenceChannel = NA, qualityChannel = NA, pdofpdChannel = NA, incGeneID = FALSE, geneIDFile = NA)
setData(x, dataFrame, dataChannels, accessionChannel, uniquePeps = NA, sequenceChannel = NA, qualityChannel = NA, pdofpdChannel = NA, incGeneID = FALSE, geneIDFile = NA) ## S4 method for signature 'ChemoProtSet' setData(x, dataFrame, dataChannels, accessionChannel, uniquePeps = NA, sequenceChannel = NA, qualityChannel = NA, pdofpdChannel = NA, incGeneID = FALSE, geneIDFile = NA)
x |
object of class 'ChemoProtSet' |
dataFrame |
data.frame of the input data set |
dataChannels |
column names of dataFrame that correspond to data channels. These should be ordered in the format: rep1_concentration_0, ..., rep1_concentration_n, rep2_concentration_0, ... |
accessionChannel |
string that is the same as the column name for the protein accessions in dataFrame |
uniquePeps |
string that is the same as the column name for the number of unique peptides in dataFrame |
sequenceChannel |
string that is the same as the column name for the peptide sequences in dataFrame |
qualityChannel |
string that is the same as the column name for the peptide quality score in dataFrame |
pdofpdChannel |
string that is the same as the column name for the pull-down of pull-down data in dataFrame |
incGeneID |
boolean value indicating if a protein accession to gene ID file is supplied |
geneIDFile |
data.frame containing a protein accession to gene ID conversion file |
object of class ChemoProtSet
channelNames <- c('Abundance..F1..126..Control..REP_1', 'Abundance..F1..127..Sample..REP_1', 'Abundance..F1..128..Sample..REP_1', 'Abundance..F1..129..Sample..REP_1', 'Abundance..F1..130..Sample..REP_1', 'Abundance..F1..131..Sample..REP_1', 'Abundance..F2..126..Control..REP_2', 'Abundance..F2..127..Sample..REP_2', 'Abundance..F2..128..Sample..REP_2', 'Abundance..F2..129..Sample..REP_2', 'Abundance..F2..130..Sample..REP_2', 'Abundance..F2..131..Sample..REP_2') ex <- new('ChemoProtSet') ex<- setParameters(x = ex,chansVal = 6, repsVal = 2,dataTypeStr = 'intensity', modelTypeStr = 'linear',PDBool = FALSE,removePepsBool = FALSE, incPDofPDBool = FALSE,incGeneFileBool = FALSE,organismStr = 'H.sapiens', pearsonThrshVal = 0.4) ex<- setData(x = ex, dataFrame = doschedaData, dataChannels = channelNames, accessionChannel = 'Master.Protein.Accessions', sequenceChannel = 'Sequence',qualityChannel = 'Qvality.PEP') ex
channelNames <- c('Abundance..F1..126..Control..REP_1', 'Abundance..F1..127..Sample..REP_1', 'Abundance..F1..128..Sample..REP_1', 'Abundance..F1..129..Sample..REP_1', 'Abundance..F1..130..Sample..REP_1', 'Abundance..F1..131..Sample..REP_1', 'Abundance..F2..126..Control..REP_2', 'Abundance..F2..127..Sample..REP_2', 'Abundance..F2..128..Sample..REP_2', 'Abundance..F2..129..Sample..REP_2', 'Abundance..F2..130..Sample..REP_2', 'Abundance..F2..131..Sample..REP_2') ex <- new('ChemoProtSet') ex<- setParameters(x = ex,chansVal = 6, repsVal = 2,dataTypeStr = 'intensity', modelTypeStr = 'linear',PDBool = FALSE,removePepsBool = FALSE, incPDofPDBool = FALSE,incGeneFileBool = FALSE,organismStr = 'H.sapiens', pearsonThrshVal = 0.4) ex<- setData(x = ex, dataFrame = doschedaData, dataChannels = channelNames, accessionChannel = 'Master.Protein.Accessions', sequenceChannel = 'Sequence',qualityChannel = 'Qvality.PEP') ex
Give the ChemoProtSet object the correct parameters for a given experiment in order to successfully run the pipelin
setParameters(x, chansVal, repsVal, dataTypeStr, modelTypeStr, PDBool = TRUE, removePepsBool = NA, incPDofPDBool = FALSE, PDofPDname = NA, incGeneFileBool = FALSE, organismStr = "h.sapiens", sigmoidConc = NA, pearsonThrshVal = 0.4) ## S4 method for signature 'ChemoProtSet' setParameters(x, chansVal, repsVal, dataTypeStr, modelTypeStr, PDBool = TRUE, removePepsBool = NA, incPDofPDBool = FALSE, PDofPDname = NA, incGeneFileBool = FALSE, organismStr = "h.sapiens", sigmoidConc = NA, pearsonThrshVal = 0.4)
setParameters(x, chansVal, repsVal, dataTypeStr, modelTypeStr, PDBool = TRUE, removePepsBool = NA, incPDofPDBool = FALSE, PDofPDname = NA, incGeneFileBool = FALSE, organismStr = "h.sapiens", sigmoidConc = NA, pearsonThrshVal = 0.4) ## S4 method for signature 'ChemoProtSet' setParameters(x, chansVal, repsVal, dataTypeStr, modelTypeStr, PDBool = TRUE, removePepsBool = NA, incPDofPDBool = FALSE, PDofPDname = NA, incGeneFileBool = FALSE, organismStr = "h.sapiens", sigmoidConc = NA, pearsonThrshVal = 0.4)
x |
object of class 'ChemoProtSet' |
chansVal |
number of channels / concentrations in experiment |
repsVal |
number of replicates in experiment |
dataTypeStr |
string describing the data type of input data set. This can be 'LFC' for log fold-changes, 'FC' for fold-changes and 'intensity' for peptide intensities |
modelTypeStr |
string describing the type of model applied. This can be 'linear' for a linear model or 'sigmoid' for a sigmoidal model |
PDBool |
boolean value indicating if the input data is from Proteome Discoverer 2.1 or not |
removePepsBool |
boolean value indicating if peptide removal will take place. Only valid if input data is peptide intensities |
incPDofPDBool |
boolean value indicating if the input data contais a pull-down of pull-down colum |
PDofPDname |
string with the same name as colulmn containing pull-down of pull-down data. NA if this is not applicable |
incGeneFileBool |
boolean value indicating if the data requires a protein accession to gene ID conversion file |
organismStr |
string giving the name of organism. the options are: 'H.sapiens', 'D. melanogaster', 'C. elegans', 'R. norvegicus', 'M. musculus'. This is only needed if PDbool is FALSE |
sigmoidConc |
vector of numerical values for concentrations of channels in the case of a sigmoidal fit |
pearsonThrshVal |
numerial value between -1 and 1 which determines the cut-off used to discard peptides during peptide removal |
object of class ChemoProtSet
channelNames <- c('Abundance..F1..126..Control..REP_1', 'Abundance..F1..127..Sample..REP_1', 'Abundance..F1..128..Sample..REP_1', 'Abundance..F1..129..Sample..REP_1', 'Abundance..F1..130..Sample..REP_1', 'Abundance..F1..131..Sample..REP_1', 'Abundance..F2..126..Control..REP_2', 'Abundance..F2..127..Sample..REP_2', 'Abundance..F2..128..Sample..REP_2', 'Abundance..F2..129..Sample..REP_2', 'Abundance..F2..130..Sample..REP_2', 'Abundance..F2..131..Sample..REP_2') ex <- new('ChemoProtSet') ex<- setParameters(x = ex,chansVal = 6, repsVal = 2,dataTypeStr = 'intensity', modelTypeStr = 'linear',PDBool = FALSE, removePepsBool = FALSE, incPDofPDBool = FALSE, incGeneFileBool = FALSE, organismStr = 'H.sapiens', pearsonThrshVal = 0.4) ex
channelNames <- c('Abundance..F1..126..Control..REP_1', 'Abundance..F1..127..Sample..REP_1', 'Abundance..F1..128..Sample..REP_1', 'Abundance..F1..129..Sample..REP_1', 'Abundance..F1..130..Sample..REP_1', 'Abundance..F1..131..Sample..REP_1', 'Abundance..F2..126..Control..REP_2', 'Abundance..F2..127..Sample..REP_2', 'Abundance..F2..128..Sample..REP_2', 'Abundance..F2..129..Sample..REP_2', 'Abundance..F2..130..Sample..REP_2', 'Abundance..F2..131..Sample..REP_2') ex <- new('ChemoProtSet') ex<- setParameters(x = ex,chansVal = 6, repsVal = 2,dataTypeStr = 'intensity', modelTypeStr = 'linear',PDBool = FALSE, removePepsBool = FALSE, incPDofPDBool = FALSE, incGeneFileBool = FALSE, organismStr = 'H.sapiens', pearsonThrshVal = 0.4) ex
Volcano plots designed to be run on objects of class 'ChemoProtSet' when a linear model has been applied.
volcanoPlot(x, coefficient = "slope", avExprs = 0.2, pVal = 0.05, ...) ## S4 method for signature 'ChemoProtSet' volcanoPlot(x, coefficient = "slope", avExprs = 0.2, pVal = 0.05, ...)
volcanoPlot(x, coefficient = "slope", avExprs = 0.2, pVal = 0.05, ...) ## S4 method for signature 'ChemoProtSet' volcanoPlot(x, coefficient = "slope", avExprs = 0.2, pVal = 0.05, ...)
x |
object of class 'ChemoProtSet' |
coefficient |
coefficient of linear model to be plotted ('slope','intercept','quadratic') |
avExprs |
average expression cutoff |
pVal |
p-value cut-off |
... |
other plotting options |
volcano plot for objects of class ChemoProtSet
ex <- processedExample ex <- runNormalisation(ex) ex <- fitModel(ex) volcanoPlot(ex)
ex <- processedExample ex <- runNormalisation(ex) ex <- fitModel(ex) volcanoPlot(ex)