Authors: Koki Tsuyuzaki [aut, cre]
Last modified: 2024-12-29 05:04:56.986594
Compiled: Sun Dec 29 05:08:42 2024
einsum
einsum
is an easy and intuitive way to write tensor
operations.
It was originally introduced by Numpy
1 package of Python but
similar tools have been implemented in other languages (e.g. R, Julia)
inspired by Numpy
. In this vignette, we will use CRAN
einsum
package first.
einsum
is named after Einstein summation2 introduced by Albert
Einstein, which is a notational convention that implies summation over a
set of indexed terms in a formula.
Here, we consider a simple example of einsum
; matrix
multiplication. If we naively implement the matrix multiplication,
the calculation would look like the following in a for loop.
A <- matrix(runif(3*4), nrow=3, ncol=4)
B <- matrix(runif(4*5), nrow=4, ncol=5)
C <- matrix(0, nrow=3, ncol=5)
I <- nrow(A)
J <- ncol(A)
K <- ncol(B)
for(i in 1:I){
for(j in 1:J){
for(k in 1:K){
C[i,k] = C[i,k] + A[i,j] * B[j,k]
}
}
}
Therefore, any programming language can implement this. However, when analyzing tensor data, such operations tend to be more complicated and increase the possibility of causing bugs because the order of tensors is larger or more tensors are handled simultaneously. In addition, several programming languages, especially R, are known to significantly slow down the speed of computation if the code is written in for loop.
Obviously, in the case of the R language, it should be executed using the built-in matrix multiplication function (%*%) prepared by the R, as shown below.
However, more complex operations than matrix multiplication are not always provided by programming languages as standard.
einsum
is a function that solves such a problem. To put
it simply, einsum
is a wrapper for the for loop above. Like
the Einstein summation, it omits many notations such as for, array size
(e.g. I, J, and K), brackets (e.g. {}, (), and []), and even addition
operator (+) and extracts the array subscripts (e.g. i, j, and k) to
concisely express the tensor operation as follows.
DelayedTensor
CRAN einsum is easy
to use because the syntax is almost the same as that of
Numpy
‘s einsum
, except that it prohibits the
implicit modes that do not use’->’. It is extremely fast because the
internal calculation is actually performed by C++. When the input tensor
is huge, however, it is not scalable because it assumes that the input
is R’s standard array.
Using einsum
of DelayedTensor,
we can augment the CRAN einsum
’s functionality; in DelayedTensor,
the input DelayedArray
objects are divided into multiple block tensors and the CRAN einsum is
incremently applied in the block processing.
A surprisingly large number of tensor operations can be handled
uniformly in einsum
.
In more detail, einsum
is capable of performing any
tensor operation that can be described by a combination of the following
three operations3.
Some typical operations are introduced below. Here we use the arrays and DelayedArray objects below.
suppressPackageStartupMessages(library("DelayedTensor"))
suppressPackageStartupMessages(library("DelayedArray"))
arrA <- array(runif(3), dim=c(3))
arrB <- array(runif(3*3), dim=c(3,3))
arrC <- array(runif(3*4), dim=c(3,4))
arrD <- array(runif(3*3*3), dim=c(3,3,3))
arrE <- array(runif(3*4*5), dim=c(3,4,5))
darrA <- DelayedArray(arrA)
darrB <- DelayedArray(arrB)
darrC <- DelayedArray(arrC)
darrD <- DelayedArray(arrD)
darrE <- DelayedArray(arrE)
If the same subscript is written on both sides of ->,
einsum
will simply output the object without any
calculation.
## [1] 0.4529230 0.8586206 0.6299152
## <3> DelayedArray object of type "double":
## [1] [2] [3]
## 0.4529230 0.8586206 0.6299152
## [,1] [,2] [,3] [,4]
## [1,] 0.9794744 0.8589007 0.9017261 0.76527305
## [2,] 0.8192287 0.2497141 0.4946696 0.17639607
## [3,] 0.8553363 0.1688619 0.9401853 0.04085968
## <3 x 4> DelayedArray object of type "double":
## [,1] [,2] [,3] [,4]
## [1,] 0.97947439 0.85890074 0.90172607 0.76527305
## [2,] 0.81922874 0.24971413 0.49466958 0.17639607
## [3,] 0.85533634 0.16886190 0.94018527 0.04085968
## , , 1
##
## [,1] [,2] [,3] [,4]
## [1,] 0.9193488 0.14455667 0.9460174 0.8599569
## [2,] 0.7699922 0.09091026 0.4206431 0.4688367
## [3,] 0.1431124 0.33179191 0.6953255 0.5703352
##
## , , 2
##
## [,1] [,2] [,3] [,4]
## [1,] 0.1504276 0.1894711 0.2345251 0.6854409
## [2,] 0.5840850 0.9116405 0.4985098 0.9563237
## [3,] 0.9166104 0.9678532 0.4948016 0.7421279
##
## , , 3
##
## [,1] [,2] [,3] [,4]
## [1,] 0.9309469 0.9010374 0.1530777 0.8974415
## [2,] 0.9865650 0.2057096 0.5675270 0.6497413
## [3,] 0.6170645 0.8316804 0.6494838 0.1291700
##
## , , 4
##
## [,1] [,2] [,3] [,4]
## [1,] 0.2803693 0.5198199 0.20179571 0.5159670
## [2,] 0.2104013 0.7411386 0.60981264 0.4762664
## [3,] 0.9084395 0.7412155 0.06564505 0.1368935
##
## , , 5
##
## [,1] [,2] [,3] [,4]
## [1,] 0.1780921 0.4008140 0.25361379 0.4569337
## [2,] 0.6088859 0.4392123 0.36498381 0.2682499
## [3,] 0.8124326 0.4340469 0.09410993 0.2123893
## <3 x 4 x 5> DelayedArray object of type "double":
## ,,1
## [,1] [,2] [,3] [,4]
## [1,] 0.91934885 0.14455667 0.94601743 0.85995688
## [2,] 0.76999223 0.09091026 0.42064309 0.46883673
## [3,] 0.14311241 0.33179191 0.69532548 0.57033520
##
## ,,2
## [,1] [,2] [,3] [,4]
## [1,] 0.1504276 0.1894711 0.2345251 0.6854409
## [2,] 0.5840850 0.9116405 0.4985098 0.9563237
## [3,] 0.9166104 0.9678532 0.4948016 0.7421279
##
## ,,3
## [,1] [,2] [,3] [,4]
## [1,] 0.9309469 0.9010374 0.1530777 0.8974415
## [2,] 0.9865650 0.2057096 0.5675270 0.6497413
## [3,] 0.6170645 0.8316804 0.6494838 0.1291700
##
## ,,4
## [,1] [,2] [,3] [,4]
## [1,] 0.28036931 0.51981992 0.20179571 0.51596699
## [2,] 0.21040127 0.74113862 0.60981264 0.47626635
## [3,] 0.90843948 0.74121554 0.06564505 0.13689348
##
## ,,5
## [,1] [,2] [,3] [,4]
## [1,] 0.17809212 0.40081405 0.25361379 0.45693371
## [2,] 0.60888590 0.43921225 0.36498381 0.26824992
## [3,] 0.81243264 0.43404694 0.09410993 0.21238928
We can also extract the diagonal elements as follows.
## [1] 0.5822145 0.4274023 0.9761355
## <3> HDF5Array object of type "double":
## [1] [2] [3]
## 0.5822145 0.4274023 0.9761355
## [1] 0.2208898 0.1406364 0.3590200
## <3> HDF5Array object of type "double":
## [1] [2] [3]
## 0.2208898 0.1406364 0.3590200
By using multiple arrays or DelayedArray objects as input and writing “,” on the right side of ->, multiplication will be performed.
Hadamard Product can also be implemented in einsum
,
multiplying by the product of each element.
## [1] 0.2051392 0.7372293 0.3967932
## <3> HDF5Array object of type "double":
## [1] [2] [3]
## 0.2051392 0.7372293 0.3967932
## [,1] [,2] [,3] [,4]
## [1,] 0.9593701 0.73771049 0.8131099 0.585642847
## [2,] 0.6711357 0.06235715 0.2446980 0.031115575
## [3,] 0.7316003 0.02851434 0.8839483 0.001669513
## <3 x 4> HDF5Matrix object of type "double":
## [,1] [,2] [,3] [,4]
## [1,] 0.959370087 0.737710486 0.813109903 0.585642847
## [2,] 0.671135721 0.062357146 0.244697997 0.031115575
## [3,] 0.731600254 0.028514341 0.883948345 0.001669513
## , , 1
##
## [,1] [,2] [,3] [,4]
## [1,] 0.84520231 0.020896630 0.8949490 0.7395258
## [2,] 0.59288803 0.008264676 0.1769406 0.2198079
## [3,] 0.02048116 0.110085870 0.4834775 0.3252822
##
## , , 2
##
## [,1] [,2] [,3] [,4]
## [1,] 0.02262845 0.03589931 0.05500204 0.4698292
## [2,] 0.34115528 0.83108849 0.24851197 0.9145550
## [3,] 0.84017471 0.93673990 0.24482862 0.5507538
##
## , , 3
##
## [,1] [,2] [,3] [,4]
## [1,] 0.8666621 0.81186835 0.02343277 0.8054012
## [2,] 0.9733104 0.04231643 0.32208690 0.4221637
## [3,] 0.3807686 0.69169230 0.42182925 0.0166849
##
## , , 4
##
## [,1] [,2] [,3] [,4]
## [1,] 0.07860695 0.2702127 0.040721510 0.26622194
## [2,] 0.04426869 0.5492864 0.371871450 0.22682964
## [3,] 0.82526229 0.5494005 0.004309273 0.01873982
##
## , , 5
##
## [,1] [,2] [,3] [,4]
## [1,] 0.0317168 0.1606519 0.064319954 0.20878841
## [2,] 0.3707420 0.1929074 0.133213183 0.07195802
## [3,] 0.6600468 0.1883967 0.008856678 0.04510921
## <3 x 4 x 5> HDF5Array object of type "double":
## ,,1
## [,1] [,2] [,3] [,4]
## [1,] 0.845202307 0.020896630 0.894948974 0.739525831
## [2,] 0.592888028 0.008264676 0.176940610 0.219807880
## [3,] 0.020481162 0.110085870 0.483477521 0.325282242
##
## ,,2
## [,1] [,2] [,3] [,4]
## [1,] 0.02262845 0.03589931 0.05500204 0.46982924
## [2,] 0.34115528 0.83108849 0.24851197 0.91455497
## [3,] 0.84017471 0.93673990 0.24482862 0.55075383
##
## ,,3
## [,1] [,2] [,3] [,4]
## [1,] 0.86666212 0.81186835 0.02343277 0.80540121
## [2,] 0.97331043 0.04231643 0.32208690 0.42216371
## [3,] 0.38076858 0.69169230 0.42182925 0.01668490
##
## ,,4
## [,1] [,2] [,3] [,4]
## [1,] 0.078606949 0.270212747 0.040721510 0.266221937
## [2,] 0.044268693 0.549286448 0.371871450 0.226829638
## [3,] 0.825262288 0.549400484 0.004309273 0.018739824
##
## ,,5
## [,1] [,2] [,3] [,4]
## [1,] 0.031716802 0.160651899 0.064319954 0.208788411
## [2,] 0.370742039 0.192907403 0.133213183 0.071958019
## [3,] 0.660046793 0.188396747 0.008856678 0.045109208
The outer product can also be implemented in einsum
, in
which the subscripts in the input array are all different, and all of
them are kept.
## [,1] [,2] [,3]
## [1,] 0.2051392 0.3888890 0.2853031
## [2,] 0.3888890 0.7372293 0.5408582
## [3,] 0.2853031 0.5408582 0.3967932
## <3 x 3> HDF5Matrix object of type "double":
## [,1] [,2] [,3]
## [1,] 0.2051392 0.3888890 0.2853031
## [2,] 0.3888890 0.7372293 0.5408582
## [3,] 0.2853031 0.5408582 0.3967932
## , , 1, 1, 1
##
## [,1] [,2] [,3] [,4]
## [1,] 0.9004787 0.7896294 0.8290008 0.7035529
## [2,] 0.7531570 0.2295744 0.4547739 0.1621695
## [3,] 0.7863525 0.1552430 0.8643582 0.0375643
##
## , , 2, 1, 1
##
## [,1] [,2] [,3] [,4]
## [1,] 0.7541877 0.6613469 0.6943221 0.58925430
## [2,] 0.6307998 0.1922779 0.3808917 0.13582361
## [3,] 0.6586023 0.1300223 0.7239354 0.03146164
##
## , , 3, 1, 1
##
## [,1] [,2] [,3] [,4]
## [1,] 0.1401749 0.12291936 0.12904819 0.109520072
## [2,] 0.1172418 0.03573719 0.07079336 0.025244467
## [3,] 0.1224092 0.02416623 0.13455218 0.005847527
##
## , , 1, 2, 1
##
## [,1] [,2] [,3] [,4]
## [1,] 0.1415896 0.12415983 0.13035051 0.110625321
## [2,] 0.1184250 0.03609784 0.07150779 0.025499228
## [3,] 0.1236446 0.02441011 0.13591005 0.005906539
##
## , , 2, 2, 1
##
## [,1] [,2] [,3] [,4]
## [1,] 0.08904427 0.07808289 0.08197615 0.069571173
## [2,] 0.07447630 0.02270158 0.04497054 0.016036213
## [3,] 0.07775885 0.01535128 0.08547249 0.003714564
##
## , , 3, 2, 1
##
## [,1] [,2] [,3] [,4]
## [1,] 0.3249817 0.28497632 0.2991854 0.25391141
## [2,] 0.2718135 0.08285313 0.1641274 0.05852679
## [3,] 0.2837937 0.05602701 0.3119459 0.01355691
##
## , , 1, 3, 1
##
## [,1] [,2] [,3] [,4]
## [1,] 0.9265998 0.8125351 0.8530486 0.72396165
## [2,] 0.7750047 0.2362339 0.4679660 0.16687376
## [3,] 0.8091631 0.1597463 0.8894317 0.03865397
##
## , , 2, 3, 1
##
## [,1] [,2] [,3] [,4]
## [1,] 0.4120091 0.36129066 0.3793048 0.32190682
## [2,] 0.3446029 0.10504052 0.2080793 0.07419979
## [3,] 0.3597913 0.07103059 0.3954824 0.01718734
##
## , , 3, 3, 1
##
## [,1] [,2] [,3] [,4]
## [1,] 0.6810535 0.5972156 0.6269931 0.53211385
## [2,] 0.5696306 0.1736326 0.3439564 0.12265268
## [3,] 0.5947371 0.1174140 0.6537348 0.02841078
##
## , , 1, 4, 1
##
## [,1] [,2] [,3] [,4]
## [1,] 0.8423057 0.7386176 0.7754455 0.65810183
## [2,] 0.7045014 0.2147434 0.4253945 0.15169302
## [3,] 0.7355524 0.1452140 0.8085188 0.03513756
##
## , , 2, 4, 1
##
## [,1] [,2] [,3] [,4]
## [1,] 0.4592136 0.40268422 0.4227623 0.35878812
## [2,] 0.3840845 0.11707516 0.2319193 0.08270096
## [3,] 0.4010131 0.07916866 0.4407934 0.01915652
##
## , , 3, 4, 1
##
## [,1] [,2] [,3] [,4]
## [1,] 0.5586287 0.48986133 0.5142861 0.43646216
## [2,] 0.4672350 0.14242076 0.2821275 0.10060489
## [3,] 0.4878284 0.09630789 0.5362208 0.02330371
##
## , , 1, 1, 2
##
## [,1] [,2] [,3] [,4]
## [1,] 0.1473399 0.12920234 0.13564445 0.115118160
## [2,] 0.1232346 0.03756389 0.07441194 0.026534831
## [3,] 0.1286662 0.02540148 0.14142978 0.006146422
##
## , , 2, 1, 2
##
## [,1] [,2] [,3] [,4]
## [1,] 0.5720963 0.5016710 0.5266847 0.44698451
## [2,] 0.4784992 0.1458543 0.2889291 0.10303030
## [3,] 0.4995891 0.0986297 0.5491481 0.02386553
##
## , , 3, 1, 2
##
## [,1] [,2] [,3] [,4]
## [1,] 0.8977965 0.7872774 0.8265315 0.70145728
## [2,] 0.7509136 0.2288906 0.4534193 0.16168648
## [3,] 0.7840102 0.1547806 0.8617836 0.03745241
##
## , , 1, 2, 2
##
## [,1] [,2] [,3] [,4]
## [1,] 0.1855821 0.16273690 0.17085106 0.14499715
## [2,] 0.1552202 0.04731362 0.09372561 0.03342196
## [3,] 0.1620615 0.03199446 0.17813797 0.00774173
##
## , , 2, 2, 2
##
## [,1] [,2] [,3] [,4]
## [1,] 0.8929286 0.7830087 0.8220500 0.69765395
## [2,] 0.7468421 0.2276495 0.4509609 0.16080981
## [3,] 0.7797593 0.1539414 0.8571110 0.03724934
##
## , , 3, 2, 2
##
## [,1] [,2] [,3] [,4]
## [1,] 0.9479875 0.8312899 0.8727385 0.74067201
## [2,] 0.7928932 0.2416866 0.4787676 0.17072551
## [3,] 0.8278401 0.1634335 0.9099614 0.03954617
##
## , , 1, 3, 2
##
## [,1] [,2] [,3] [,4]
## [1,] 0.2297114 0.20143382 0.2114774 0.179475775
## [2,] 0.1921297 0.05856424 0.1160125 0.041369315
## [3,] 0.2005979 0.03960236 0.2204971 0.009582622
##
## , , 2, 3, 2
##
## [,1] [,2] [,3] [,4]
## [1,] 0.4882775 0.4281704 0.4495192 0.38149608
## [2,] 0.4083935 0.1244849 0.2465976 0.08793516
## [3,] 0.4263935 0.0841793 0.4686915 0.02036895
##
## , , 3, 3, 2
##
## [,1] [,2] [,3] [,4]
## [1,] 0.4846455 0.42498546 0.4461755 0.37865833
## [2,] 0.4053557 0.12355895 0.2447633 0.08728106
## [3,] 0.4232218 0.08355314 0.4652052 0.02021743
##
## , , 1, 4, 2
##
## [,1] [,2] [,3] [,4]
## [1,] 0.6713718 0.5887257 0.6180799 0.5245495
## [2,] 0.5615329 0.1711643 0.3390668 0.1209091
## [3,] 0.5862825 0.1157449 0.6444414 0.0280069
##
## , , 2, 4, 2
##
## [,1] [,2] [,3] [,4]
## [1,] 0.9366945 0.8213871 0.8623420 0.73184874
## [2,] 0.7834478 0.2388075 0.4730642 0.16869174
## [3,] 0.8179784 0.1614866 0.8991214 0.03907508
##
## , , 3, 4, 2
##
## [,1] [,2] [,3] [,4]
## [1,] 0.7268953 0.6374142 0.6691961 0.56793049
## [2,] 0.6079725 0.1853198 0.3671081 0.13090845
## [3,] 0.6347690 0.1253171 0.6977377 0.03032311
##
## , , 1, 1, 3
##
## [,1] [,2] [,3] [,4]
## [1,] 0.9118386 0.7995910 0.8394591 0.71242857
## [2,] 0.7626584 0.2324706 0.4605111 0.16421538
## [3,] 0.7962727 0.1572015 0.8752626 0.03803819
##
## , , 2, 1, 3
##
## [,1] [,2] [,3] [,4]
## [1,] 0.9663151 0.8473614 0.8896113 0.75499158
## [2,] 0.8082224 0.2463592 0.4880237 0.17402619
## [3,] 0.8438449 0.1665932 0.9275538 0.04031073
##
## , , 3, 1, 3
##
## [,1] [,2] [,3] [,4]
## [1,] 0.6043989 0.5299971 0.5564231 0.47222282
## [2,] 0.5055170 0.1540897 0.3052430 0.10884775
## [3,] 0.5277977 0.1041987 0.5801549 0.02521306
##
## , , 1, 2, 3
##
## [,1] [,2] [,3] [,4]
## [1,] 0.8825430 0.7739017 0.8124889 0.6895396
## [2,] 0.7381557 0.2250018 0.4457158 0.1589395
## [3,] 0.7706900 0.1521509 0.8471421 0.0368161
##
## , , 2, 2, 3
##
## [,1] [,2] [,3] [,4]
## [1,] 0.2014873 0.17668410 0.1854937 0.157423990
## [2,] 0.1685232 0.05136859 0.1017583 0.036286360
## [3,] 0.1759509 0.03473651 0.1934051 0.008405227
##
## , , 3, 2, 3
##
## [,1] [,2] [,3] [,4]
## [1,] 0.8146097 0.7143309 0.7499479 0.6364626
## [2,] 0.6813365 0.2076823 0.4114070 0.1467052
## [3,] 0.7113665 0.1404391 0.7819337 0.0339822
##
## , , 1, 3, 3
##
## [,1] [,2] [,3] [,4]
## [1,] 0.1499356 0.13147851 0.13803411 0.117146205
## [2,] 0.1254056 0.03822565 0.07572286 0.027002297
## [3,] 0.1309329 0.02584898 0.14392136 0.006254704
##
## , , 2, 3, 3
##
## [,1] [,2] [,3] [,4]
## [1,] 0.5558782 0.48744937 0.5117539 0.43431312
## [2,] 0.4649344 0.14171951 0.2807383 0.10010954
## [3,] 0.4854265 0.09583369 0.5335805 0.02318897
##
## , , 3, 3, 3
##
## [,1] [,2] [,3] [,4]
## [1,] 0.6361528 0.5578421 0.5856565 0.4970325
## [2,] 0.5320758 0.1621853 0.3212799 0.1145664
## [3,] 0.5555271 0.1096731 0.6106351 0.0265377
##
## , , 1, 4, 3
##
## [,1] [,2] [,3] [,4]
## [1,] 0.8790209 0.7708132 0.8092464 0.68678778
## [2,] 0.7352098 0.2241038 0.4439370 0.15830515
## [3,] 0.7676143 0.1515437 0.8437613 0.03666917
##
## , , 2, 4, 3
##
## [,1] [,2] [,3] [,4]
## [1,] 0.6364049 0.5580633 0.5858886 0.49722948
## [2,] 0.5322867 0.1622496 0.3214072 0.11461181
## [3,] 0.5557473 0.1097165 0.6108772 0.02654822
##
## , , 3, 4, 3
##
## [,1] [,2] [,3] [,4]
## [1,] 0.1265188 0.11094425 0.11647600 0.098850355
## [2,] 0.1058198 0.03225559 0.06389649 0.022785089
## [3,] 0.1104838 0.02181190 0.12144377 0.005277847
##
## , , 1, 1, 4
##
## [,1] [,2] [,3] [,4]
## [1,] 0.2746146 0.24080941 0.2528163 0.21455908
## [2,] 0.2296866 0.07001218 0.1386902 0.04945605
## [3,] 0.2398101 0.04734369 0.2635991 0.01145580
##
## , , 2, 1, 4
##
## [,1] [,2] [,3] [,4]
## [1,] 0.2060827 0.18071380 0.1897243 0.161014419
## [2,] 0.1723668 0.05254017 0.1040791 0.037113957
## [3,] 0.1799638 0.03552876 0.1978162 0.008596928
##
## , , 3, 1, 4
##
## [,1] [,2] [,3] [,4]
## [1,] 0.8897932 0.7802593 0.8191636 0.69520425
## [2,] 0.7442197 0.2268502 0.4493774 0.16024516
## [3,] 0.7770213 0.1534008 0.8541014 0.03711855
##
## , , 1, 2, 4
##
## [,1] [,2] [,3] [,4]
## [1,] 0.5091503 0.44647371 0.4687352 0.39780418
## [2,] 0.4258514 0.12980638 0.2571391 0.09169419
## [3,] 0.4446209 0.08777778 0.4887270 0.02123968
##
## , , 2, 2, 4
##
## [,1] [,2] [,3] [,4]
## [1,] 0.7259263 0.6365645 0.6683040 0.56717341
## [2,] 0.6071621 0.1850728 0.3666187 0.13073394
## [3,] 0.6339228 0.1251501 0.6968076 0.03028269
##
## , , 3, 2, 4
##
## [,1] [,2] [,3] [,4]
## [1,] 0.7260016 0.6366306 0.6683734 0.56723228
## [2,] 0.6072251 0.1850920 0.3666568 0.13074751
## [3,] 0.6339886 0.1251631 0.6968799 0.03028583
##
## , , 1, 3, 4
##
## [,1] [,2] [,3] [,4]
## [1,] 0.1976537 0.17332249 0.1819645 0.154428822
## [2,] 0.1653168 0.05039124 0.0998222 0.035595972
## [3,] 0.1726032 0.03407561 0.1897254 0.008245308
##
## , , 2, 3, 4
##
## [,1] [,2] [,3] [,4]
## [1,] 0.5972959 0.5237685 0.5498840 0.46667318
## [2,] 0.4995760 0.1522788 0.3016558 0.10756855
## [3,] 0.5215949 0.1029741 0.5733369 0.02491675
##
## , , 3, 3, 4
##
## [,1] [,2] [,3] [,4]
## [1,] 0.06429765 0.05638259 0.05919386 0.050236391
## [2,] 0.05377831 0.01639250 0.03247261 0.011579530
## [3,] 0.05614860 0.01108495 0.06171851 0.002682236
##
## , , 1, 4, 4
##
## [,1] [,2] [,3] [,4]
## [1,] 0.5053765 0.44316443 0.4652609 0.39485564
## [2,] 0.4226950 0.12884425 0.2552332 0.09101455
## [3,] 0.4413253 0.08712717 0.4851046 0.02108225
##
## , , 2, 4, 4
##
## [,1] [,2] [,3] [,4]
## [1,] 0.4664907 0.40906552 0.4294618 0.36447381
## [2,] 0.3901711 0.11893044 0.2355945 0.08401151
## [3,] 0.4073679 0.08042324 0.4477786 0.01946009
##
## , , 3, 4, 4
##
## [,1] [,2] [,3] [,4]
## [1,] 0.1340837 0.11757791 0.12344042 0.104760890
## [2,] 0.1121471 0.03418424 0.06771704 0.024147472
## [3,] 0.1170900 0.02311609 0.12870523 0.005593424
##
## , , 1, 1, 5
##
## [,1] [,2] [,3] [,4]
## [1,] 0.1744367 0.15296345 0.16059030 0.136289098
## [2,] 0.1458982 0.04447212 0.08809675 0.031414750
## [3,] 0.1523287 0.03007297 0.16743958 0.007276787
##
## , , 2, 1, 5
##
## [,1] [,2] [,3] [,4]
## [1,] 0.5963881 0.5229726 0.5490483 0.46596397
## [2,] 0.4988168 0.1520474 0.3011973 0.10740508
## [3,] 0.5208022 0.1028176 0.5724656 0.02487888
##
## , , 3, 1, 5
##
## [,1] [,2] [,3] [,4]
## [1,] 0.7957570 0.6977990 0.7325917 0.62173281
## [2,] 0.6655682 0.2028759 0.4018857 0.14330993
## [3,] 0.6949032 0.1371889 0.7638372 0.03319574
##
## , , 1, 2, 5
##
## [,1] [,2] [,3] [,4]
## [1,] 0.3925871 0.34425948 0.3614245 0.30673219
## [2,] 0.3283584 0.10008893 0.1982705 0.07070202
## [3,] 0.3428308 0.06768222 0.3768395 0.01637713
##
## , , 2, 2, 5
##
## [,1] [,2] [,3] [,4]
## [1,] 0.4301972 0.37723973 0.3960491 0.33611730
## [2,] 0.3598153 0.10967751 0.2172649 0.07747532
## [3,] 0.3756742 0.07416622 0.4129409 0.01794607
##
## , , 3, 2, 5
##
## [,1] [,2] [,3] [,4]
## [1,] 0.4251379 0.37280324 0.3913914 0.33216443
## [2,] 0.3555837 0.10838765 0.2147098 0.07656418
## [3,] 0.3712561 0.07329399 0.4080845 0.01773502
##
## , , 1, 3, 5
##
## [,1] [,2] [,3] [,4]
## [1,] 0.2484082 0.21782907 0.2286902 0.19408380
## [2,] 0.2077677 0.06333095 0.1254550 0.04473648
## [3,] 0.2169251 0.04282571 0.2384439 0.01036258
##
## , , 2, 3, 5
##
## [,1] [,2] [,3] [,4]
## [1,] 0.3574923 0.31348487 0.3291154 0.27931228
## [2,] 0.2990052 0.09114161 0.1805464 0.06438171
## [3,] 0.3121839 0.06163186 0.3431524 0.01491312
##
## , , 3, 3, 5
##
## [,1] [,2] [,3] [,4]
## [1,] 0.09217826 0.08083109 0.08486137 0.072019790
## [2,] 0.07709756 0.02350058 0.04655332 0.016600621
## [3,] 0.08049564 0.01589158 0.08848077 0.003845301
##
## , , 1, 4, 5
##
## [,1] [,2] [,3] [,4]
## [1,] 0.4475549 0.39246070 0.4120290 0.34967905
## [2,] 0.3743332 0.11410280 0.2260312 0.08060131
## [3,] 0.3908320 0.07715869 0.4296023 0.01867016
##
## , , 2, 4, 5
##
## [,1] [,2] [,3] [,4]
## [1,] 0.2627439 0.23040005 0.2418879 0.20528443
## [2,] 0.2197580 0.06698579 0.1326951 0.04731823
## [3,] 0.2294439 0.04529719 0.2522046 0.01096061
##
## , , 3, 4, 5
##
## [,1] [,2] [,3] [,4]
## [1,] 0.2080299 0.18242131 0.1915170 0.162535795
## [2,] 0.1739954 0.05303660 0.1050625 0.037464636
## [3,] 0.1816643 0.03586446 0.1996853 0.008678158
## <3 x 4 x 3 x 4 x 5> HDF5Array object of type "double":
## ,,1,1,1
## [,1] [,2] [,3] [,4]
## [1,] 0.9004787 0.7896294 0.8290008 0.7035529
## [2,] 0.7531570 0.2295744 0.4547739 0.1621695
## [3,] 0.7863525 0.1552430 0.8643582 0.0375643
##
## ,,2,1,1
## [,1] [,2] [,3] [,4]
## [1,] 0.75418767 0.66134689 0.69432206 0.58925430
## [2,] 0.63079976 0.19227794 0.38089173 0.13582361
## [3,] 0.65860233 0.13002235 0.72393535 0.03146164
##
## ,,3,1,1
## [,1] [,2] [,3] [,4]
## [1,] 0.140174942 0.122919356 0.129048192 0.109520072
## [2,] 0.117241799 0.035737191 0.070793357 0.025244467
## [3,] 0.122409246 0.024166234 0.134552181 0.005847527
##
## ...
##
## ,,1,4,5
## [,1] [,2] [,3] [,4]
## [1,] 0.44755486 0.39246070 0.41202903 0.34967905
## [2,] 0.37433322 0.11410280 0.22603121 0.08060131
## [3,] 0.39083200 0.07715869 0.42960234 0.01867016
##
## ,,2,4,5
## [,1] [,2] [,3] [,4]
## [1,] 0.26274393 0.23040005 0.24188794 0.20528443
## [2,] 0.21975804 0.06698579 0.13269508 0.04731823
## [3,] 0.22944390 0.04529719 0.25220462 0.01096061
##
## ,,3,4,5
## [,1] [,2] [,3] [,4]
## [1,] 0.208029864 0.182421313 0.191516953 0.162535795
## [2,] 0.173995404 0.053036605 0.105062518 0.037464636
## [3,] 0.181664272 0.035864458 0.199685276 0.008678158
If there is a vanishing subscript on the left or right side of ->, the summation is done for that subscript.
## [1] 1.941459
## <1> HDF5Array object of type "double":
## [1]
## 1.941459
## [1] 7.250626
## <1> HDF5Array object of type "double":
## [1]
## 7.250626
## [1] 31.14362
## <1> HDF5Array object of type "double":
## [1]
## 31.14362
## [1] 3.505374 1.740009 2.005243
## <3> HDF5Array object of type "double":
## [1] [2] [3]
## 3.505374 1.740009 2.005243
## [1] 2.6540395 1.2774768 2.3365809 0.9825288
## <4> HDF5Array object of type "double":
## [1] [2] [3] [4]
## 2.6540395 1.2774768 2.3365809 0.9825288
## [1] 9.819654 10.829435 10.494529
## <3> HDF5Array object of type "double":
## [1] [2] [3]
## 9.819654 10.829435 10.494529
## [1] 9.016774 7.850898 6.249872 8.026074
## <4> HDF5Array object of type "double":
## [1] [2] [3] [4]
## 9.016774 7.850898 6.249872 8.026074
## [1] 6.360827 7.331817 7.519445 5.407764 4.523764
## <5> HDF5Array object of type "double":
## [1] [2] [3] [4] [5]
## 6.360827 7.331817 7.519445 5.407764 4.523764
These are the same as what the modeSum
function
does.
## [,1] [,2] [,3] [,4]
## [1,] 2.459185 2.155699 1.789030 3.415740
## [2,] 3.159929 2.388611 2.461476 2.819418
## [3,] 3.397659 3.306588 1.999366 1.790916
## <3 x 4> HDF5Matrix object of type "double":
## [,1] [,2] [,3] [,4]
## [1,] 2.459185 2.155699 1.789030 3.415740
## [2,] 3.159929 2.388611 2.461476 2.819418
## [3,] 3.397659 3.306588 1.999366 1.790916
## [,1] [,2] [,3] [,4] [,5]
## [1,] 1.8324535 1.651123 2.534576 1.3992101 1.5994107
## [2,] 0.5672588 2.068965 1.938427 2.0021741 1.2740732
## [3,] 2.0619860 1.227836 1.370088 0.8772534 0.7127075
## [4,] 1.8991288 2.383892 1.676353 1.1291268 0.9375729
## <4 x 5> HDF5Matrix object of type "double":
## [,1] [,2] [,3] [,4] [,5]
## [1,] 1.8324535 1.6511230 2.5345763 1.3992101 1.5994107
## [2,] 0.5672588 2.0689649 1.9384274 2.0021741 1.2740732
## [3,] 2.0619860 1.2278365 1.3700885 0.8772534 0.7127075
## [4,] 1.8991288 2.3838925 1.6763528 1.1291268 0.9375729
## [,1] [,2] [,3] [,4] [,5]
## [1,] 1.8324535 1.651123 2.534576 1.3992101 1.5994107
## [2,] 0.5672588 2.068965 1.938427 2.0021741 1.2740732
## [3,] 2.0619860 1.227836 1.370088 0.8772534 0.7127075
## [4,] 1.8991288 2.383892 1.676353 1.1291268 0.9375729
## <4 x 5> HDF5Matrix object of type "double":
## [,1] [,2] [,3] [,4] [,5]
## [1,] 1.8324535 1.6511230 2.5345763 1.3992101 1.5994107
## [2,] 0.5672588 2.0689649 1.9384274 2.0021741 1.2740732
## [3,] 2.0619860 1.2278365 1.3700885 0.8772534 0.7127075
## [4,] 1.8991288 2.3838925 1.6763528 1.1291268 0.9375729
By changing the order of the indices on the left and right side of ->, we can get a sorted array or DelayedArray.
## [,1] [,2] [,3]
## [1,] 0.5822145 0.3259860 0.5503991
## [2,] 0.9780661 0.4274023 0.5710079
## [3,] 0.4080170 0.9363854 0.9761355
## <3 x 3> DelayedArray object of type "double":
## [,1] [,2] [,3]
## [1,] 0.5822145 0.3259860 0.5503991
## [2,] 0.9780661 0.4274023 0.5710079
## [3,] 0.4080170 0.9363854 0.9761355
## , , 1
##
## [,1] [,2] [,3]
## [1,] 0.2208898 0.004905784 0.2415768
## [2,] 0.2912327 0.741624652 0.4527487
## [3,] 0.1814159 0.075266661 0.3506586
##
## , , 2
##
## [,1] [,2] [,3]
## [1,] 0.7733884 0.03754050 0.6646819
## [2,] 0.7322974 0.14063639 0.3219132
## [3,] 0.6168001 0.06141894 0.9328752
##
## , , 3
##
## [,1] [,2] [,3]
## [1,] 0.7830469 0.4851015 0.96750182
## [2,] 0.6820653 0.9806983 0.01393126
## [3,] 0.5102869 0.6756773 0.35901997
## <3 x 3 x 3> DelayedArray object of type "double":
## ,,1
## [,1] [,2] [,3]
## [1,] 0.220889841 0.004905784 0.241576827
## [2,] 0.291232662 0.741624652 0.452748729
## [3,] 0.181415920 0.075266661 0.350658586
##
## ,,2
## [,1] [,2] [,3]
## [1,] 0.77338843 0.03754050 0.66468187
## [2,] 0.73229738 0.14063639 0.32191321
## [3,] 0.61680006 0.06141894 0.93287519
##
## ,,3
## [,1] [,2] [,3]
## [1,] 0.78304687 0.48510149 0.96750182
## [2,] 0.68206532 0.98069831 0.01393126
## [3,] 0.51028692 0.67567726 0.35901997
Some examples of combining Multiplication and Summation are shown below.
Inner Product first calculate Hadamard Product and collapses it to 0D tensor (norm).
## [1] 1.339162
## <1> HDF5Array object of type "double":
## [1]
## 1.339162
## [1] 5.750872
## <1> HDF5Array object of type "double":
## [1]
## 5.750872
## [1] 21.08962
## <1> HDF5Array object of type "double":
## [1]
## 21.08962
The inner product is an operation that eliminates all subscripts, while the outer product is an operation that leaves all subscripts intact. In the middle of the two, the operation that eliminates some subscripts while keeping others by summing them is called contracted product.
## [,1] [,2] [,3] [,4] [,5]
## [1,] 1.4585715 1.2039584 2.2207411 0.9481379 1.0625056
## [2,] 0.1392472 1.8037277 1.5458771 1.3688997 0.5419560
## [3,] 1.5553671 0.5483426 0.7673489 0.4169022 0.2063898
## [4,] 1.2846160 1.9351380 1.2442498 0.5117914 0.3258556
## <4 x 5> HDF5Matrix object of type "double":
## [,1] [,2] [,3] [,4] [,5]
## [1,] 1.4585715 1.2039584 2.2207411 0.9481379 1.0625056
## [2,] 0.1392472 1.8037277 1.5458771 1.3688997 0.5419560
## [3,] 1.5553671 0.5483426 0.7673489 0.4169022 0.2063898
## [4,] 1.2846160 1.9351380 1.2442498 0.5117914 0.3258556
Matrix Multiplication is considered a contracted product.
## [,1] [,2] [,3]
## [1,] 3.095833 1.597941 1.861874
## [2,] 1.597941 1.009306 1.215172
## [3,] 1.861874 1.215172 1.645732
## <3 x 3> HDF5Matrix object of type "double":
## [,1] [,2] [,3]
## [1,] 3.095833 1.597941 1.861874
## [2,] 1.597941 1.009306 1.215172
## [3,] 1.861874 1.215172 1.645732
Some examples of combining Multiplication and Permutation are shown below.
## [,1] [,2] [,3]
## [1,] 0.9593701 0.67113572 0.731600254
## [2,] 0.7377105 0.06235715 0.028514341
## [3,] 0.8131099 0.24469800 0.883948345
## [4,] 0.5856428 0.03111557 0.001669513
## <4 x 3> HDF5Matrix object of type "double":
## [,1] [,2] [,3]
## [1,] 0.959370087 0.671135721 0.731600254
## [2,] 0.737710486 0.062357146 0.028514341
## [3,] 0.813109903 0.244697997 0.883948345
## [4,] 0.585642847 0.031115575 0.001669513
## , , 1
##
## [,1] [,2] [,3] [,4] [,5]
## [1,] 0.84520231 0.02262845 0.86666212 0.07860695 0.03171680
## [2,] 0.02089663 0.03589931 0.81186835 0.27021275 0.16065190
## [3,] 0.89494897 0.05500204 0.02343277 0.04072151 0.06431995
## [4,] 0.73952583 0.46982924 0.80540121 0.26622194 0.20878841
##
## , , 2
##
## [,1] [,2] [,3] [,4] [,5]
## [1,] 0.592888028 0.3411553 0.97331043 0.04426869 0.37074204
## [2,] 0.008264676 0.8310885 0.04231643 0.54928645 0.19290740
## [3,] 0.176940610 0.2485120 0.32208690 0.37187145 0.13321318
## [4,] 0.219807880 0.9145550 0.42216371 0.22682964 0.07195802
##
## , , 3
##
## [,1] [,2] [,3] [,4] [,5]
## [1,] 0.02048116 0.8401747 0.3807686 0.825262288 0.660046793
## [2,] 0.11008587 0.9367399 0.6916923 0.549400484 0.188396747
## [3,] 0.48347752 0.2448286 0.4218293 0.004309273 0.008856678
## [4,] 0.32528224 0.5507538 0.0166849 0.018739824 0.045109208
## <4 x 5 x 3> HDF5Array object of type "double":
## ,,1
## [,1] [,2] [,3] [,4] [,5]
## [1,] 0.84520231 0.02262845 0.86666212 0.07860695 0.03171680
## [2,] 0.02089663 0.03589931 0.81186835 0.27021275 0.16065190
## [3,] 0.89494897 0.05500204 0.02343277 0.04072151 0.06431995
## [4,] 0.73952583 0.46982924 0.80540121 0.26622194 0.20878841
##
## ,,2
## [,1] [,2] [,3] [,4] [,5]
## [1,] 0.592888028 0.341155281 0.973310428 0.044268693 0.370742039
## [2,] 0.008264676 0.831088492 0.042316427 0.549286448 0.192907403
## [3,] 0.176940610 0.248511973 0.322086902 0.371871450 0.133213183
## [4,] 0.219807880 0.914554965 0.422163715 0.226829638 0.071958019
##
## ,,3
## [,1] [,2] [,3] [,4] [,5]
## [1,] 0.020481162 0.840174712 0.380768577 0.825262288 0.660046793
## [2,] 0.110085870 0.936739901 0.691692302 0.549400484 0.188396747
## [3,] 0.483477521 0.244828617 0.421829251 0.004309273 0.008856678
## [4,] 0.325282242 0.550753834 0.016684901 0.018739824 0.045109208
Some examples of combining Summation and Permutation are shown below.
## [,1] [,2] [,3]
## [1,] 2.869880 1.750382 1.740565
## [2,] 1.259865 2.950559 3.121393
## [3,] 2.882503 2.409543 2.227399
## [4,] 1.517952 2.037619 1.852194
## [5,] 1.289454 1.681332 1.552979
## <5 x 3> HDF5Matrix object of type "double":
## [,1] [,2] [,3]
## [1,] 2.869880 1.750382 1.740565
## [2,] 1.259865 2.950559 3.121393
## [3,] 2.882503 2.409543 2.227399
## [4,] 1.517952 2.037619 1.852194
## [5,] 1.289454 1.681332 1.552979
Finally, we will show a more complex example, combining Multiplication, Summation, and Permutation.
## , , 1
##
## [,1] [,2] [,3] [,4] [,5]
## [1,] 0.367257956 0.009832532 0.37658269 0.03415635 0.01378161
## [2,] 0.006982108 0.011994894 0.27126636 0.09028512 0.05367798
## [3,] 0.329588379 0.020255942 0.00862973 0.01499676 0.02368751
## [4,] 0.196160047 0.124622728 0.21363356 0.07061566 0.05538136
##
## , , 2
##
## [,1] [,2] [,3] [,4] [,5]
## [1,] 0.3416522791 0.19659105 0.560871042 0.025509875 0.213640446
## [2,] 0.0004425001 0.04449742 0.002265669 0.029409416 0.010328480
## [3,] 0.0371757057 0.05221304 0.067671338 0.078131208 0.027988454
## [4,] 0.0058724912 0.02443368 0.011278725 0.006060088 0.001922464
##
## , , 3
##
## [,1] [,2] [,3] [,4] [,5]
## [1,] 0.0094386643 0.3871912628 1.754757e-01 3.803189e-01 3.041800e-01
## [2,] 0.0019773203 0.0168253635 1.242391e-02 9.868121e-03 3.383910e-03
## [3,] 0.2692063307 0.1363236360 2.348798e-01 2.399457e-03 4.931509e-03
## [4,] 0.0003420837 0.0005792013 1.754671e-05 1.970777e-05 4.743918e-05
## <4 x 5 x 3> HDF5Array object of type "double":
## ,,1
## [,1] [,2] [,3] [,4] [,5]
## [1,] 0.367257956 0.009832532 0.376582689 0.034156352 0.013781609
## [2,] 0.006982108 0.011994894 0.271266357 0.090285115 0.053677983
## [3,] 0.329588379 0.020255942 0.008629730 0.014996762 0.023687506
## [4,] 0.196160047 0.124622728 0.213633564 0.070615664 0.055381358
##
## ,,2
## [,1] [,2] [,3] [,4] [,5]
## [1,] 0.3416522791 0.1965910489 0.5608710416 0.0255098755 0.2136404459
## [2,] 0.0004425001 0.0444974155 0.0022656692 0.0294094161 0.0103284800
## [3,] 0.0371757057 0.0522130447 0.0676713383 0.0781312079 0.0279884538
## [4,] 0.0058724912 0.0244336826 0.0112787253 0.0060600878 0.0019224644
##
## ,,3
## [,1] [,2] [,3] [,4] [,5]
## [1,] 9.438664e-03 3.871913e-01 1.754757e-01 3.803189e-01 3.041800e-01
## [2,] 1.977320e-03 1.682536e-02 1.242391e-02 9.868121e-03 3.383910e-03
## [3,] 2.692063e-01 1.363236e-01 2.348798e-01 2.399457e-03 4.931509e-03
## [4,] 3.420837e-04 5.792013e-04 1.754671e-05 1.970777e-05 4.743918e-05
einsum
By using einsum
and other DelayedTensor
functions, it is possible to implement your original tensor calculation
functions. It is intended to be applied to Delayed Arrays, which can
scale to large-scale data since the calculation is performed internally
by block processing.
For example, kronecker
can be easily implmented by
eimsum
and other DelayedTensor
functions4 (the kronecker
function inside
DelayedTensor
has a more efficient implementation though).
darr1 <- DelayedArray(array(1:6, dim=c(2,3)))
darr2 <- DelayedArray(array(20:1, dim=c(4,5)))
mykronecker <- function(darr1, darr2){
stopifnot((length(dim(darr1)) == 2) && (length(dim(darr2)) == 2))
# Outer Product
tmpdarr <- DelayedTensor::einsum('ij,kl->ikjl', darr1, darr2)
# Reshape
DelayedTensor::unfold(tmpdarr, row_idx=c(2,1), col_idx=c(4,3))
}
identical(as.array(DelayedTensor::kronecker(darr1, darr2)),
as.array(mykronecker(darr1, darr2)))
## [1] TRUE
## R version 4.4.2 (2024-10-31)
## Platform: x86_64-pc-linux-gnu
## Running under: Ubuntu 24.04.1 LTS
##
## Matrix products: default
## BLAS: /usr/lib/x86_64-linux-gnu/openblas-pthread/libblas.so.3
## LAPACK: /usr/lib/x86_64-linux-gnu/openblas-pthread/libopenblasp-r0.3.26.so; LAPACK version 3.12.0
##
## locale:
## [1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C
## [3] LC_TIME=en_US.UTF-8 LC_COLLATE=C
## [5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8
## [7] LC_PAPER=en_US.UTF-8 LC_NAME=C
## [9] LC_ADDRESS=C LC_TELEPHONE=C
## [11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C
##
## time zone: Etc/UTC
## tzcode source: system (glibc)
##
## attached base packages:
## [1] stats4 stats graphics grDevices utils datasets methods
## [8] base
##
## other attached packages:
## [1] einsum_0.1.2 DelayedRandomArray_1.15.0
## [3] HDF5Array_1.35.2 rhdf5_2.51.1
## [5] DelayedArray_0.33.3 SparseArray_1.7.2
## [7] S4Arrays_1.7.1 abind_1.4-8
## [9] IRanges_2.41.2 S4Vectors_0.45.2
## [11] MatrixGenerics_1.19.0 matrixStats_1.4.1
## [13] BiocGenerics_0.53.3 generics_0.1.3
## [15] Matrix_1.7-1 DelayedTensor_1.13.0
## [17] BiocStyle_2.35.0
##
## loaded via a namespace (and not attached):
## [1] dqrng_0.4.1 sass_0.4.9 lattice_0.22-6
## [4] digest_0.6.37 evaluate_1.0.1 grid_4.4.2
## [7] fastmap_1.2.0 jsonlite_1.8.9 BiocManager_1.30.25
## [10] codetools_0.2-20 jquerylib_0.1.4 cli_3.6.3
## [13] rlang_1.1.4 crayon_1.5.3 XVector_0.47.1
## [16] cachem_1.1.0 yaml_2.3.10 tools_4.4.2
## [19] beachmat_2.23.5 parallel_4.4.2 BiocParallel_1.41.0
## [22] Rhdf5lib_1.29.0 rsvd_1.0.5 buildtools_1.0.0
## [25] R6_2.5.1 lifecycle_1.0.4 BiocSingular_1.23.0
## [28] irlba_2.3.5.1 ScaledMatrix_1.15.0 rTensor_1.4.8
## [31] bslib_0.8.0 Rcpp_1.0.13-1 xfun_0.49
## [34] sys_3.4.3 knitr_1.49 rhdf5filters_1.19.0
## [37] htmltools_0.5.8.1 rmarkdown_2.29 maketools_1.3.1
## [40] compiler_4.4.2
https://numpy.org/doc/stable/reference/generated/numpy.einsum.html↩︎
https://stackoverflow.com/ questions/56067643/speeding-up-kronecker-products-numpy↩︎