Title: | Deep characterization of cancer drugs |
---|---|
Description: | This package predicts a drug’s primary target(s) or secondary target(s) by integrating large-scale genetic and drug screens from the Cancer Dependency Map project run by the Broad Institute. It further investigates whether the drug specifically targets the wild-type or mutated target forms. To show how to use this package in practice, we provided sample data along with step-by-step example. |
Authors: | Sanju Sinha [aut], Trinh Nguyen [aut, cre] , Ying Hu [aut] |
Maintainer: | Trinh Nguyen <[email protected]> |
License: | GPL-2 |
Version: | 1.1.0 |
Built: | 2025-01-14 05:55:16 UTC |
Source: | https://github.com/bioc/DeepTarget |
Compute correlations between the viability of cell lines after CRISPR Knock Out of each gene and of the same cell lines after drug treatment.
computeCor(DrugName,DRS,GES)
computeCor(DrugName,DRS,GES)
DrugName |
Drug Name |
DRS |
Drug’s response scores |
GES |
Gene effect scores from Knock-out method such as CRISPR. |
a list of matrices for the interesting drugs, where each matrix containing gene names with the correlation values and P values associated with response scores from a given drug ID.
sanjusinha7, Trinh Nguyen
library(BiocParallel) data (OntargetM) set.seed (12345) All.Drugs <- OntargetM$DrugMetadata[,"broad_id_trimmed"] S.Drugs <- sample(All.Drugs, 5) KO.GES <- OntargetM$avana_CRISPR sec.prism <- OntargetM$secondary_prism sim.out <- bplapply(S.Drugs,function(x) computeCor(x,sec.prism,KO.GES)) names(sim.out ) <- S.Drugs head(sim.out)
library(BiocParallel) data (OntargetM) set.seed (12345) All.Drugs <- OntargetM$DrugMetadata[,"broad_id_trimmed"] S.Drugs <- sample(All.Drugs, 5) KO.GES <- OntargetM$avana_CRISPR sec.prism <- OntargetM$secondary_prism sim.out <- bplapply(S.Drugs,function(x) computeCor(x,sec.prism,KO.GES)) names(sim.out ) <- S.Drugs head(sim.out)
Retrieve gene expression, Cripr, mutation data from KO method, and drug matrix and then preperation the matrix compatible as input for Deeptarget.
Depmap2DeepTarget(FileN,version)
Depmap2DeepTarget(FileN,version)
FileN |
File Named used as input for DeepTarget: "CCLE_expression.csv", "CRISPRGeneEffect.csv" ,"OmicsSomaticMutations.csv", or "secondary-screen-dose-response-curve-parameters.csv" |
version |
Version of data |
a data frame for each required input data
Trinh Nguyen, Ying Hu, and sanju
library(readr) library(depmap) # expresion CCLE.exp <- Depmap2DeepTarget("CCLE_expression.csv","19Q4")
library(readr) library(depmap) # expresion CCLE.exp <- Depmap2DeepTarget("CCLE_expression.csv","19Q4")
Predicting whether the drug is likely bind to mutant or non-mutant form and also generates the plot for visualization.
DMB(DrugName,GOI,Pred,Mutant,DRS,GES,plot=TRUE)
DMB(DrugName,GOI,Pred,Mutant,DRS,GES,plot=TRUE)
DrugName |
Drug of interest |
GOI |
Gene of interest |
Pred |
Prediction object resulting from both PredTarget and PredMaxSim functions to predict whether it is a primary target or secondary target |
Mutant |
Mutant matrix |
DRS |
Drug response matrix |
GES |
Gene Effect Scores |
plot |
Default is TRUE for plotting |
The plot of viability after KO as the X-axis vs drug response in a mutant target as the Y-axis.
sanjusinha7, Trinh Nguyen
library(BiocParallel) data (OntargetM) S.Drugs <- c('K70301465','K09951645') KO.GES <- OntargetM$avana_CRISPR sec.prism <- OntargetM$secondary_prism d.mt <- OntargetM$mutations_mat sim.out <- bplapply(S.Drugs,function(x) computeCor(x,sec.prism,KO.GES)) names(sim.out) <- S.Drugs Meta.data <- OntargetM$DrugMetadata DrugTargetSim <- PredTarget(sim.out,Meta.data) Drug.Gene.max.sim <- PredMaxSim(sim.out,Meta.data) identical ( DrugTargetSim[,1],Drug.Gene.max.sim[,1]) Pred.d <-cbind (DrugTargetSim,Drug.Gene.max.sim) DOI = 'dabrafenib' GOI = 'BRAF' DMB (DOI,GOI,Pred.d,d.mt,sec.prism,KO.GES)
library(BiocParallel) data (OntargetM) S.Drugs <- c('K70301465','K09951645') KO.GES <- OntargetM$avana_CRISPR sec.prism <- OntargetM$secondary_prism d.mt <- OntargetM$mutations_mat sim.out <- bplapply(S.Drugs,function(x) computeCor(x,sec.prism,KO.GES)) names(sim.out) <- S.Drugs Meta.data <- OntargetM$DrugMetadata DrugTargetSim <- PredTarget(sim.out,Meta.data) Drug.Gene.max.sim <- PredMaxSim(sim.out,Meta.data) identical ( DrugTargetSim[,1],Drug.Gene.max.sim[,1]) Pred.d <-cbind (DrugTargetSim,Drug.Gene.max.sim) DOI = 'dabrafenib' GOI = 'BRAF' DMB (DOI,GOI,Pred.d,d.mt,sec.prism,KO.GES)
Computes interaction between the drug and KO expression in term of lower vs higher expression using linear model.
DoInteractExp(Predtargets,Exp,DRS, GES,CutOff=3)
DoInteractExp(Predtargets,Exp,DRS, GES,CutOff=3)
Predtargets |
a dataframe of drugs information and their most targeted gene with stats of correlation |
Exp |
Expression matrix |
DRS |
Drug scores matrix |
GES |
Gene effect scores matrix from KO method |
CutOff |
desired cut-off for low expression |
A list of drug names with their interaction values from two groups low and high expression based on the desired cut-off.
drug1 |
interaction with estimate and P vals from the linear model |
drug2 |
interaction with estimate and P vals from the linear model |
drugN |
interaction with estimate and P vals from the linear model |
sanjusinha7, Trinh Nguyen
library(BiocParallel) data (OntargetM) set.seed (12345) All.Drugs <- OntargetM$DrugMetadata[,"broad_id_trimmed"] S.Drugs <- sample(All.Drugs, 5) KO.GES <- OntargetM$avana_CRISPR sec.prism <- OntargetM$secondary_prism sim.out <- bplapply(S.Drugs,function(x) computeCor(x,sec.prism,KO.GES)) names(sim.out) <- S.Drugs Meta.data <- OntargetM$DrugMetadata DrugTargetSim <- PredTarget(sim.out,D.M = Meta.data) d.expr <- OntargetM$expression_20Q4 ExpInteract <- DoInteractExp (DrugTargetSim,d.expr,sec.prism,KO.GES,CutOff = 2)
library(BiocParallel) data (OntargetM) set.seed (12345) All.Drugs <- OntargetM$DrugMetadata[,"broad_id_trimmed"] S.Drugs <- sample(All.Drugs, 5) KO.GES <- OntargetM$avana_CRISPR sec.prism <- OntargetM$secondary_prism sim.out <- bplapply(S.Drugs,function(x) computeCor(x,sec.prism,KO.GES)) names(sim.out) <- S.Drugs Meta.data <- OntargetM$DrugMetadata DrugTargetSim <- PredTarget(sim.out,D.M = Meta.data) d.expr <- OntargetM$expression_20Q4 ExpInteract <- DoInteractExp (DrugTargetSim,d.expr,sec.prism,KO.GES,CutOff = 2)
Compute interaction between the drug and KO expression in term of mutant vs non-mutant
DoInteractMutant(Predtargets,Mutant,DRS,GES)
DoInteractMutant(Predtargets,Mutant,DRS,GES)
Predtargets |
a dataframe of drugs information and their most targeted gene with stats of correlation |
Mutant |
Mutant matrix |
DRS |
Drug scores matrix |
GES |
Gene effect scores matrix from KO method |
A list of drug names with their interaction values from two groups mutant and non-mutant
drug1 |
interaction with estimate and P vals from the linear model |
drug2 |
interaction with estimate and P vals from the linear model |
drugN |
interaction with estimate and P vals from the linear model |
sanjusinha7, Trinh Nguyen
library(BiocParallel) data (OntargetM) set.seed (12345) All.Drugs <- OntargetM$DrugMetadata[,"broad_id_trimmed"] S.Drugs <- sample(All.Drugs, 5) KO.GES <- OntargetM$avana_CRISPR sec.prism <- OntargetM$secondary_prism sim <- bplapply(S.Drugs,function(x) computeCor(x,sec.prism,KO.GES)) names(sim) <- S.Drugs Meta.data <- OntargetM$DrugMetadata DrugTargetSim <- PredTarget(sim,Meta.data) d.mt <- OntargetM$mutations_mat MutantInteract <- DoInteractMutant (DrugTargetSim,d.mt,sec.prism,KO.GES)
library(BiocParallel) data (OntargetM) set.seed (12345) All.Drugs <- OntargetM$DrugMetadata[,"broad_id_trimmed"] S.Drugs <- sample(All.Drugs, 5) KO.GES <- OntargetM$avana_CRISPR sec.prism <- OntargetM$secondary_prism sim <- bplapply(S.Drugs,function(x) computeCor(x,sec.prism,KO.GES)) names(sim) <- S.Drugs Meta.data <- OntargetM$DrugMetadata DrugTargetSim <- PredTarget(sim,Meta.data) d.mt <- OntargetM$mutations_mat MutantInteract <- DoInteractMutant (DrugTargetSim,d.mt,sec.prism,KO.GES)
Predicts a Primary Target at a pathway Level. It next finds the pathways that are most enriched in the genes with high DKS scores. It does this by performing a pathway enrichment test on the ranked gene list by DKS score. The output is a data frame of pathway-level probabilities for each drug to be the primary of mechanism of action.
DoPWY(Sim.GES.DRS,D.M)
DoPWY(Sim.GES.DRS,D.M)
Sim.GES.DRS |
The list of result from "GetSim" function. |
D.M |
meta data from drug |
a list of drugs, where each of them is data frame containing the pathway level probability to be a primary of mechanism of action.
drug1 |
a dataframe contain the pathway level probability to be a primary MOA |
drug2 |
a dataframe contain the pathway level probability to be a primary MOA |
drugN |
a dataframe contain the pathway level probability to be a primary MOA |
sanjusinha7, Trinh Nguyen
library(BiocParallel) data (OntargetM) set.seed (12345) All.Drugs <- OntargetM$DrugMetadata[,"broad_id_trimmed"] S.Drugs <- sample(All.Drugs, 5) KO.GES <- OntargetM$avana_CRISPR sec.prism <- OntargetM$secondary_prism sim <- bplapply(S.Drugs,function(x) computeCor(x,sec.prism,KO.GES)) names(sim) <- S.Drugs Meta.data <- OntargetM$DrugMetadata Pwy.Enr <- DoPWY(sim,Meta.data)
library(BiocParallel) data (OntargetM) set.seed (12345) All.Drugs <- OntargetM$DrugMetadata[,"broad_id_trimmed"] S.Drugs <- sample(All.Drugs, 5) KO.GES <- OntargetM$avana_CRISPR sec.prism <- OntargetM$secondary_prism sim <- bplapply(S.Drugs,function(x) computeCor(x,sec.prism,KO.GES)) names(sim) <- S.Drugs Meta.data <- OntargetM$DrugMetadata Pwy.Enr <- DoPWY(sim,Meta.data)
Predicting whether the drug is likely response to primary or secondary targets and also generates the plot for visualization.
DTR(DN,GN,Pred,Exp,DRS,GES,CutOff= 3,plot = TRUE)
DTR(DN,GN,Pred,Exp,DRS,GES,CutOff= 3,plot = TRUE)
DN |
Drug of interest |
GN |
Gene of interest |
Pred |
Prediction object, an output result from prediction whether it is a primary target or secondary target |
Exp |
Expression matrix |
DRS |
Drug response matrix |
GES |
Gene Effect Scores |
plot |
whether users want to plot, default is true |
CutOff |
cutoff value for gene expression of gene of interest high or low |
vialbility after KO vs drug response of gene of interest low vs high cut-off values set by users
sanjusinha7, Trinh Nguyen
library(BiocParallel) data (OntargetM) set.seed (12345) S.Drugs <- c('K70301465','K09951645') KO.GES <- OntargetM$avana_CRISPR sec.prism <- OntargetM$secondary_prism d.expr <- OntargetM$expression_20Q4 sim.out <- bplapply(S.Drugs,function(x) computeCor(x,sec.prism,KO.GES)) names(sim.out) <- S.Drugs Meta.data <- OntargetM$DrugMetadata DrugTargetSim <- PredTarget(sim.out,Meta.data) Drug.Gene.max.sim <- PredMaxSim(sim.out,Meta.data) identical ( DrugTargetSim[,1],Drug.Gene.max.sim[,1] ) Pred.d <-cbind (DrugTargetSim,Drug.Gene.max.sim ) DOI = 'ibrutinib' GOI ='BTK' DTR(DOI,GOI,Pred.d,d.expr,sec.prism,KO.GES,CutOff= 2)
library(BiocParallel) data (OntargetM) set.seed (12345) S.Drugs <- c('K70301465','K09951645') KO.GES <- OntargetM$avana_CRISPR sec.prism <- OntargetM$secondary_prism d.expr <- OntargetM$expression_20Q4 sim.out <- bplapply(S.Drugs,function(x) computeCor(x,sec.prism,KO.GES)) names(sim.out) <- S.Drugs Meta.data <- OntargetM$DrugMetadata DrugTargetSim <- PredTarget(sim.out,Meta.data) Drug.Gene.max.sim <- PredMaxSim(sim.out,Meta.data) identical ( DrugTargetSim[,1],Drug.Gene.max.sim[,1] ) Pred.d <-cbind (DrugTargetSim,Drug.Gene.max.sim ) DOI = 'ibrutinib' GOI ='BTK' DTR(DOI,GOI,Pred.d,d.expr,sec.prism,KO.GES,CutOff= 2)
An object containing Viability matrix after CRISPR-KO; Viability after Drug Treatment; Drug metadata from Broad, mutation matrix, and expression matrix with common cell-lines and common drugs. This is a subset of the total data due to memory constraints, full data can be downloaded from depmap.org/portal.
data("OntargetM")
data("OntargetM")
A list of one dataframe and 4 matrices
DrugMetadata
a dataframe containing 11 unique drugs as rownames with their associated information: broad_id_trimmed as ID of the drug, name, target, drug_category, and moa as columns
secondary_prism
a viability scores matrix (after Drug Treatment) with 16 drugs as row names across 392 unique celllines as column names
avana_CRISPR
a Gene effect scores (after CRISPR-KO) matrix for 487 genes as row names across 392 unique celllines as column names
mutations_mat
Mutation binary matrix for 476 genes as row names across 392 unique cell lines as column names; 0 is WT; 1 is mutated
expression_20Q4
Expression matrix for 550 genes as row names across 392 unique celllines as column names
For a full list data used in the paper, please use the link below to download data
DrugMetadata: Please download full data from this link https://depmap.org/repurposing/#:~:text=Corsello_supplemental_tables.xlsx
Secondary prism: please download full data from this link https://depmap.org/portal/download/all/?releasename=PRISM+Repurposing+19Q4&filename=secondary-screen-dose-response-curve-parameters.csv
avana_CRISPR: please download full data from this link https://depmap.org/portal/download/all/?releasename=DepMap+Public+22Q4&filename=CRISPRGeneEffect.csv
mutations_mat: Please download full data from this link https://depmap.org/portal/download/all/?releasename=DepMap+Public+22Q4&filename=OmicsSomaticMutations.csv
expression_20Q4: Please download full data of file named "CCLE_expression.csv" from this link https://depmap.org/portal/download/all/
data(OntargetM)
data(OntargetM)
Plot the correlation of a predicted target
plotCor(DN,GN,Pred,DRS,GES,plot=TRUE)
plotCor(DN,GN,Pred,DRS,GES,plot=TRUE)
DN |
Drug Name |
GN |
Gene Name |
Pred |
Output from prediction object |
DRS |
Drug response score |
GES |
Gene Effect scores |
plot |
default is plot=TRUE |
Correlation plot
sanjusinha7, Trinh Nguyen
library(BiocParallel) data (OntargetM) set.seed (12345) S.Drugs <- c('K70301465','K09951645') KO.GES <- OntargetM$avana_CRISPR sec.prism <- OntargetM$secondary_prism d.expr <- OntargetM$expression_20Q4 sim.out <- bplapply(S.Drugs,function(x) computeCor(x,sec.prism,KO.GES)) names(sim.out) <- S.Drugs Meta.data <- OntargetM$DrugMetadata DrugTargetSim <- PredTarget(sim.out,Meta.data) Drug.Gene.max.sim <- PredMaxSim(sim.out,Meta.data) identical ( DrugTargetSim[,1],Drug.Gene.max.sim[,1] ) Pred.d <-cbind (DrugTargetSim,Drug.Gene.max.sim ) DOI = 'ibrutinib' GOI ='BTK' plotCor (DOI,GOI,Pred.d,sec.prism,KO.GES)
library(BiocParallel) data (OntargetM) set.seed (12345) S.Drugs <- c('K70301465','K09951645') KO.GES <- OntargetM$avana_CRISPR sec.prism <- OntargetM$secondary_prism d.expr <- OntargetM$expression_20Q4 sim.out <- bplapply(S.Drugs,function(x) computeCor(x,sec.prism,KO.GES)) names(sim.out) <- S.Drugs Meta.data <- OntargetM$DrugMetadata DrugTargetSim <- PredTarget(sim.out,Meta.data) Drug.Gene.max.sim <- PredMaxSim(sim.out,Meta.data) identical ( DrugTargetSim[,1],Drug.Gene.max.sim[,1] ) Pred.d <-cbind (DrugTargetSim,Drug.Gene.max.sim ) DOI = 'ibrutinib' GOI ='BTK' plotCor (DOI,GOI,Pred.d,sec.prism,KO.GES)
Plot the similarty between corelation values and P val;
plotSim(dx,dy,clr=NULL, plot=TRUE)
plotSim(dx,dy,clr=NULL, plot=TRUE)
dx |
a matrix of p vals |
dy |
a matrix of correlation vals |
clr |
Desired range of color |
plot |
default plot =TRUE |
a plot of similarity
Ying Hu,Trinh Nguyen
library(BiocParallel) data (OntargetM) set.seed (12345) All.Drugs <- OntargetM$DrugMetadata[,"broad_id_trimmed"] Sample.Drugs <- sample(All.Drugs, 5) KO.GES <- OntargetM$avana_CRISPR sec.prism <- OntargetM$secondary_prism sim.out <- bplapply(Sample.Drugs,function(x) computeCor(x,sec.prism,KO.GES)) names(sim.out) <- Sample.Drugs P.Values=vapply(sim.out, function(x) x[,1],FUN.VALUE=numeric(nrow(sim.out[[1]]))) estimate.cor.values=vapply(sim.out, function(x) x[,2],FUN.VALUE=numeric(nrow(sim.out[[1]]))) par(mar=c(4,4,5,2), xpd=TRUE, mfrow=c(3,3)); plotSim(dx=P.Values,dy=estimate.cor.values);
library(BiocParallel) data (OntargetM) set.seed (12345) All.Drugs <- OntargetM$DrugMetadata[,"broad_id_trimmed"] Sample.Drugs <- sample(All.Drugs, 5) KO.GES <- OntargetM$avana_CRISPR sec.prism <- OntargetM$secondary_prism sim.out <- bplapply(Sample.Drugs,function(x) computeCor(x,sec.prism,KO.GES)) names(sim.out) <- Sample.Drugs P.Values=vapply(sim.out, function(x) x[,1],FUN.VALUE=numeric(nrow(sim.out[[1]]))) estimate.cor.values=vapply(sim.out, function(x) x[,2],FUN.VALUE=numeric(nrow(sim.out[[1]]))) par(mar=c(4,4,5,2), xpd=TRUE, mfrow=c(3,3)); plotSim(dx=P.Values,dy=estimate.cor.values);
Predicts the gene that has the most similarity associated with drug’s response scores from the set of all genes.
PredMaxSim (Sim.GES.DRS,D.M)
PredMaxSim (Sim.GES.DRS,D.M)
Sim.GES.DRS |
similarity between Drug’s response scores and Gene effect scores from Knock-out method such as CRISPR |
D.M |
Drug Metadata |
a dataframe of drug(s) information with the most predicted gene(s) with the max corelation value(s), P value(s), and FDR value(s).
sanjusinha7, Trinh Nguyen
library(BiocParallel) data (OntargetM) set.seed (12345) All.Drugs <- OntargetM$DrugMetadata[,"broad_id_trimmed"] S.Drugs <- sample(All.Drugs, 5) KO.GES <- OntargetM$avana_CRISPR sec.prism <- OntargetM$secondary_prism sim.out <- bplapply(S.Drugs,function(x) computeCor(x,sec.prism,KO.GES)) names(sim.out) <- S.Drugs Meta.data <- OntargetM$DrugMetadata Drug.Gene.max.sim <- PredMaxSim(sim.out,Meta.data)
library(BiocParallel) data (OntargetM) set.seed (12345) All.Drugs <- OntargetM$DrugMetadata[,"broad_id_trimmed"] S.Drugs <- sample(All.Drugs, 5) KO.GES <- OntargetM$avana_CRISPR sec.prism <- OntargetM$secondary_prism sim.out <- bplapply(S.Drugs,function(x) computeCor(x,sec.prism,KO.GES)) names(sim.out) <- S.Drugs Meta.data <- OntargetM$DrugMetadata Drug.Gene.max.sim <- PredMaxSim(sim.out,Meta.data)
Predicts the gene that has the most similarity to a drug’s response scores. This is done based on selecting a gene that has the most correlation across the known targeted genes by their drug.
PredTarget(Sim.GES.DRS,D.M)
PredTarget(Sim.GES.DRS,D.M)
Sim.GES.DRS |
similarity between Drug’s response scores and Gene effect scores from Knock-out method such as CRISPR. |
D.M |
Drug Metadata |
a dataframe of drug(s) information with the most known predicted gene(s) with the max corelation value(s), P value(s), and FDR value(s).
sanjusinha7, Trinh Nguyen
library(BiocParallel) data(OntargetM) set.seed (12345) All.Drugs <- OntargetM$DrugMetadata[,"broad_id_trimmed"] S.Drugs <- sample(All.Drugs, 5) KO.GES <- OntargetM$avana_CRISPR sec.prism <- OntargetM$secondary_prism sim.out <- bplapply(S.Drugs,function(x) computeCor(x,sec.prism,KO.GES)) names(sim.out) <- S.Drugs Meta.data <- OntargetM$DrugMetadata DrugTargetSim <- PredTarget(sim.out,Meta.data)
library(BiocParallel) data(OntargetM) set.seed (12345) All.Drugs <- OntargetM$DrugMetadata[,"broad_id_trimmed"] S.Drugs <- sample(All.Drugs, 5) KO.GES <- OntargetM$avana_CRISPR sec.prism <- OntargetM$secondary_prism sim.out <- bplapply(S.Drugs,function(x) computeCor(x,sec.prism,KO.GES)) names(sim.out) <- S.Drugs Meta.data <- OntargetM$DrugMetadata DrugTargetSim <- PredTarget(sim.out,Meta.data)