Package 'DTA'

Title: Dynamic Transcriptome Analysis
Description: Dynamic Transcriptome Analysis (DTA) can monitor the cellular response to perturbations with higher sensitivity and temporal resolution than standard transcriptomics. The package implements the underlying kinetic modeling approach capable of the precise determination of synthesis- and decay rates from individual microarray or RNAseq measurements.
Authors: Bjoern Schwalb, Benedikt Zacher, Sebastian Duemcke, Achim Tresch
Maintainer: Bjoern Schwalb <[email protected]>
License: Artistic-2.0
Version: 2.53.0
Built: 2024-11-19 03:27:17 UTC
Source: https://github.com/bioc/DTA

Help Index


Dynamic Transcriptome Analysis

Description

The DTA package implements all methods of the quantitative kinetic modeling approach belonging to DTA (Dynamic Transcriptome Analysis) to estimate mRNA synthesis and decay rates from individual time point measurements.

Details

Package: DTA
Type: Package
Version: 2.0.1
Date: 2012-03-22
License: Artistic-2.0
LazyLoad: yes

Author(s)

Bjoern Schwalb <[email protected]>

References

C. Miller, B. Schwalb, K. Maier, D. Schulz, S. Duemcke, B. Zacher, A. Mayer, J. Sydow, L. Marcinowski, L. Doelken, D. E. Martin, A. Tresch, and P. Cramer. Dynamic transcriptome analysis measures rates of mRNA synthesis and decay in yeast. Mol Syst Biol, 7:458, 2011. M. Sun, B. Schwalb, D. Schulz, N. Pirkl, L. Lariviere, K. Maier, A. Tresch, P. Cramer. Mutual feedback between mRNA synthesis and degradation buffers transcript levels in a eukaryote. Under review. B. Schwalb, B. Zacher, S. Duemcke, D. Martin, P. Cramer, A. Tresch. Measurement of genome-wide RNA synthesis and decay rates with Dynamic Transcriptome Analysis (DTA/cDTA). Bioinformatics.

Examples

## see vignette or supplemental material of the given references.

The amount of thymines in the cDNA of each transcript of Drosophila Melanogaster.

Description

The amount of thymines in the cDNA of each transcript of all Drosophila Melanogaster Ensembl transcript IDs (Flybase transcript number), to assess the uridine-dependent labeling bias and eventually correct for it.

Usage

Dm.tnumber

Format

Vector gives the number of thymines in the cDNA (uridine residues in RNA) of each Ensembl transcript ID.

Source

E. Birney, D. Andrews, M. Caccamo, Y. Chen, L. Clarke, G. Coates, T. Cox, F. Cunningham, V. Curwen, T. Cutts, T. Down, R. Durbin, X. M. Fernandez-Suarez, P. Flicek, S. Graef, M. Hammond, J. Herrero, K. Howe, V. Iyer, K. Jekosch, A. Kaehaeri, A. Kasprzyk, D. Keefe, F. Kokocinski, E. Kulesha, D. London, I. Longden, C. Melsopp, P. Meidl, B. Overduin, A. Parker, G. Proctor, A. Prlic, M. Rae, D. Rios, S. Redmond, M. Schuster, I. Sealy, S. Searle, J. Severin, G. Slater, D. Smedley, J. Smith, A. Stabenau, J. Stalker, S. Trevanion, A. Ureta- Vidal, J. Vogel, S. White, C.Woodwark, and T. J. Hubbard. Ensembl 2006. Nucleic acids research, 34(Database issue), January 2006.


Mus Musculus and Homo Sapiens DTA experiment from Doelken et al.

Description

R object contains all relevant *.RData files needed for the DTA.estimate function. For example, see vignette.

Usage

Doelken2008

Format

R object contains the following *.RData files: Hs.phenomat Hs.datamat Hs.reliable Hs.enst2ensg Hs.tnumber Mm.phenomat Mm.datamat Mm.reliable Mm.enst2ensg Mm.tnumber

Source

Doelken, L., Ruzsics, Z., Raedle, B., Friedel, C. C., Zimmer, R., Mages, J., Hoffmann, R., Dickinson, P., Forster, T., Ghazal, P., & Koszinowski, U. H. (2008). High-resolution gene expression profiling for simultaneous kinetic parameter analysis of RNA synthesis and decay. RNA 14(9), 1959-1972. E. Birney, D. Andrews, M. Caccamo, Y. Chen, L. Clarke, G. Coates, T. Cox, F. Cunningham, V. Curwen, T. Cutts, T. Down, R. Durbin, X. M. Fernandez-Suarez, P. Flicek, S. Graef, M. Hammond, J. Herrero, K. Howe, V. Iyer, K. Jekosch, A. Kaehaeri, A. Kasprzyk, D. Keefe, F. Kokocinski, E. Kulesha, D. London, I. Longden, C. Melsopp, P. Meidl, B. Overduin, A. Parker, G. Proctor, A. Prlic, M. Rae, D. Rios, S. Redmond, M. Schuster, I. Sealy, S. Searle, J. Severin, G. Slater, D. Smedley, J. Smith, A. Stabenau, J. Stalker, S. Trevanion, A. Ureta- Vidal, J. Vogel, S. White, C.Woodwark, and T. J. Hubbard. Ensembl 2006. Nucleic acids research, 34(Database issue), January 2006.


Estimation of synthesis and decay rates upon perturbation

Description

DTA.dynamic.estimate uses an experiment, given by a phenotype matrix, data matrix and the number of uridines for each gene to estimate synthesis and decay rate of the genes.

Usage

DTA.dynamic.estimate(phenomat = NULL,datamat = NULL,tnumber = NULL,ccl = NULL,mRNAs = NULL,reliable = NULL,mediancenter = TRUE,usefractions = "LandT",LtoTratio = NULL,ratiomethod = "tls",largest = 5,weighted = TRUE,relevant = NULL,check = TRUE,error = TRUE,samplesize = 1000,confidence.range = c(0.025,0.975),bicor = TRUE,condition = "",upper = 700,lower = 500,save.plots = FALSE,resolution = 1,folder = NULL,fileformat = "jpeg",totaloverwt = 1,sr.vs.dr.folds.lims = c(-5,5),te.vs.to.folds.lims = c(-6,6),robust = FALSE,clusters = "sr",ranktime = NULL,upperquant = 0.8,lowerquant = 0.6,notinR = FALSE,RStudio = FALSE,simulation = FALSE,sim.object = NULL)

Arguments

phenomat

A phenotype matrix, containing the design of the experiment as produced by DTA.phenomat. Columns are name, fraction (U=unlabebeld, L=labeled, T=total), time and nr (=replicate number). Rows represent individual experiments.

datamat

A matrix, containing the measurements from U, L and T, according to the design given in phenomat. Matrix should only contain the rows of phenomat as columns.

tnumber

Integer vector, containing the numbers of uridines. Elements should have the rownames of datamat.

ccl

The cell cycle length of the cells.

mRNAs

Estimated number of mRNAs in a cell (optional).

reliable

Vector of 'reliable' genes, which are used for parameter estimation.

mediancenter

Should the quotient Labeled/Total resp. Unlabeled/Total be rescaled to a common median over it's replicates before building the genewise median.

usefractions

From which fractions should the decay rate be calculated: "LandT", "UandT" or "both".

LtoTratio

Coefficient to rescale Labeled/Total. Is estimated from the data, if not specified. See ratiomethod.

ratiomethod

Choose the regression method to be used, possible methods are: "tls", "bias" and "lm". For details, see supplemental material of Sun et al. (see references).

largest

Percentage of largest residues from the first regression not to be used in the second regression step. For details, see supplemental material of Sun et al. (see references).

weighted

Should the regression be weighted with 1/(Total^2 + median(Total))?

relevant

Choose the arrays to be used for halflives calculation, vector due to nr (=replicate number) in phenomat.

check

If check = TRUE, control messages and plots will be generated.

error

If TRUE, the measurement error is assessed by means of an error model and resampling to gain confidence regions.

samplesize

Error model samplesize for resampling.

confidence.range

Confidence region for error model as quantiles. Interval should be between 0 and 1.

bicor

Should the labeling bias be corrected?

condition

String, to be added to the plotnames.

upper

Upper bound for labeling bias estimation. For details, see supplemental material of Sun et al. (see references).

lower

Lower bound for labeling bias estimation. For details, see supplemental material of Sun et al. (see references).

save.plots

If save.plots = TRUE, control plots will be saved.

resolution

Resolution scaling factor for plotting.

folder

Path to the folder, where to save the plots.

fileformat

Fileformat for plots to be saved. See plotit function (LSD package).

totaloverwt

Will be available in the very near future for comparative DTA data.

sr.vs.dr.folds.lims

Limits of the folds plot (dr vs sr).

te.vs.to.folds.lims

Limits of the folds plot (LT vs LE).

robust

If robust = TRUE, LE resp. LT is chosen instead of sr resp. dr.

clusters

should the dr vs sr folds be plotted with clusters, choose 'sr', 'dr' for cluster selection or 'none' to omit it

ranktime

at which time should the rankgain be calculated, default is the last column

upperquant

upper quantile for cluster selection

lowerquant

lower quantile for cluster selection

notinR

Should plots be not plotted in R.

RStudio

For RStudio users. Suppresses the opening of a new device, as RStudio allows only one.

simulation

True, if data was generated by DTA.generate.

sim.object

Simulation object created by DTA.generate.

Value

DTA.dynamic.estimate returns a list, where each entry contains the estimation results for all replicates of one timecourse timepoint. Each result contains the following entries

triples

Mapping of each fraction and experiment to its corresponding column in the data matrix.

plabel

The labeling efficiency. For details, see the vignette.

LtoTratio

Estimated ratio of labeled to total fraction.

UtoTratio

Estimated ratio of unlabeled to total fraction.

LtoUratio

Estimated ratio of labeled to unlabeled fraction.

correcteddatamat

Labeling bias corrected data matrix.

drmat

Decay rates for each replicate. The last column gives the median decay rates.

dr

Median decay rates. The last column of drmat.

dr.confidence

Confidence regions of decay rates.

hlmat

Half-lives for each replicate. The last column gives the median half-lifes.

hl

Median half-lives. The last column of hlmat.

hl.confidence

Confidence regions of half-lives.

TEmat

Total expression for each replicate. The last column gives the median total expression values.

TE

Median total expression values. The last column of TEmat.

TE.confidence

Confidence regions of total expression values.

LEmat

Labeled expression for each replicate. The last column gives the median labeled expression values.

LE

Median labeled expression values. The last column of LEmat.

LE.confidence

Confidence regions of labeled expression values.

UEmat

Unlabeled expression for each replicate. The last column gives the median unlabeled expression values. (Only if unlabeled values exist in the experiment)

UE

Median unlabeled expression values. The last column of UEmat. (Only if unlabeled values exist in the experiment)

UE.confidence

Confidence regions of unlabeled expression values.

srmat

Synthesis rates for each replicate. The last column gives the median synthesis rates.

sr

Median synthesis rates. The last column of srmat.

sr.confidence

Confidence regions of synthesis rates.

LtoTmat

Labeled to total ratio for each replicate. The last column gives the median labeled to total ratios.

LtoT

Median labeled to total ratios. The last column of LtoTmat.

LtoT.confidence

Confidence regions of labeled to total ratios.

UtoTmat

Unlabeled to total ratio for each replicate. The last column gives the median unlabeled to total ratios.

UtoT

Median unlabeled to total ratios. The last column of UtoTmat.

UtoT.confidence

Confidence regions of unlabeled to total ratios.

Rsrmat

Rescaled synthesis rates for each replicate, if parameter mRNAs is specified. The last column gives the median synthesis rates.

Rsr

Rescaled median synthesis rates. The last column of Rsrmat.

globaldrmat

Decay rate for each replicate. Reciprocally weighted by the total expression. Last element contains (weighted) median decay rate.

globaldr

(Weighted) median decay rate.

Author(s)

Bjoern Schwalb [email protected]

References

C. Miller, B. Schwalb, K. Maier, D. Schulz, S. Duemcke, B. Zacher, A. Mayer, J. Sydow, L. Marcinowski, L. Doelken, D. E. Martin, A. Tresch, and P. Cramer. Dynamic transcriptome analysis measures rates of mRNA synthesis and decay in yeast. Mol Syst Biol, 7:458, 2011. M. Sun, B. Schwalb, D. Schulz, N. Pirkl, L. Lariviere, K. Maier, A. Tresch, P. Cramer. Mutual feedback between mRNA synthesis and degradation buffers transcript levels in a eukaryote. Under review. B. Schwalb, B. Zacher, S. Duemcke, D. Martin, P. Cramer, A. Tresch. Measurement of genome-wide RNA synthesis and decay rates with Dynamic Transcriptome Analysis (DTA/cDTA). Bioinformatics.

See Also

heatscatter, plotit, tls

Examples

dataPath = system.file("data", package="DTA")
load(file.path(dataPath, "Miller2011dynamic.RData"))

### for control plots set 'check = TRUE' ###

res = DTA.dynamic.estimate(Sc.phenomat.dynamic,Sc.datamat.dynamic,Sc.tnumber,ccl = 150,mRNAs = 60000,reliable = Sc.reliable.dynamic,LtoTratio = rep(0.1,7),check = FALSE)

Simulation of DTA experiments upon perturbation

Description

DTA.dynamic.generate produces the phenotype matrix and the matrix containing the simulated data according to the given parameters.

Usage

DTA.dynamic.generate(duration = 60,lab.duration = 6,tnumber = NULL,plabel = NULL,nrgenes = 5000,mediantime.halflives = 12,mediantime.synthesisrates = 18,n = 1,ccl = NULL,check = TRUE,plots = FALSE,save.plots = FALSE,folder = NULL,condition = "",addformat = NULL,sdnoise = 0.075,nobias = FALSE,unspecific.LtoU = 0,unspec.LtoU.weighted = FALSE,unspecific.UtoL = 0,unspec.UtoL.weighted = FALSE,mu.values.mat = NULL,mu.breaks.mat = NULL,lambda.values.mat = NULL,lambda.breaks.mat = NULL,truehalflives = NULL,truesynthesisrates = NULL,genenames = NULL)

Arguments

duration

duration of the whole time course (min)

lab.duration

labeling duration for single experiments (min)

tnumber

Integer vector containing the number of uridine residues for each gene. If NULL, tnumber is sampled from an F-distribution within the function.

plabel

The labeling efficiency. If NULL, plabel is set to 0.005 within the function. For details, see supplemental material of Sun et al. (see references).

nrgenes

The number of genes the simulated experiment will have (will be cropped if it exceeds the length of tnumber).

mediantime.halflives

the median of the half life distribution

mediantime.synthesisrates

the median of the synthesis rates distribution (counts/cell/cellcycle)

n

the number of cells N(0)

ccl

The cell cycle length (in minutes).

check

if check=TRUE, control messages will be generated

plots

if plots = TRUE, control plots will be plotted

save.plots

if save.plots = TRUE, control plots will be saved

folder

folder, where to save the plots

condition

to be added to the plotnames

addformat

additional fileformat for plots to be saved

sdnoise

The amount of measurement noise (proportional to expression strength).

nobias

Should a labeling bias be added?

unspecific.LtoU

Proportion of labeled RNAs that unspecifically end up in the unlabeled fraction.

unspec.LtoU.weighted

Should unspecific proportion of labeled to unlabeled depend linearly on the length of the RNA?

unspecific.UtoL

Proportion of unlabeled RNAs that unspecifically end up in the labeled fraction.

unspec.UtoL.weighted

Should unspecific proportion of unlabeled to labeled depend linearly on the length of the RNA?

mu.values.mat

if the data should be generated using given synthesis rates, this matrix must contain the respective values for each gene

mu.breaks.mat

timepoints of synthesis rate changes, this matrix must contain the respective values for each gene, only needed when mu.values.mat is given (one column less than mu.values.mat)

lambda.values.mat

if the data should be generated using given decay rates, this matrix must contain the respective values for each gene

lambda.breaks.mat

timepoints of decay rate changes, this matrix must contain the respective values for each gene, only needed when lambda.values.mat is given (one column less than lambda.values.mat)

truehalflives

If the data should be generated using a given half-life distribution, this vector must contain the respective values for each gene.

truesynthesisrates

If the data should be generated using a given synthesis rates distribution, this vector must contain the respective values for each gene

genenames

An optional list of gene names.

Value

DTA.dynamic.generate returns a list, containing the following entries

phenomat

A matrix, containing the design of the experiment as produced by DTA.phenomat.

datamat

A matrix, containing the simulated measurements from U, L and T, according to the design given in phenomat.

tnumber

Integer vector containing the number of uridine residues for each gene.

ccl

The cell cycle length (in minutes).

truemus

A vector, containing the true synthesis rates.

truemusaveraged

A vector, containing the true synthesis rates, averaged over the labeling period.

truelambdas

A vector, containing the true decay rates.

truelambdasaveraged

A vector, containing the true decay rates, averaged over the labeling period.

truehalflives

A vector, containing the true half-lives.

truehalflivesaveraged

A vector, containing the true half-lives, averaged over the labeling period.

trueplabel

The true labeling efficiency. For details, see supplemental material of Sun et al. (see references).

truecomplete

A vector, containing the true amount of total RNA.

truelambdas

A vector, containing the true decay rates.

truemus

A vector, containing the true synthesis rates.

truehalflives

A vector, containing the true half-lives.

trueplabel

The true labeling efficiency. For details, see supplemental material of Miller et al. (see references).

truear

The true parameter ar. For details, see supplemental material of Miller et al. (see references).

truebr

The true parameter br. For details, see supplemental material of Miller et al. (see references).

truecr

The true parameter cr. For details, see supplemental material of Miller et al. (see references).

truecrbyar

The true parameter cr/ar. For details, see supplemental material of Miller et al. (see references).

truecrbybr

The true parameter cr/br. For details, see supplemental material of Miller et al. (see references).

truebrbyar

The true parameter br/ar. For details, see supplemental material of Miller et al. (see references).

trueLasymptote

The true parameter asymptote (labeled bias). For details, see supplemental material of Miller et al. (see references).

trueUasymptote

The true parameter asymptote (unlabeled bias). For details, see supplemental material of Miller et al. (see references).

Author(s)

Bjoern Schwalb [email protected]

References

C. Miller, B. Schwalb, K. Maier, D. Schulz, S. Duemcke, B. Zacher, A. Mayer, J. Sydow, L. Marcinowski, L. Dolken, D. E. Martin, A. Tresch, and P. Cramer. Dynamic transcriptome analysis measures rates of mRNA synthesis and decay in yeast. Mol Syst Biol, 7:458, 2011. M. Sun, B. Schwalb, D. Schulz, N. Pirkl, L. Lariviere, K. Maier, A. Tresch, P. Cramer. Mutual feedback between mRNA synthesis and degradation buffers transcript levels in a eukaryote. Under review. B. Schwalb, B. Zacher, S. Duemcke, D. Martin, P. Cramer, A. Tresch. Measurement of genome-wide RNA synthesis and decay rates with Dynamic Transcriptome Analysis (DTA/cDTA). Bioinformatics.

Examples

nrgenes = 5000
truesynthesisrates = rf(nrgenes,5,5)*18
steady = rep(1,nrgenes)
shock = 1/pmax(rnorm(nrgenes,mean = 8,sd = 4),1)
induction = pmax(rnorm(nrgenes,mean = 8,sd = 4),1)
changes.mat = cbind(steady,shock,shock*induction)
mu.values.mat = changes.mat*truesynthesisrates
mu.breaks.mat = cbind(rep(12,nrgenes),rep(18,nrgenes))
truehalflives = rf(nrgenes,15,15)*12
truelambdas = log(2)/truehalflives
changes.mat = cbind(steady,shock,shock*induction,steady)
lambda.values.mat = changes.mat*truelambdas
lambda.breaks.mat = cbind(rep(12,nrgenes),rep(18,nrgenes),rep(27,nrgenes))

### it takes several min to build sim.object (depends on the number of genes 'nrgenes') ###

sim.object = DTA.dynamic.generate(duration = 36,lab.duration = 6,nrgenes = nrgenes,mu.values.mat = mu.values.mat,mu.breaks.mat = mu.breaks.mat,lambda.values.mat = lambda.values.mat,lambda.breaks.mat = lambda.breaks.mat)

### for control plots set 'check = TRUE' ###

res = DTA.dynamic.estimate(simulation = TRUE,sim.object = sim.object,check = FALSE)

Estimation of synthesis and decay rates

Description

DTA.estimate uses an experiment, given by a phenotype matrix, data matrix and the number of uridines for each gene to estimate synthesis and decay rate of the genes.

Usage

DTA.estimate(phenomat = NULL,datamat = NULL,tnumber = NULL,reliable = NULL,ccl = NULL,mRNAs = NULL,mediancenter = TRUE,usefractions = "LandT",LtoTratio = NULL,ratiomethod = "tls",largest = 5,weighted = TRUE,relevant = NULL,upper = 700,lower = 500,error = TRUE,samplesize = 1000,confidence.range = c(0.025,0.975),bicor = TRUE,check = TRUE,condition = "",save.plots = FALSE,resolution = 1,notinR = FALSE,RStudio = FALSE,folder = NULL,fileformat = "jpeg",totaloverwt = 1,simulation = FALSE,sim.object = NULL)

Arguments

phenomat

A phenotype matrix, containing the design of the experiment as produced by DTA.phenomat. Columns are name, fraction (U=unlabebeld, L=labeled, T=total), time and nr (=replicate number). Rows represent individual experiments.

datamat

A matrix, containing the measurements from U, L and T, according to the design given in phenomat. Matrix should only contain the rows of phenomat as columns.

tnumber

Integer vector, containing the numbers of uridine residues for each transcript. Elements should have the rownames of datamat.

ccl

The cell cycle length of the cells (optional). Is not modeled, if not set.

mRNAs

Estimated number of mRNAs in a cell (optional).

reliable

Vector of 'reliable' genes, which are used for parameter estimation.

mediancenter

Should the quotient Labeled/Total resp. Unlabeled/Total be rescaled to a common median over it's replicates before building the genewise median.

usefractions

From which fractions should the decay rate be calculated: "LandT", "UandT" or "both".

LtoTratio

Coefficient to rescale Labeled/Total. Is estimated from the data, if not specified. See ratiomethod. Altering this parameter leads to a altered median half-life. For details, see supplemental material of Sun et al. (see references).

ratiomethod

Choose the regression method to be used, possible methods are: "tls", "bias" and "lm". For details, see supplemental material of Sun et al. (see references). Method to estimate the parameter LtoTratio, which determines the median half-life of the sample.

largest

Percentage of largest residues from the first regression not to be used in the second regression step. For details, see supplemental material of Sun et al. (see references).

weighted

Should the regression be weighted with 1/(Total^2 + median(Total))?

relevant

Choose the arrays to be used for halflives calculation, vector due to nr (=replicate number) in phenomat. If not set, all arrays are used.

check

If check = TRUE, control messages and plots will be generated.

error

If TRUE, the measurement error is assessed by means of an error model and resampling to gain confidence regions.

samplesize

Error model samplesize for resampling.

confidence.range

Confidence region for error model as quantiles. Interval should be between 0 and 1.

bicor

Should the labeling bias be corrected?

condition

String, to be added to the plotnames if saved.

upper

Upper bound for labeling bias estimation. For details, see supplemental material of Sun et al. (see references).

lower

Lower bound for labeling bias estimation. For details, see supplemental material of Sun et al. (see references).

save.plots

If save.plots = TRUE, control plots will be saved. Please check folder writability.

resolution

Resolution scaling factor for plotting. (Scaled with 72dpi.)

notinR

If TRUE, plots are not plotted in R.

RStudio

For RStudio users. Suppresses the opening of a new device, as RStudio allows only one.

folder

Path to the folder, where to save the plots. Needs to be writable.

fileformat

Fileformat for plots to be saved. See plotit function (LSD package). Save the plot as "jpeg", "png", "bmp", "tiff", "ps" or "pdf".

totaloverwt

Only needed when mRNAs is set. Should give the factor by which the total mRNA of the condition outreaches that of the reference (comparative DTA data).

simulation

True, if data was generated by DTA.generate.

sim.object

Simulation object created by DTA.generate.

Value

DTA.estimate returns a list, where each entry contains the estimation results for all replicates of one labeling time. Each result contains the following entries

triples

Mapping of each fraction and experiment to its corresponding column in the data matrix.

plabel

The labeling efficiency. For details, see supplemental material of Sun et al. (see references).

LtoTratio

Estimated ratio of labeled to total fraction.

UtoTratio

Estimated ratio of unlabeled to total fraction.

LtoUratio

Estimated ratio of labeled to unlabeled fraction.

correcteddatamat

Labeling bias corrected data matrix.

drmat

Decay rates for each replicate. The last column gives the median decay rates.

dr

Median decay rates. The last column of drmat.

dr.confidence

Confidence regions of decay rates.

hlmat

Half-lives for each replicate. The last column gives the median half-lifes.

hl

Median half-lives. The last column of hlmat.

hl.confidence

Confidence regions of half-lives.

TEmat

Total expression for each replicate. The last column gives the median total expression values.

TE

Median total expression values. The last column of TEmat.

TE.confidence

Confidence regions of total expression values.

LEmat

Labeled expression for each replicate. The last column gives the median labeled expression values.

LE

Median labeled expression values. The last column of LEmat.

LE.confidence

Confidence regions of labeled expression values.

UEmat

Unlabeled expression for each replicate. The last column gives the median unlabeled expression values. (Only if unlabeled values exist in the experiment)

UE

Median unlabeled expression values. The last column of UEmat. (Only if unlabeled values exist in the experiment)

UE.confidence

Confidence regions of unlabeled expression values.

srmat

Synthesis rates for each replicate. The last column gives the median synthesis rates.

sr

Median synthesis rates. The last column of srmat.

sr.confidence

Confidence regions of synthesis rates.

LtoTmat

Labeled to total ratio for each replicate. The last column gives the median labeled to total ratios.

LtoT

Median labeled to total ratios. The last column of LtoTmat.

LtoT.confidence

Confidence regions of labeled to total ratios.

UtoTmat

Unlabeled to total ratio for each replicate. The last column gives the median unlabeled to total ratios.

UtoT

Median unlabeled to total ratios. The last column of UtoTmat.

UtoT.confidence

Confidence regions of unlabeled to total ratios.

Rsrmat

Rescaled synthesis rates for each replicate, if parameter mRNAs is specified. The last column gives the median synthesis rates.

Rsr

Rescaled median synthesis rates. The last column of Rsrmat.

globaldrmat

Decay rate for each replicate. Reciprocally weighted by the total expression. Last element contains (weighted) median decay rate.

globaldr

(Weighted) median decay rate.

Author(s)

Bjoern Schwalb [email protected]

References

C. Miller, B. Schwalb, K. Maier, D. Schulz, S. Duemcke, B. Zacher, A. Mayer, J. Sydow, L. Marcinowski, L. Doelken, D. E. Martin, A. Tresch, and P. Cramer. Dynamic transcriptome analysis measures rates of mRNA synthesis and decay in yeast. Mol Syst Biol, 7:458, 2011. M. Sun, B. Schwalb, D. Schulz, N. Pirkl, L. Lariviere, K. Maier, A. Tresch, P. Cramer. Mutual feedback between mRNA synthesis and degradation buffers transcript levels in a eukaryote. Under review. B. Schwalb, B. Zacher, S. Duemcke, D. Martin, P. Cramer, A. Tresch. Measurement of genome-wide RNA synthesis and decay rates with Dynamic Transcriptome Analysis (DTA/cDTA). Bioinformatics.

See Also

heatscatter, plotit, tls

Examples

dataPath = system.file("data", package="DTA")
load(file.path(dataPath, "Miller2011.RData"))

### for control plots set 'check = TRUE' ###

res = DTA.estimate(Sc.phenomat,Sc.datamat,Sc.tnumber,ccl = 150,mRNAs = 60000,reliable = Sc.reliable,check = FALSE)

Simulation of DTA experiments

Description

DTA.generate produces the phenotype matrix and the matrix containing the simulated data according to the given parameters.

Usage

DTA.generate(timepoints, tnumber = NULL, plabel = NULL, nrgenes = 5000, mediantime = 12, ccl = 150, delaytime = 0, sdnoise = 0.075, nobias = FALSE, unspecific.LtoU = 0, unspec.LtoU.weighted = FALSE, unspecific.UtoL = 0, unspec.UtoL.weighted = FALSE, truehalflives = NULL, truecomplete = NULL, genenames = NULL, cDTA = FALSE)

Arguments

timepoints

Integer vector containing the labeling times for which the samples should be generated.

tnumber

Integer vector containing the number of uridine residues for each gene. If NULL, tnumber is sampled from an F-distribution within the function.

plabel

The labeling efficiency. If NULL, plabel is set to 0.005 within the function. For details, see supplemental material of Sun et al. (see references).

nrgenes

The number of genes the simulated experiment will have (will be cropped if it exceeds the length of tnumber).

mediantime

The median of the randomly drawn half-life distribution.

ccl

The cell cycle length (in minutes).

delaytime

Estimates the delay between the moment of 4sU/4tU labeling and actual incorporation of it into mRNA.

sdnoise

The amount of measurement noise (proportional to expression strength).

nobias

Should a labeling bias be added?

unspecific.LtoU

Proportion of labeled RNAs that unspecifically end up in the unlabeled fraction.

unspec.LtoU.weighted

Should unspecific proportion of labeled to unlabeled depend linearly on the length of the RNA?

unspecific.UtoL

Proportion of unlabeled RNAs that unspecifically end up in the labeled fraction.

unspec.UtoL.weighted

Should unspecific proportion of unlabeled to labeled depend linearly on the length of the RNA?

truehalflives

If the data should be generated using a given half-life distribution, this vector must contain the respective values for each gene.

truecomplete

If the data should be generated using a given expression distribution, this vector must contain the respective values for each gene.

genenames

An optional list of gene names.

cDTA

cDTA = FALSE does not rescale L and U.

Value

DTA.generate returns a list, containing the following entries

phenomat

A matrix, containing the design of the experiment as produced by DTA.phenomat.

datamat

A matrix, containing the simulated measurements from U, L and T, according to the design given in phenomat.

tnumber

Integer vector containing the number of uridine residues for each gene.

ccl

The cell cycle length (in minutes).

truecomplete

A vector, containing the true amount of total RNA.

truelambdas

A vector, containing the true decay rates.

truemus

A vector, containing the true synthesis rates.

truehalflives

A vector, containing the true half-lives.

trueplabel

The true labeling efficiency. For details, see supplemental material of Miller et al. (see references).

truear

The true parameter ar. For details, see supplemental material of Miller et al. (see references).

truebr

The true parameter br. For details, see supplemental material of Miller et al. (see references).

truecr

The true parameter cr. For details, see supplemental material of Miller et al. (see references).

truecrbyar

The true parameter cr/ar. For details, see supplemental material of Miller et al. (see references).

truecrbybr

The true parameter cr/br. For details, see supplemental material of Miller et al. (see references).

truebrbyar

The true parameter br/ar. For details, see supplemental material of Miller et al. (see references).

trueLasymptote

The true parameter asymptote (labeled bias). For details, see supplemental material of Miller et al. (see references).

trueUasymptote

The true parameter asymptote (unlabeled bias). For details, see supplemental material of Miller et al. (see references).

Author(s)

Bjoern Schwalb [email protected]

References

C. Miller, B. Schwalb, K. Maier, D. Schulz, S. Duemcke, B. Zacher, A. Mayer, J. Sydow, L. Marcinowski, L. Doelken, D. E. Martin, A. Tresch, and P. Cramer. Dynamic transcriptome analysis measures rates of mRNA synthesis and decay in yeast. Mol Syst Biol, 7:458, 2011. M. Sun, B. Schwalb, D. Schulz, N. Pirkl, L. Lariviere, K. Maier, A. Tresch, P. Cramer. Mutual feedback between mRNA synthesis and degradation buffers transcript levels in a eukaryote. Under review. B. Schwalb, B. Zacher, S. Duemcke, D. Martin, P. Cramer, A. Tresch. Measurement of genome-wide RNA synthesis and decay rates with Dynamic Transcriptome Analysis (DTA/cDTA). Bioinformatics.

Examples

sim.object = DTA.generate(timepoints=rep(c(6,12),2))

### for control plots set 'check = TRUE' ###

res.sim = DTA.estimate(ratiomethod = "bias",simulation = TRUE,sim.object = sim.object,check = FALSE)

Mapping function to switch between different identifiers.

Description

DTA.map.it can map different kinds of identifiers in a matrix or a vector given by mapping vector.

Usage

DTA.map.it(mat,map = NULL,check = TRUE)

Arguments

mat

Matrix or vector with numerical entries.

map

Vector of identifiers to map to, named by identifiers to map from.

check

Should check protocol be printed.

Author(s)

Bjoern Schwalb [email protected]

References

M. Sun, B. Schwalb, D. Schulz, N. Pirkl, L. Lariviere, K. Maier, A. Tresch, P. Cramer. Mutual feedback between mRNA synthesis and degradation buffers transcript levels in a eukaryote. Under review. B. Schwalb, B. Zacher, S. Duemcke, D. Martin, P. Cramer, A. Tresch. Measurement of genome-wide RNA synthesis and decay rates with Dynamic Transcriptome Analysis (DTA/cDTA). Bioinformatics.

Examples

### see vignette examples or reference:
### B. Schwalb, B. Zacher, S. Duemcke, D. Martin, P. Cramer, A. Tresch.
### Measurement of genome-wide RNA synthesis and decay rates with Dynamic Transcriptome Analysis (DTA/cDTA). Bioinformatics, in revision.

cDTA normalization procedure.

Description

DTA.normalize can normalize expression values from a certain species to the median of values from a reference species.

Usage

DTA.normalize(mat,reliable = NULL,logscale = FALSE,protocol = FALSE,center = FALSE)

Arguments

mat

Expression matrix.

reliable

The rows to be used, i.e. identifiers of the reference species to normalize on.

logscale

Is the matrix in log-scale ?

protocol

Should a protocol be printed ?

center

Should the center be 0 (log-scale) or 1 (absolute scale). Otherwise the median of the medians is taken.

Author(s)

Bjoern Schwalb [email protected]

References

M. Sun, B. Schwalb, D. Schulz, N. Pirkl, L. Lariviere, K. Maier, A. Tresch, P. Cramer. Mutual feedback between mRNA synthesis and degradation buffers transcript levels in a eukaryote. Under review. B. Schwalb, B. Zacher, S. Duemcke, D. Martin, P. Cramer, A. Tresch. Measurement of genome-wide RNA synthesis and decay rates with Dynamic Transcriptome Analysis (DTA/cDTA). Bioinformatics.

Examples

### see vignette examples or reference:
### B. Schwalb, B. Zacher, S. Duemcke, D. Martin, P. Cramer, A. Tresch.
### Measurement of genome-wide RNA synthesis and decay rates with Dynamic Transcriptome Analysis (DTA/cDTA). Bioinformatics, in revision.

Create a phenomat that suits your experiment.

Description

DTA.phenomat creates a phenomat for a given experimental design, i.e. used labeling times.

Usage

DTA.phenomat(timepoints, timecourse = NULL)

Arguments

timepoints

The respective labeling times of the measured samples.

timecourse

Vector giving the order for timecourse DTA data.

Value

A matrix, containing the design of the experiment. Columns are name, fraction (U=unlabebeld, L=labeled, T=total), time and nr (=replicate number). Rows represent individual experiments. For timecourse data, an additional column of the order of the underlying timecourse data can be added via timecourse.

Author(s)

Bjoern Schwalb [email protected]

Examples

### phenomat for 2 replicates of 6 and 12 min labeling duration resp.
DTA.phenomat(c(6,12))

### phenomat for three adjacent timepoints measured in 2 replicates 
DTA.phenomat(rep(6,6),timecourse = 1:3)

Plots in any format and any quality

Description

DTA.plot.it can save plots in any format and any quality in addition to show them in R devices

Usage

DTA.plot.it(filename,sw = 1,sh = 1,sres = 1,plotsfkt,ww = 7,wh = 7,pointsize = 12,dev.pointsize = 8,paper = "special",quality = 100,units = "px",bg = "white",fileformat = "jpeg",saveit = FALSE,notinR = FALSE,RStudio = FALSE,addformat = NULL)

Arguments

filename

Name of the plot to be saved without the format type suffix.

sw

Scaling factor of width. Scaled with 480px.

sh

Scaling factor of height. Scaled with 480px.

sres

Scaling factor of the resolution. Scaled with 72dpi.

plotsfkt

Function of plots to be plotted.

ww

Width of window. Needed only for plotting in R or if filformat = "pdf" or "ps". See pdf or ps.

wh

Height of window. Needed only for plotting in R or if filformat = "pdf" or "ps". See pdf or ps.

pointsize

The default pointsize of plotted text, interpreted as big points (1/72 inch) for plots to be saved.

dev.pointsize

Pointsize of plotted text, interpreted as big points (1/72 inch) for display in R.

paper

Needed only if filformat = "pdf" or "ps". See pdf or ps.

quality

Needed only if filformat = "jpeg". See jpeg.

units

Needed only if filformat = "jpeg", "png", "bmp" or "tiff". See corresponding function.

bg

Backgroundcolor.

fileformat

Save the plot as "jpeg", "png", "bmp", "tiff", "ps" or "pdf".

saveit

Should plot be saved.

notinR

Should plot be not plotted in R.

RStudio

For RStudio users. Suppresses the opening of a new device, as RStudio allows only one.

addformat

Should plot be saved additionally in another format, "jpeg", "png", "bmp", "tiff", "ps" or "pdf".

Author(s)

Bjoern Schwalb [email protected]

Examples

plotsfkt = function(){
par(mfrow = c(1,2))
plot(1:10)
plot(10:1)
}
DTA.plot.it(filename = "test",plotsfkt = plotsfkt,saveit = TRUE)

dev.off()

Gene expression profiles of the Homo Sapiens DTA experiment from Doelken et al.

Description

This matrix contains the RNA intensity values for each gene across each RNA fraction and their replicate measurements of the Homo Sapiens DTA experiment from Doelken et al.

Usage

Hs.datamat

Format

The column names of the matrix give the cel-file name and the row names the Ensembl gene IDs.

Source

Doelken, L., Ruzsics, Z., Raedle, B., Friedel, C. C., Zimmer, R., Mages, J., Hoffmann, R., Dickinson, P., Forster, T., Ghazal, P., & Koszinowski, U. H. (2008). High-resolution gene expression profiling for simultaneous kinetic parameter analysis of RNA synthesis and decay. RNA 14(9), 1959-1972.


Mapping of Homo Sapiens gene and transcript identifiers.

Description

Mapping from Ensembl transcript IDs to Ensembl gene IDs of Homo Sapiens.

Usage

Hs.enst2ensg

Format

Vector gives the Ensembl gene IDs, names the Ensembl transcript IDs.

Source

E. Birney, D. Andrews, M. Caccamo, Y. Chen, L. Clarke, G. Coates, T. Cox, F. Cunningham, V. Curwen, T. Cutts, T. Down, R. Durbin, X. M. Fernandez-Suarez, P. Flicek, S. Graef, M. Hammond, J. Herrero, K. Howe, V. Iyer, K. Jekosch, A. Kaehaeri, A. Kasprzyk, D. Keefe, F. Kokocinski, E. Kulesha, D. London, I. Longden, C. Melsopp, P. Meidl, B. Overduin, A. Parker, G. Proctor, A. Prlic, M. Rae, D. Rios, S. Redmond, M. Schuster, I. Sealy, S. Searle, J. Severin, G. Slater, D. Smedley, J. Smith, A. Stabenau, J. Stalker, S. Trevanion, A. Ureta- Vidal, J. Vogel, S. White, C.Woodwark, and T. J. Hubbard. Ensembl 2006. Nucleic acids research, 34(Database issue), January 2006.


Design of the Homo Sapiens DTA experiment from Doelken et al.

Description

The phenotype matrix Hs.phenomat contains information about the experimental design. It is comprised of the filename, the type of RNA fraction measured (T, U or L), the labeling time and the replicate number.

Usage

Hs.phenomat

Format

The phenomat is a matrix comprised of the file name, the type of RNA fraction mesasured (T, U or L, fraction column), the labeling time (time,timeframe column) and the replicate number (nr column). Rows in this matrix represent the individual experiments.

Source

Doelken, L., Ruzsics, Z., Raedle, B., Friedel, C. C., Zimmer, R., Mages, J., Hoffmann, R., Dickinson, P., Forster, T., Ghazal, P., & Koszinowski, U. H. (2008). High-resolution gene expression profiling for simultaneous kinetic parameter analysis of RNA synthesis and decay. RNA 14(9), 1959-1972.


Gene identifiers valid for parameter estimation from the Homo Sapiens Doelken et al. DTA experiment.

Description

Ensembl gene IDs, that passed certain criteria among the Homo Sapiens Doelken et al. DTA experiment to be considered valid for parameter estimation. For details, see vignette.

Usage

Hs.reliable

Format

Vector of Ensembl gene IDs that can be passed to DTA.estimate for parameter estimation.

Source

Doelken, L., Ruzsics, Z., Raedle, B., Friedel, C. C., Zimmer, R., Mages, J., Hoffmann, R., Dickinson, P., Forster, T., Ghazal, P., & Koszinowski, U. H. (2008). High-resolution gene expression profiling for simultaneous kinetic parameter analysis of RNA synthesis and decay. RNA 14(9), 1959-1972.


The amount of thymines in the cDNA of each transcript of Homo Sapiens.

Description

The amount of thymines in the cDNA of each transcript of all Homo Sapiens Ensembl transcript IDs, to assess the uridine-dependent labeling bias and eventually correct for it.

Usage

Hs.tnumber

Format

Vector gives the number of thymines in the cDNA (uridine residues in RNA) of each Ensembl transcript ID.

Source

E. Birney, D. Andrews, M. Caccamo, Y. Chen, L. Clarke, G. Coates, T. Cox, F. Cunningham, V. Curwen, T. Cutts, T. Down, R. Durbin, X. M. Fernandez-Suarez, P. Flicek, S. Graef, M. Hammond, J. Herrero, K. Howe, V. Iyer, K. Jekosch, A. Kaehaeri, A. Kasprzyk, D. Keefe, F. Kokocinski, E. Kulesha, D. London, I. Longden, C. Melsopp, P. Meidl, B. Overduin, A. Parker, G. Proctor, A. Prlic, M. Rae, D. Rios, S. Redmond, M. Schuster, I. Sealy, S. Searle, J. Severin, G. Slater, D. Smedley, J. Smith, A. Stabenau, J. Stalker, S. Trevanion, A. Ureta- Vidal, J. Vogel, S. White, C.Woodwark, and T. J. Hubbard. Ensembl 2006. Nucleic acids research, 34(Database issue), January 2006.


Saccharomyces Cerevisiae wild-type DTA experiment from Miller et al.

Description

R object contains all relevant *.RData files needed for the DTA.estimate function. For example, see vignette.

Usage

Miller2011

Format

R object contains the following *.RData files: Sc.phenomat Sc.datamat Sc.reliable Sc.tnumber

Source

C. Miller, B. Schwalb, K. Maier, D. Schulz, S. Duemcke, B. Zacher, A. Mayer, J. Sydow, L. Marcinowski, L. Doelken, D. E. Martin, A. Tresch, and P. Cramer. Dynamic transcriptome analysis measures rates of mRNA synthesis and decay in yeast. Mol Syst Biol, 7:458, 2011. E. Birney, D. Andrews, M. Caccamo, Y. Chen, L. Clarke, G. Coates, T. Cox, F. Cunningham, V. Curwen, T. Cutts, T. Down, R. Durbin, X. M. Fernandez-Suarez, P. Flicek, S. Graef, M. Hammond, J. Herrero, K. Howe, V. Iyer, K. Jekosch, A. Kaehaeri, A. Kasprzyk, D. Keefe, F. Kokocinski, E. Kulesha, D. London, I. Longden, C. Melsopp, P. Meidl, B. Overduin, A. Parker, G. Proctor, A. Prlic, M. Rae, D. Rios, S. Redmond, M. Schuster, I. Sealy, S. Searle, J. Severin, G. Slater, D. Smedley, J. Smith, A. Stabenau, J. Stalker, S. Trevanion, A. Ureta- Vidal, J. Vogel, S. White, C.Woodwark, and T. J. Hubbard. Ensembl 2006. Nucleic acids research, 34(Database issue), January 2006.


Saccharomyces Cerevisiae salt stress DTA experiment from Miller et al.

Description

R object contains all relevant *.RData files needed for the DTA.estimate function. For example, see vignette.

Usage

Miller2011dynamic

Format

R object contains the following *.RData files: Sc.phenomat.dynamic Sc.datamat.dynamic Sc.reliable.dynamic Sc.tnumber

Source

C. Miller, B. Schwalb, K. Maier, D. Schulz, S. Duemcke, B. Zacher, A. Mayer, J. Sydow, L. Marcinowski, L. Doelken, D. E. Martin, A. Tresch, and P. Cramer. Dynamic transcriptome analysis measures rates of mRNA synthesis and decay in yeast. Mol Syst Biol, 7:458, 2011. E. Birney, D. Andrews, M. Caccamo, Y. Chen, L. Clarke, G. Coates, T. Cox, F. Cunningham, V. Curwen, T. Cutts, T. Down, R. Durbin, X. M. Fernandez-Suarez, P. Flicek, S. Graef, M. Hammond, J. Herrero, K. Howe, V. Iyer, K. Jekosch, A. Kaehaeri, A. Kasprzyk, D. Keefe, F. Kokocinski, E. Kulesha, D. London, I. Longden, C. Melsopp, P. Meidl, B. Overduin, A. Parker, G. Proctor, A. Prlic, M. Rae, D. Rios, S. Redmond, M. Schuster, I. Sealy, S. Searle, J. Severin, G. Slater, D. Smedley, J. Smith, A. Stabenau, J. Stalker, S. Trevanion, A. Ureta- Vidal, J. Vogel, S. White, C.Woodwark, and T. J. Hubbard. Ensembl 2006. Nucleic acids research, 34(Database issue), January 2006.


Gene expression profiles of the Mus Musculus DTA experiment from Doelken et al.

Description

This matrix contains the RNA intensity values for each gene across each RNA fraction and their replicate measurements of the Mus Musculus DTA experiment from Doelken et al.

Usage

Mm.datamat

Format

The column names of the matrix give the cel-file name and the row names the Ensembl gene IDs.

Source

Doelken, L., Ruzsics, Z., Raedle, B., Friedel, C. C., Zimmer, R., Mages, J., Hoffmann, R., Dickinson, P., Forster, T., Ghazal, P., & Koszinowski, U. H. (2008). High-resolution gene expression profiling for simultaneous kinetic parameter analysis of RNA synthesis and decay. RNA 14(9), 1959-1972.


Mapping of Mus Musculus gene and transcript identifiers.

Description

Mapping from Ensembl transcript IDs to Ensembl gene IDs of Mus Musculus.

Usage

Mm.enst2ensg

Format

Vector gives the Ensembl gene IDs, names the Ensembl transcript IDs.

Source

E. Birney, D. Andrews, M. Caccamo, Y. Chen, L. Clarke, G. Coates, T. Cox, F. Cunningham, V. Curwen, T. Cutts, T. Down, R. Durbin, X. M. Fernandez-Suarez, P. Flicek, S. Graef, M. Hammond, J. Herrero, K. Howe, V. Iyer, K. Jekosch, A. Kaehaeri, A. Kasprzyk, D. Keefe, F. Kokocinski, E. Kulesha, D. London, I. Longden, C. Melsopp, P. Meidl, B. Overduin, A. Parker, G. Proctor, A. Prlic, M. Rae, D. Rios, S. Redmond, M. Schuster, I. Sealy, S. Searle, J. Severin, G. Slater, D. Smedley, J. Smith, A. Stabenau, J. Stalker, S. Trevanion, A. Ureta- Vidal, J. Vogel, S. White, C.Woodwark, and T. J. Hubbard. Ensembl 2006. Nucleic acids research, 34(Database issue), January 2006.


Design of the Mus Musculus DTA experiment from Doelken et al.

Description

The phenotype matrix Mm.phenomat contains information about the experimental design. It is comprised of the filename, the type of RNA fraction measured (T, U or L), the labeling time and the replicate number.

Usage

Mm.phenomat

Format

The phenomat is a matrix comprised of the file name, the type of RNA fraction mesasured (T, U or L, fraction column), the labeling time (time,timeframe column) and the replicate number (nr column). Rows in this matrix represent the individual experiments.

Source

Doelken, L., Ruzsics, Z., Raedle, B., Friedel, C. C., Zimmer, R., Mages, J., Hoffmann, R., Dickinson, P., Forster, T., Ghazal, P., & Koszinowski, U. H. (2008). High-resolution gene expression profiling for simultaneous kinetic parameter analysis of RNA synthesis and decay. RNA 14(9), 1959-1972.


Gene identifiers valid for parameter estimation from the Mus Musculus Doelken et al. DTA experiment.

Description

Ensembl gene IDs, that passed certain criteria among the Mus Musculus Doelken et al. DTA experiment to be considered valid for parameter estimation. For details, see vignette.

Usage

Mm.reliable

Format

Vector of Ensembl gene IDs that can be passed to DTA.estimate for parameter estimation.

Source

Doelken, L., Ruzsics, Z., Raedle, B., Friedel, C. C., Zimmer, R., Mages, J., Hoffmann, R., Dickinson, P., Forster, T., Ghazal, P., & Koszinowski, U. H. (2008). High-resolution gene expression profiling for simultaneous kinetic parameter analysis of RNA synthesis and decay. RNA 14(9), 1959-1972.


The amount of thymines in the cDNA of each transcript of Mus Musculus.

Description

The amount of thymines in the cDNA of each transcript of all Mus Musculus Ensembl transcript IDs, to assess the uridine-dependent labeling bias and eventually correct for it.

Usage

Mm.tnumber

Format

Vector gives the number of thymines in the cDNA (uridine residues in RNA) of each Ensembl transcript ID.

Source

E. Birney, D. Andrews, M. Caccamo, Y. Chen, L. Clarke, G. Coates, T. Cox, F. Cunningham, V. Curwen, T. Cutts, T. Down, R. Durbin, X. M. Fernandez-Suarez, P. Flicek, S. Graef, M. Hammond, J. Herrero, K. Howe, V. Iyer, K. Jekosch, A. Kaehaeri, A. Kasprzyk, D. Keefe, F. Kokocinski, E. Kulesha, D. London, I. Longden, C. Melsopp, P. Meidl, B. Overduin, A. Parker, G. Proctor, A. Prlic, M. Rae, D. Rios, S. Redmond, M. Schuster, I. Sealy, S. Searle, J. Severin, G. Slater, D. Smedley, J. Smith, A. Stabenau, J. Stalker, S. Trevanion, A. Ureta- Vidal, J. Vogel, S. White, C.Woodwark, and T. J. Hubbard. Ensembl 2006. Nucleic acids research, 34(Database issue), January 2006.


Design of the Saccharomyces Cerevisiae rpb1-N488D (Slow Polymerase) cDTA experiment from Sun et al.

Description

The phenotype matrix Pol.phenomat contains information about the experimental design. It is comprised of the filename, the type of RNA fraction measured (T, U or L), the labeling time and the replicate number.

Usage

Pol.phenomat

Format

The phenomat is a matrix comprised of the file name, the type of RNA fraction mesasured (T, U or L, fraction column), the labeling time (time,timeframe column) and the replicate number (nr column). Rows in this matrix represent the individual experiments.

Source

M. Sun, B. Schwalb, D. Schulz, N. Pirkl, L. Lariviere, K. Maier, A. Tresch, P. Cramer. Mutual feedback between mRNA synthesis and degradation buffers transcript levels in a eukaryote. Under review.


Gene expression profiles of the Saccharomyces Cerevisiae rpb1-N488D (Slow Polymerase) and wild-type cDTA experiment from Sun et al.

Description

This matrix contains the RNA intensity values for each gene across each RNA fraction and their replicate measurements of the Saccharomyces Cerevisiae rpb1-N488D (Slow Polymerase) and wild-type cDTA experiment from Sun et al.

Usage

Raw.datamat

Format

The column names of the matrix give the cel-file name and the row names the affymetrix IDs.

Source

M. Sun, B. Schwalb, D. Schulz, N. Pirkl, L. Lariviere, K. Maier, A. Tresch, P. Cramer. Mutual feedback between mRNA synthesis and degradation buffers transcript levels in a eukaryote. Under review.


Mapping of SaccharomycesCerevisiae Affymetrix Yeast 2.0 and gene identifiers.

Description

Mapping from Affymetrix Yeast 2.0 IDs to Ensembl gene IDs of SaccharomycesCerevisiae.

Usage

Sc.affy2ensg

Format

Vector gives the Ensembl gene IDs, names the Affymetrix Yeast 2.0 IDs.

Source

M. Sun, B. Schwalb, D. Schulz, N. Pirkl, L. Lariviere, K. Maier, A. Tresch, P. Cramer. Mutual feedback between mRNA synthesis and degradation buffers transcript levels in a eukaryote. Under review.


Gene expression profiles of the Saccharomyces Cerevisiae wild-type DTA experiment from Miller et al.

Description

This matrix contains the RNA intensity values for each gene across each RNA fraction and their replicate measurements of the Saccharomyces Cerevisiae wild-type DTA experiment from Miller et al.

Usage

Sc.datamat

Format

The column names of the matrix give the cel-file name and the row names the Ensembl gene IDs.

Source

C. Miller, B. Schwalb, K. Maier, D. Schulz, S. Duemcke, B. Zacher, A. Mayer, J. Sydow, L. Marcinowski, L. Doelken, D. E. Martin, A. Tresch, and P. Cramer. Dynamic transcriptome analysis measures rates of mRNA synthesis and decay in yeast. Mol Syst Biol, 7:458, 2011.


Gene expression profiles of the Saccharomyces Cerevisiae salt stress DTA experiment from Miller et al.

Description

This matrix contains the RNA intensity values for each gene across each RNA fraction and their replicate measurements of the Saccharomyces Cerevisiae salt stress DTA experiment from Miller et al.

Usage

Sc.datamat.dynamic

Format

The column names of the matrix give the cel-file name and the row names the Ensembl gene IDs.

Source

C. Miller, B. Schwalb, K. Maier, D. Schulz, S. Duemcke, B. Zacher, A. Mayer, J. Sydow, L. Marcinowski, L. Doelken, D. E. Martin, A. Tresch, and P. Cramer. Dynamic transcriptome analysis measures rates of mRNA synthesis and decay in yeast. Mol Syst Biol, 7:458, 2011.


Gene identifiers valid for parameter estimation from the Saccharomyces Cerevisiae Sun et al. cDTA experiment.

Description

Ensembl gene IDs, that passed certain criteria among the Saccharomyces Cerevisiae Sun et al. cDTA experiment to be considered valid for parameter estimation. For details, see Sun et al (Materials and Methods).

Usage

Sc.ensg.reliable

Format

Vector of Ensembl gene IDs that can be passed to DTA.estimate for parameter estimation.

Source

M. Sun, B. Schwalb, D. Schulz, N. Pirkl, L. Lariviere, K. Maier, A. Tresch, P. Cramer. Mutual feedback between mRNA synthesis and degradation buffers transcript levels in a eukaryote. Under review.


Design of the Saccharomyces Cerevisiae wild-type DTA experiment from Miller et al.

Description

The phenotype matrix Sc.phenomat contains information about the experimental design. It is comprised of the filename, the type of RNA fraction measured (T, U or L), the labeling time and the replicate number.

Usage

Sc.phenomat

Format

The phenomat is a matrix comprised of the file name, the type of RNA fraction mesasured (T, U or L, fraction column), the labeling time (time,timeframe column) and the replicate number (nr column). Rows in this matrix represent the individual experiments.

Source

C. Miller, B. Schwalb, K. Maier, D. Schulz, S. Duemcke, B. Zacher, A. Mayer, J. Sydow, L. Marcinowski, L. Doelken, D. E. Martin, A. Tresch, and P. Cramer. Dynamic transcriptome analysis measures rates of mRNA synthesis and decay in yeast. Mol Syst Biol, 7:458, 2011.


Design of the Saccharomyces Cerevisiae salt stress DTA experiment from Miller et al.

Description

The phenotype matrix Sc.phenomat.dynamic contains information about the experimental design. It is comprised of the filename, the type of RNA fraction measured (T, U or L), the labeling time, the replicate number and an additional number indicating the timecourse order.

Usage

Sc.phenomat.dynamic

Format

The phenomat is a matrix comprised of the file name, the type of RNA fraction mesasured (T, U or L, fraction column), the labeling time (time,timeframe column), the replicate number (nr column) and a number indicating the timecourse order (timecourse column). Rows in this matrix represent the individual experiments.

Source

C. Miller, B. Schwalb, K. Maier, D. Schulz, S. Duemcke, B. Zacher, A. Mayer, J. Sydow, L. Marcinowski, L. Doelken, D. E. Martin, A. Tresch, and P. Cramer. Dynamic transcriptome analysis measures rates of mRNA synthesis and decay in yeast. Mol Syst Biol, 7:458, 2011.


Gene identifiers valid for parameter estimation from the Saccharomyces Cerevisiae Miller et al. wild-type DTA experiment.

Description

Ensembl gene IDs, that passed certain criteria among the Saccharomyces Cerevisiae Miller et al. wild-type DTA experiment to be considered valid for parameter estimation. For details, see supplemental material Miller et al.

Usage

Sc.reliable

Format

Vector of Ensembl gene IDs that can be passed to DTA.estimate for parameter estimation.

Source

C. Miller, B. Schwalb, K. Maier, D. Schulz, S. Duemcke, B. Zacher, A. Mayer, J. Sydow, L. Marcinowski, L. Doelken, D. E. Martin, A. Tresch, and P. Cramer. Dynamic transcriptome analysis measures rates of mRNA synthesis and decay in yeast. Mol Syst Biol, 7:458, 2011.


Gene identifiers valid for parameter estimation from the Saccharomyces Cerevisiae Miller et al. salt stress DTA experiment.

Description

Ensembl gene IDs, that passed certain criteria among the Saccharomyces Cerevisiae Miller et al. salt stress DTA experiment to be considered valid for parameter estimation. For details, see supplemental material Miller et al.

Usage

Sc.reliable.dynamic

Format

Vector of Ensembl gene IDs that can be passed to DTA.estimate for parameter estimation.

Source

C. Miller, B. Schwalb, K. Maier, D. Schulz, S. Duemcke, B. Zacher, A. Mayer, J. Sydow, L. Marcinowski, L. Doelken, D. E. Martin, A. Tresch, and P. Cramer. Dynamic transcriptome analysis measures rates of mRNA synthesis and decay in yeast. Mol Syst Biol, 7:458, 2011.


Ribosome biogenesis genes.

Description

ORF identifiers (Ensembl Gene ID) found to be associated with ribosome biogenesis, rRNA processing etc.

Usage

Sc.ribig.ensg

Format

Vector of ORF identifiers (Ensembl Gene ID).

Source

P. Jorgensen, I. RupeAi, J. R. Sharom, L. Schneper, J. R. Broach, and M. Tyers. A dynamic transcriptional network communicates growth potential to ribosome synthesis and critical cell size. Genes & Development, 18(20):2491-2505, October 2004.


Ribosomal protein genes.

Description

ORF identifiers (Ensembl Gene ID) encoding for ribosomal protein genes.

Usage

Sc.rpg.ensg

Format

Vector of ORF identifiers (Ensembl Gene ID).

Source

A. Nakao, M. Yoshihama, and N. Kenmochi. RPG: the Ribosomal Protein Gene database. Nucleic acids research, 32(Database issue), January 2004.


ISA stress module.

Description

ORF identifiers (Ensembl Gene ID) found to be associated with stress response by the iterative signature algorithm.

Usage

Sc.stress.ensg

Format

Vector of ORF identifiers (Ensembl Gene ID).

Source

J. Ihmels, G. Friedlander, S. Bergmann, O. Sarig, Y. Ziv, and N. Barkai. Revealing modular organization in the yeast transcriptional network. Nature genetics, 31(4):370-377, August 2002.


Transcription factors.

Description

ORF identifiers (Ensembl Gene ID) encoding for transcription factors.

Usage

Sc.tf.ensg

Format

Vector of ORF identifiers (Ensembl Gene ID).

Source

K. D. MacIsaac, T. Wang, D. B. Gordon, D. K. Gifford, G. D. Stormo, and E. Fraenkel. An improved map of conserved regulatory sites for saccharomyces cerevisiae. BMC Bioinformatics, 7:113, 2006.


The amount of thymines in the cDNA of each transcript of Saccharomyces Cerevisiae.

Description

The amount of thymines in the cDNA of each transcript of all Saccharomyces Cerevisiae Ensembl transcript IDs (ORF identifier), to assess the uridine-dependent labeling bias and eventually correct for it.

Usage

Sc.tnumber

Format

Vector gives the number of thymines in the cDNA (uridine residues in RNA) of each Ensembl transcript ID.

Source

E. Birney, D. Andrews, M. Caccamo, Y. Chen, L. Clarke, G. Coates, T. Cox, F. Cunningham, V. Curwen, T. Cutts, T. Down, R. Durbin, X. M. Fernandez-Suarez, P. Flicek, S. Graef, M. Hammond, J. Herrero, K. Howe, V. Iyer, K. Jekosch, A. Kaehaeri, A. Kasprzyk, D. Keefe, F. Kokocinski, E. Kulesha, D. London, I. Longden, C. Melsopp, P. Meidl, B. Overduin, A. Parker, G. Proctor, A. Prlic, M. Rae, D. Rios, S. Redmond, M. Schuster, I. Sealy, S. Searle, J. Severin, G. Slater, D. Smedley, J. Smith, A. Stabenau, J. Stalker, S. Trevanion, A. Ureta- Vidal, J. Vogel, S. White, C.Woodwark, and T. J. Hubbard. Ensembl 2006. Nucleic acids research, 34(Database issue), January 2006.


Gene identifiers valid for cDTA normalization from the Saccharomyces Cerevisiae Sun et al. cDTA experiment.

Description

Ensembl gene IDs, that passed certain criteria among the Saccharomyces Cerevisiae Sun et al. cDTA experiment to be considered valid for cDTA normalization. For details, see Sun et al (Materials and Methods).

Usage

Sp.affy.reliable

Format

Vector of Schizosaccharomyces Pombe affymetrix IDs that can be passed to DTA.normalize for cDTA normalization of the Saccharomyces Cerevisiae identifiers.

Source

M. Sun, B. Schwalb, D. Schulz, N. Pirkl, L. Lariviere, K. Maier, A. Tresch, P. Cramer. Mutual feedback between mRNA synthesis and degradation buffers transcript levels in a eukaryote. Under review.


The amount of thymines in the cDNA of each transcript of Schizosaccharomyces Pombe.

Description

The amount of thymines in the cDNA of each transcript of all Schizosaccharomyces Pombe Ensembl transcript IDs (ORF identifier), to assess the uridine-dependent labeling bias and eventually correct for it.

Usage

Sp.tnumber

Format

Vector gives the number of thymines in the cDNA (uridine residues in RNA) of each Ensembl transcript ID.

Source

E. Birney, D. Andrews, M. Caccamo, Y. Chen, L. Clarke, G. Coates, T. Cox, F. Cunningham, V. Curwen, T. Cutts, T. Down, R. Durbin, X. M. Fernandez-Suarez, P. Flicek, S. Graef, M. Hammond, J. Herrero, K. Howe, V. Iyer, K. Jekosch, A. Kaehaeri, A. Kasprzyk, D. Keefe, F. Kokocinski, E. Kulesha, D. London, I. Longden, C. Melsopp, P. Meidl, B. Overduin, A. Parker, G. Proctor, A. Prlic, M. Rae, D. Rios, S. Redmond, M. Schuster, I. Sealy, S. Searle, J. Severin, G. Slater, D. Smedley, J. Smith, A. Stabenau, J. Stalker, S. Trevanion, A. Ureta- Vidal, J. Vogel, S. White, C.Woodwark, and T. J. Hubbard. Ensembl 2006. Nucleic acids research, 34(Database issue), January 2006.


Saccharomyces Cerevisiae rpb1-N488D (Slow Polymerase) and wild-type cDTA experiment from Sun et al.

Description

R object contains all relevant *.RData files needed for the DTA.estimate function. For example, see Schwalb et al.

Usage

Sun2011

Format

R object contains the following *.RData files: Raw.datamat Sp.affy.reliable Sc.affy2ensg Wt.phenomat Pol.phenomat Sc.ensg.reliable Sc.tnumber

Source

M. Sun, B. Schwalb, D. Schulz, N. Pirkl, L. Lariviere, K. Maier, A. Tresch, P. Cramer. Mutual feedback between mRNA synthesis and degradation buffers transcript levels in a eukaryote. Under review. B. Schwalb, B. Zacher, S. Duemcke, D. Martin, P. Cramer, A. Tresch. Measurement of genome-wide RNA synthesis and decay rates with Dynamic Transcriptome Analysis (DTA/cDTA). Bioinformatics. E. Birney, D. Andrews, M. Caccamo, Y. Chen, L. Clarke, G. Coates, T. Cox, F. Cunningham, V. Curwen, T. Cutts, T. Down, R. Durbin, X. M. Fernandez-Suarez, P. Flicek, S. Graef, M. Hammond, J. Herrero, K. Howe, V. Iyer, K. Jekosch, A. Kaehaeri, A. Kasprzyk, D. Keefe, F. Kokocinski, E. Kulesha, D. London, I. Longden, C. Melsopp, P. Meidl, B. Overduin, A. Parker, G. Proctor, A. Prlic, M. Rae, D. Rios, S. Redmond, M. Schuster, I. Sealy, S. Searle, J. Severin, G. Slater, D. Smedley, J. Smith, A. Stabenau, J. Stalker, S. Trevanion, A. Ureta- Vidal, J. Vogel, S. White, C.Woodwark, and T. J. Hubbard. Ensembl 2006. Nucleic acids research, 34(Database issue), January 2006.


Weighted Total Least Square Regression.

Description

Weigthed total least square regression according to Golub and Van Loan (1980) in SIAM J.Numer.Anal Vol 17 No.6.

Usage

tls(formula, D = NULL, T = NULL, precision = .Machine$double.eps)

Arguments

formula

An object of class formula.

D

Diagonal weigth matrix. Default weights are set to 1.

T

Diagonal weigth matrix. Default weights are set to 1.

precision

Smallest possible numeric value on this machine (default).

Value

tls returns a lm object.

Author(s)

Sebastian Duemcke [email protected]

References

Golub, G.H. and Van Loan, C.F. (1980). An analysis of the total least squares problem. SIAM J. Numer. Anal., 17:883-893.

Examples

f = 1.5 # true ratio
a = rnorm(5000)
b = f*a
a = a + rnorm(5000,sd=0.5)
b = b + rnorm(5000,sd=0.5)

coeff.tls = coef(tls(b ~ a + 0))
coeff.lm1 = coef(lm(b ~ a + 0))
coeff.lm2 = 1/coef(lm(a ~ b + 0))

heatscatter(a,b)
abline(0,coeff.lm1,col="red",pch=19,lwd=2)
abline(0,coeff.lm2,col="orange",pch=19,lwd=2)
abline(0,coeff.tls,col="green",pch=19,lwd=2)
abline(0,f,col="grey",pch=19,lwd=2,lty=2)
legend("topleft", c("Least-squares regr. (y ~ x + 0)", "Least-squares regr. (x ~ y + 0)", "Total Least-squares regr.", "True ratio"), col=c("red", "orange", "green", "grey"), lty=c(1,1,1,2), lwd=2)

results = c(coeff.tls,coeff.lm1,coeff.lm2)
names(results) = c("coeff.tls","coeff.lm1","coeff.lm2")
print(results)

Design of the Saccharomyces Cerevisiae wild-type cDTA experiment from Sun et al.

Description

The phenotype matrix Wt.phenomat contains information about the experimental design. It is comprised of the filename, the type of RNA fraction measured (T, U or L), the labeling time and the replicate number.

Usage

Wt.phenomat

Format

The phenomat is a matrix comprised of the file name, the type of RNA fraction mesasured (T, U or L, fraction column), the labeling time (time,timeframe column) and the replicate number (nr column). Rows in this matrix represent the individual experiments.

Source

M. Sun, B. Schwalb, D. Schulz, N. Pirkl, L. Lariviere, K. Maier, A. Tresch, P. Cramer. Mutual feedback between mRNA synthesis and degradation buffers transcript levels in a eukaryote. Under review.