Title: | Identify Differentially Expressed Genes from RNA-seq data |
---|---|
Description: | DEGseq is an R package to identify differentially expressed genes from RNA-Seq data. |
Authors: | Likun Wang <[email protected]>, Xiaowo Wang <[email protected]> and Xuegong Zhang <[email protected]>. |
Maintainer: | Likun Wang <[email protected]> |
License: | LGPL (>=2) |
Version: | 1.61.0 |
Built: | 2024-11-28 06:26:32 UTC |
Source: | https://github.com/bioc/DEGseq |
This function is used to identify differentially expressed genes when users already have the gene expression values (or the number of reads mapped to each gene).
DEGexp(geneExpMatrix1, geneCol1=1, expCol1=2, depth1=rep(0, length(expCol1)), groupLabel1="group1", geneExpMatrix2, geneCol2=1, expCol2=2, depth2=rep(0, length(expCol2)), groupLabel2="group2", method=c("LRT", "CTR", "FET", "MARS", "MATR", "FC"), pValue=1e-3, zScore=4, qValue=1e-3, foldChange=4, thresholdKind=1, outputDir="none", normalMethod=c("none", "loess", "median"), replicateExpMatrix1=NULL, geneColR1=1, expColR1=2, depthR1=rep(0, length(expColR1)), replicateLabel1="replicate1", replicateExpMatrix2=NULL, geneColR2=1, expColR2=2, depthR2=rep(0, length(expColR2)), replicateLabel2="replicate2", rawCount=TRUE)
DEGexp(geneExpMatrix1, geneCol1=1, expCol1=2, depth1=rep(0, length(expCol1)), groupLabel1="group1", geneExpMatrix2, geneCol2=1, expCol2=2, depth2=rep(0, length(expCol2)), groupLabel2="group2", method=c("LRT", "CTR", "FET", "MARS", "MATR", "FC"), pValue=1e-3, zScore=4, qValue=1e-3, foldChange=4, thresholdKind=1, outputDir="none", normalMethod=c("none", "loess", "median"), replicateExpMatrix1=NULL, geneColR1=1, expColR1=2, depthR1=rep(0, length(expColR1)), replicateLabel1="replicate1", replicateExpMatrix2=NULL, geneColR2=1, expColR2=2, depthR2=rep(0, length(expColR2)), replicateLabel2="replicate2", rawCount=TRUE)
geneExpMatrix1 |
gene expression matrix for replicates of sample1 (or replicate1 when |
geneCol1 |
gene id column in geneExpMatrix1. |
expCol1 |
expression value columns in geneExpMatrix1 for replicates of sample1 (numeric vector).
|
depth1 |
the total number of reads uniquely mapped to genome for each replicate of sample1 (numeric vector),
|
groupLabel1 |
label of group1 on the plots. |
geneExpMatrix2 |
gene expression matrix for replicates of sample2 (or replicate2 when |
geneCol2 |
gene id column in geneExpMatrix2. |
expCol2 |
expression value columns in geneExpMatrix2 for replicates of sample2 (numeric vector).
|
depth2 |
the total number of reads uniquely mapped to genome for each replicate of sample2 (numeric vector),
|
groupLabel2 |
label of group2 on the plots. |
method |
method to identify differentially expressed genes. Possible methods are:
|
pValue |
pValue threshold (for the methods: |
zScore |
zScore threshold (for the methods: |
qValue |
qValue threshold (for the methods: |
thresholdKind |
the kind of threshold. Possible kinds are:
|
foldChange |
fold change threshold on MA-plot (for the method: |
outputDir |
the output directory. |
normalMethod |
the normalization method: |
replicateExpMatrix1 |
matrix containing gene expression values for replicate batch1 (only used when |
geneColR1 |
gene id column in the expression matrix for replicate batch1 (only used when |
expColR1 |
expression value columns in the expression matrix for replicate batch1 (numeric vector) (only used when |
depthR1 |
the total number of reads uniquely mapped to genome for each replicate in replicate batch1 (numeric vector),
|
replicateLabel1 |
label of replicate batch1 on the plots (only used when |
replicateExpMatrix2 |
matrix containing gene expression values for replicate batch2 (only used when |
geneColR2 |
gene id column in the expression matrix for replicate batch2 (only used when |
expColR2 |
expression value columns in the expression matrix for replicate batch2 (numeric vector) (only used when |
depthR2 |
the total number of reads uniquely mapped to genome for each replicate in replicate batch2 (numeric vector),
|
replicateLabel2 |
label of replicate batch2 on the plots (only used when |
rawCount |
a logical value indicating the gene expression values are based on raw read counts or normalized values. |
Benjamini,Y. and Hochberg,Y (1995). Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. R. Stat. Soc. Ser. B 57, 289-300.
Jiang,H. and Wong,W.H. (2008) Statistical inferences for isoform expression in RNA-seq. Bioinformatics, 25, 1026-1032.
Bloom,J.S. et al. (2009) Measuring differential gene expression by short read sequencing: quantitative comparison to 2-channel gene expression microarrays. BMC Genomics, 10, 221.
Marioni,J.C. et al. (2008) RNA-seq: an assessment of technical reproducibility and comparison with gene expression arrays. Genome Res., 18, 1509-1517.
Storey,J.D. and Tibshirani,R. (2003) Statistical significance for genomewide studies. Proc. Natl. Acad. Sci. 100, 9440-9445.
Wang,L.K. and et al. (2010) DEGseq: an R package for identifying differentially expressed genes from RNA-seq data, Bioinformatics 26, 136 - 138.
Yang,Y.H. et al. (2002) Normalization for cDNA microarray data: a robust composite method addressing single and multiple slide systematic variation. Nucleic Acids Research, 30, e15.
DEGexp2
,
DEGseq
,
getGeneExp
,
readGeneExp
,
GeneExpExample1000
,
GeneExpExample5000
.
## kidney: R1L1Kidney, R1L3Kidney, R1L7Kidney, R2L2Kidney, R2L6Kidney ## liver: R1L2Liver, R1L4Liver, R1L6Liver, R1L8Liver, R2L3Liver geneExpFile <- system.file("extdata", "GeneExpExample5000.txt", package="DEGseq") cat("geneExpFile:", geneExpFile, "\n") outputDir <- file.path(tempdir(), "DEGexpExample") geneExpMatrix1 <- readGeneExp(file=geneExpFile, geneCol=1, valCol=c(7,9,12,15,18)) geneExpMatrix2 <- readGeneExp(file=geneExpFile, geneCol=1, valCol=c(8,10,11,13,16)) geneExpMatrix1[30:32,] geneExpMatrix2[30:32,] DEGexp(geneExpMatrix1=geneExpMatrix1, geneCol1=1, expCol1=c(2,3,4,5,6), groupLabel1="kidney", geneExpMatrix2=geneExpMatrix2, geneCol2=1, expCol2=c(2,3,4,5,6), groupLabel2="liver", method="LRT", outputDir=outputDir) cat("outputDir:", outputDir, "\n")
## kidney: R1L1Kidney, R1L3Kidney, R1L7Kidney, R2L2Kidney, R2L6Kidney ## liver: R1L2Liver, R1L4Liver, R1L6Liver, R1L8Liver, R2L3Liver geneExpFile <- system.file("extdata", "GeneExpExample5000.txt", package="DEGseq") cat("geneExpFile:", geneExpFile, "\n") outputDir <- file.path(tempdir(), "DEGexpExample") geneExpMatrix1 <- readGeneExp(file=geneExpFile, geneCol=1, valCol=c(7,9,12,15,18)) geneExpMatrix2 <- readGeneExp(file=geneExpFile, geneCol=1, valCol=c(8,10,11,13,16)) geneExpMatrix1[30:32,] geneExpMatrix2[30:32,] DEGexp(geneExpMatrix1=geneExpMatrix1, geneCol1=1, expCol1=c(2,3,4,5,6), groupLabel1="kidney", geneExpMatrix2=geneExpMatrix2, geneCol2=1, expCol2=c(2,3,4,5,6), groupLabel2="liver", method="LRT", outputDir=outputDir) cat("outputDir:", outputDir, "\n")
This function is another (old) version of DEGexp. It takes the gene expression files as input instead of gene expression matrixs.
DEGexp2(geneExpFile1, geneCol1=1, expCol1=2, depth1=rep(0, length(expCol1)), groupLabel1="group1", geneExpFile2, geneCol2=1, expCol2=2, depth2=rep(0, length(expCol2)), groupLabel2="group2", header=TRUE, sep="", method=c("LRT", "CTR", "FET", "MARS", "MATR", "FC"), pValue=1e-3, zScore=4, qValue=1e-3, foldChange=4, thresholdKind=1, outputDir="none", normalMethod=c("none", "loess", "median"), replicate1="none", geneColR1=1, expColR1=2, depthR1=rep(0, length(expColR1)), replicateLabel1="replicate1", replicate2="none", geneColR2=1, expColR2=2, depthR2=rep(0, length(expColR2)), replicateLabel2="replicate2", rawCount=TRUE)
DEGexp2(geneExpFile1, geneCol1=1, expCol1=2, depth1=rep(0, length(expCol1)), groupLabel1="group1", geneExpFile2, geneCol2=1, expCol2=2, depth2=rep(0, length(expCol2)), groupLabel2="group2", header=TRUE, sep="", method=c("LRT", "CTR", "FET", "MARS", "MATR", "FC"), pValue=1e-3, zScore=4, qValue=1e-3, foldChange=4, thresholdKind=1, outputDir="none", normalMethod=c("none", "loess", "median"), replicate1="none", geneColR1=1, expColR1=2, depthR1=rep(0, length(expColR1)), replicateLabel1="replicate1", replicate2="none", geneColR2=1, expColR2=2, depthR2=rep(0, length(expColR2)), replicateLabel2="replicate2", rawCount=TRUE)
geneExpFile1 |
file containing gene expression values for replicates of sample1 (or replicate1 when |
geneCol1 |
gene id column in geneExpFile1. |
expCol1 |
expression value columns in geneExpFile1 for replicates of sample1 (numeric vector).
|
depth1 |
the total number of reads uniquely mapped to genome for each replicate of sample1 (numeric vector),
|
groupLabel1 |
label of group1 on the plots. |
geneExpFile2 |
file containing gene expression values for replicates of sample2 (or replicate2 when |
geneCol2 |
gene id column in geneExpFile2. |
expCol2 |
expression value columns in geneExpFile2 for replicates of sample2 (numeric vector).
|
depth2 |
the total number of reads uniquely mapped to genome for each replicate of sample2 (numeric vector),
|
groupLabel2 |
label of group2 on the plots. |
header |
a logical value indicating whether geneExpFile1 and geneExpFile2
contain the names of the variables as its first line. See |
sep |
the field separator character. If sep = "" (the default for read.table)
the separator is white space, that is one or more spaces, tabs, newlines or carriage returns.
See |
method |
method to identify differentially expressed genes. Possible methods are:
|
pValue |
pValue threshold (for the methods: |
zScore |
zScore threshold (for the methods: |
qValue |
qValue threshold (for the methods: |
thresholdKind |
the kind of threshold. Possible kinds are:
|
foldChange |
fold change threshold on MA-plot (for the method: |
outputDir |
the output directory. |
normalMethod |
the normalization method: |
replicate1 |
file containing gene expression values for replicate batch1 (only used when |
geneColR1 |
gene id column in the expression file for replicate batch1 (only used when |
expColR1 |
expression value columns in the expression file for replicate batch1 (numeric vector) (only used when |
depthR1 |
the total number of reads uniquely mapped to genome for each replicate in replicate batch1 (numeric vector),
|
replicateLabel1 |
label of replicate batch1 on the plots (only used when |
replicate2 |
file containing gene expression values for replicate batch2 (only used when |
geneColR2 |
gene id column in the expression file for replicate batch2 (only used when |
expColR2 |
expression value columns in the expression file for replicate batch2 (numeric vector) (only used when |
depthR2 |
the total number of reads uniquely mapped to genome for each replicate in replicate batch2 (numeric vector),
|
replicateLabel2 |
label of replicate batch2 on the plots (only used when |
rawCount |
a logical value indicating the gene expression values are based on raw read counts or normalized values. |
Benjamini,Y. and Hochberg,Y (1995). Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. R. Stat. Soc. Ser. B 57, 289-300.
Jiang,H. and Wong,W.H. (2008) Statistical inferences for isoform expression in RNA-seq. Bioinformatics, 25, 1026-1032.
Bloom,J.S. et al. (2009) Measuring differential gene expression by short read sequencing: quantitative comparison to 2-channel gene expression microarrays. BMC Genomics, 10, 221.
Marioni,J.C. et al. (2008) RNA-seq: an assessment of technical reproducibility and comparison with gene expression arrays. Genome Res., 18, 1509-1517.
Storey,J.D. and Tibshirani,R. (2003) Statistical significance for genomewide studies. Proc. Natl. Acad. Sci. 100, 9440-9445.
Wang,L.K. and et al. (2010) DEGseq: an R package for identifying differentially expressed genes from RNA-seq data, Bioinformatics 26, 136 - 138.
Yang,Y.H. et al. (2002) Normalization for cDNA microarray data: a robust composite method addressing single and multiple slide systematic variation. Nucleic Acids Research, 30, e15.
DEGexp
,
DEGseq
,
getGeneExp
,
readGeneExp
,
GeneExpExample1000
,
GeneExpExample5000
.
## kidney: R1L1Kidney, R1L3Kidney, R1L7Kidney, R2L2Kidney, R2L6Kidney ## liver: R1L2Liver, R1L4Liver, R1L6Liver, R1L8Liver, R2L3Liver geneExpFile <- system.file("extdata", "GeneExpExample5000.txt", package="DEGseq") outputDir <- file.path(tempdir(), "DEGexpExample") exp <- readGeneExp(file=geneExpFile, geneCol=1, valCol=c(7,9,12,15,18)) exp[30:35,] exp <- readGeneExp(file=geneExpFile, geneCol=1, valCol=c(8,10,11,13,16)) exp[30:35,] DEGexp2(geneExpFile1=geneExpFile, geneCol1=1, expCol1=c(7,9,12,15,18), groupLabel1="kidney", geneExpFile2=geneExpFile, geneCol2=1, expCol2=c(8,10,11,13,16), groupLabel2="liver", method="MARS", outputDir=outputDir) cat("outputDir:", outputDir, "\n")
## kidney: R1L1Kidney, R1L3Kidney, R1L7Kidney, R2L2Kidney, R2L6Kidney ## liver: R1L2Liver, R1L4Liver, R1L6Liver, R1L8Liver, R2L3Liver geneExpFile <- system.file("extdata", "GeneExpExample5000.txt", package="DEGseq") outputDir <- file.path(tempdir(), "DEGexpExample") exp <- readGeneExp(file=geneExpFile, geneCol=1, valCol=c(7,9,12,15,18)) exp[30:35,] exp <- readGeneExp(file=geneExpFile, geneCol=1, valCol=c(8,10,11,13,16)) exp[30:35,] DEGexp2(geneExpFile1=geneExpFile, geneCol1=1, expCol1=c(7,9,12,15,18), groupLabel1="kidney", geneExpFile2=geneExpFile, geneCol2=1, expCol2=c(8,10,11,13,16), groupLabel2="liver", method="MARS", outputDir=outputDir) cat("outputDir:", outputDir, "\n")
This function is used to identify differentially expressed genes from RNA-seq data. It takes uniquely mapped reads from RNA-seq data for the two samples with a gene annotation as input. So users should map the reads (obtained from sequencing libraries of the samples) to the corresponding genome in advance.
DEGseq(mapResultBatch1, mapResultBatch2, fileFormat="bed", readLength=32, strandInfo=FALSE, refFlat, groupLabel1="group1", groupLabel2="group2", method=c("LRT", "CTR", "FET", "MARS", "MATR", "FC"), pValue=1e-3, zScore=4, qValue=1e-3, foldChange=4, thresholdKind=1, outputDir="none", normalMethod=c("none", "loess", "median"), depthKind=1, replicate1="none", replicate2="none", replicateLabel1="replicate1", replicateLabel2="replicate2")
DEGseq(mapResultBatch1, mapResultBatch2, fileFormat="bed", readLength=32, strandInfo=FALSE, refFlat, groupLabel1="group1", groupLabel2="group2", method=c("LRT", "CTR", "FET", "MARS", "MATR", "FC"), pValue=1e-3, zScore=4, qValue=1e-3, foldChange=4, thresholdKind=1, outputDir="none", normalMethod=c("none", "loess", "median"), depthKind=1, replicate1="none", replicate2="none", replicateLabel1="replicate1", replicateLabel2="replicate2")
mapResultBatch1 |
vector containing uniquely mapping result files for technical replicates of sample1 (or replicate1 when |
mapResultBatch2 |
vector containing uniquely mapping result files for technical replicates of sample2 (or replicate2 when |
fileFormat |
file format: |
readLength |
the length of the reads (only used if |
strandInfo |
whether the strand information was retained during the cloning of the cDNAs.
|
refFlat |
gene annotation file in UCSC refFlat format.
|
groupLabel1 |
label of group1 on the plots. |
groupLabel2 |
label of group2 on the plots. |
method |
method to identify differentially expressed genes. Possible methods are:
|
pValue |
pValue threshold (for the methods: |
zScore |
zScore threshold (for the methods: |
qValue |
qValue threshold (for the methods: |
thresholdKind |
the kind of threshold. Possible kinds are:
|
foldChange |
fold change threshold on MA-plot (for the method: |
outputDir |
the output directory. |
normalMethod |
the normalization method: |
depthKind |
|
replicate1 |
files containing uniquely mapped reads obtained from replicate batch1 (only used when |
replicate2 |
files containing uniquely mapped reads obtained from replicate batch2 (only used when |
replicateLabel1 |
label of replicate batch1 on the plots (only used when |
replicateLabel2 |
label of replicate batch2 on the plots (only used when |
Benjamini,Y. and Hochberg,Y. (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. R. Stat. Soc. Ser. B 57, 289-300.
Jiang,H. and Wong,W.H. (2009) Statistical inferences for isoform expression in RNA-seq. Bioinformatics, 25, 1026-1032.
Bloom,J.S. et al. (2009) Measuring differential gene expression by short read sequencing: quantitative comparison to 2-channel gene expression microarrays. BMC Genomics, 10, 221.
Marioni,J.C. et al. (2008) RNA-seq: an assessment of technical reproducibility and comparison with gene expression arrays. Genome Res., 18, 1509-1517.
Storey,J.D. and Tibshirani,R. (2003) Statistical significance for genomewide studies. Proc. Natl. Acad. Sci. 100, 9440-9445.
Wang,L.K. and et al. (2010) DEGseq: an R package for identifying differentially expressed genes from RNA-seq data, Bioinformatics 26, 136 - 138.
Yang,Y.H. et al. (2002) Normalization for cDNA microarray data: a robust composite method addressing single and multiple slide systematic variation. Nucleic Acids Research, 30, e15.
DEGexp
,
getGeneExp
,
readGeneExp
,
kidneyChr21.bed
,
liverChr21.bed
,
refFlatChr21
.
kidneyR1L1 <- system.file("extdata", "kidneyChr21.bed.txt", package="DEGseq") liverR1L2 <- system.file("extdata", "liverChr21.bed.txt", package="DEGseq") refFlat <- system.file("extdata", "refFlatChr21.txt", package="DEGseq") mapResultBatch1 <- c(kidneyR1L1) ## only use the data from kidneyR1L1 and liverR1L2 mapResultBatch2 <- c(liverR1L2) outputDir <- file.path(tempdir(), "DEGseqExample") DEGseq(mapResultBatch1, mapResultBatch2, fileFormat="bed", refFlat=refFlat, outputDir=outputDir, method="LRT") cat("outputDir:", outputDir, "\n")
kidneyR1L1 <- system.file("extdata", "kidneyChr21.bed.txt", package="DEGseq") liverR1L2 <- system.file("extdata", "liverChr21.bed.txt", package="DEGseq") refFlat <- system.file("extdata", "refFlatChr21.txt", package="DEGseq") mapResultBatch1 <- c(kidneyR1L1) ## only use the data from kidneyR1L1 and liverR1L2 mapResultBatch2 <- c(liverR1L2) outputDir <- file.path(tempdir(), "DEGseqExample") DEGseq(mapResultBatch1, mapResultBatch2, fileFormat="bed", refFlat=refFlat, outputDir=outputDir, method="LRT") cat("outputDir:", outputDir, "\n")
GeneExpExample1000.txt includes the first 1000 lines in SupplementaryTable2.txt which is a supplementary file for Marioni,J.C. et al. (2008) (http://genome.cshlp.org/content/18/9/1509/suppl/DC1).
Marioni,J.C. et al. (2008) RNA-seq: an assessment of technical reproducibility and comparison with gene expression arrays. Genome Res., 18, 1509-1517.
DEGexp
,
getGeneExp
,
readGeneExp
,
GeneExpExample5000
.
GeneExpExample5000.txt includes the first 5000 lines in SupplementaryTable2.txt which is a supplementary file for Marioni,J.C. et al. (2008) (http://genome.cshlp.org/content/18/9/1509/suppl/DC1).
Marioni,J.C. et al. (2008) RNA-seq: an assessment of technical reproducibility and comparison with gene expression arrays. Genome Res., 18, 1509-1517.
DEGexp
,
getGeneExp
,
readGeneExp
,
GeneExpExample1000
.
This function is used to count the number of reads and calculate the RPKM for each gene. It takes uniquely mapped reads from RNA-seq data for a sample with a gene annotation file as input. So users should map the reads (obtained from sequencing library of the sample) to the corresponding genome in advance.
getGeneExp(mapResultBatch, fileFormat="bed", readLength=32, strandInfo=FALSE, refFlat, output=paste(mapResultBatch[1],".exp",sep=""), min.overlapPercent=1)
getGeneExp(mapResultBatch, fileFormat="bed", readLength=32, strandInfo=FALSE, refFlat, output=paste(mapResultBatch[1],".exp",sep=""), min.overlapPercent=1)
mapResultBatch |
vector containing uniquely mapping result files for a sample.
|
fileFormat |
file format: |
readLength |
the length of the reads (only used if |
strandInfo |
whether the strand information was retained during the cloning of the cDNAs.
|
refFlat |
gene annotation file in UCSC refFlat format.
|
output |
the output file. |
min.overlapPercent |
the minimum percentage of the overlapping length for a read and an exon over
the length of the read itself, for counting this read from the exon. should be <=1.
|
This function sums up the numbers of reads coming from all exons of a specific gene
(according to the known gene annotation) as the gene expression value.
The exons may include the 5'-UTR, protein coding region, and 3'-UTR of a gene.
All introns are ignored for a gene for the sequenced reads are from the spliced transcript library.
If a read falls in an exon (usually, a read is shorter than an exon), the read count for this exon plus 1.
If a read is crossing the boundary of an exon, users can tune the parameter min.overlapPercent
,
which is the minimum percentage of the overlapping length for a read and an exon over the length of the read
itself, for counting this read from the exon.
The method use the union of all possible exons for calculating the length for each gene.
Mortazavi,A. et al. (2008) Mapping and quantifying mammalian transcriptomes by RNA-seq. Nat. Methods, 5, 621-628.
DEGexp
,
DEGseq
,
readGeneExp
,
kidneyChr21.bed
,
liverChr21.bed
,
refFlatChr21
.
kidneyR1L1 <- system.file("extdata", "kidneyChr21.bed.txt", package="DEGseq") refFlat <- system.file("extdata", "refFlatChr21.txt", package="DEGseq") mapResultBatch <- list(kidneyR1L1) output <- file.path(tempdir(), "kidneyChr21.bed.exp") exp <- getGeneExp(mapResultBatch, refFlat=refFlat, output=output) write.table(exp[30:35,], row.names=FALSE) cat("output: ", output, "\n")
kidneyR1L1 <- system.file("extdata", "kidneyChr21.bed.txt", package="DEGseq") refFlat <- system.file("extdata", "refFlatChr21.txt", package="DEGseq") mapResultBatch <- list(kidneyR1L1) output <- file.path(tempdir(), "kidneyChr21.bed.exp") exp <- getGeneExp(mapResultBatch, refFlat=refFlat, output=output) write.table(exp[30:35,], row.names=FALSE) cat("output: ", output, "\n")
The reads uniquely mapped to human chromosome 21 obtained from the kidney sample sequenced in Run 1, Lane 1.
Marioni,J.C. et al. (2008) RNA-seq: an assessment of technical reproducibility and comparison with gene expression arrays. Genome Res., 18, 1509-1517.
DEGexp
,
DEGseq
,
getGeneExp
,
readGeneExp
,
liverChr21.bed
,
refFlatChr21
.
The reads uniquely mapped to human chromosome 21 obtained from the kidney sample sequenced in Run 1, Lane 1.
Marioni,J.C. et al. (2008) RNA-seq: an assessment of technical reproducibility and comparison with gene expression arrays. Genome Res., 18, 1509-1517.
DEGexp
,
DEGseq
,
getGeneExp
,
readGeneExp
,
liverChr21.bed
,
refFlatChr21
.
The reads uniquely mapped to human chromosome 21 obtained from the liver sample sequenced in Run 1, Lane 2.
Marioni,J.C. et al. (2008) RNA-seq: an assessment of technical reproducibility and comparison with gene expression arrays. Genome Res., 18, 1509-1517.
DEGexp
,
DEGseq
,
getGeneExp
,
readGeneExp
,
kidneyChr21.bed
,
refFlatChr21
.
The reads uniquely mapped to human chromosome 21 obtained from the liver sample sequenced in Run 1, Lane 2.
Marioni,J.C. et al. (2008) RNA-seq: an assessment of technical reproducibility and comparison with gene expression arrays. Genome Res., 18, 1509-1517.
DEGexp
,
DEGseq
,
getGeneExp
,
readGeneExp
,
kidneyChr21.bed
,
refFlatChr21
.
This method is used to read gene expression values from a file to a matrix in R workspace. So that the matrix can be used as input of other packages, such as edgeR. The input of the method is a file that contains gene expression values.
readGeneExp(file, geneCol=1, valCol=2, label = NULL, header=TRUE, sep="")
readGeneExp(file, geneCol=1, valCol=2, label = NULL, header=TRUE, sep="")
file |
file containing gene expression values. |
geneCol |
gene id column in file. |
valCol |
expression value columns to be read in the file. |
label |
label for the columns. |
header |
a logical value indicating whether the file contains
the names of the variables as its first line. See |
sep |
the field separator character. If sep = "" (the default for read.table)
the separator is white space, that is one or more spaces, tabs, newlines or carriage returns.
See |
getGeneExp
,
GeneExpExample1000
,
GeneExpExample5000
.
## If the data files are collected in a zip archive, the following ## commands will first extract them to the temporary directory. geneExpFile <- system.file("extdata", "GeneExpExample1000.txt", package="DEGseq") exp <- readGeneExp(file=geneExpFile, geneCol=1, valCol=c(7,9,12,15,18,8,10,11,13,16)) exp[30:35,]
## If the data files are collected in a zip archive, the following ## commands will first extract them to the temporary directory. geneExpFile <- system.file("extdata", "GeneExpExample1000.txt", package="DEGseq") exp <- readGeneExp(file=geneExpFile, geneCol=1, valCol=c(7,9,12,15,18,8,10,11,13,16)) exp[30:35,]
The gene annotation file includes the annotations of genes on chromosome 21, and is in UCSC refFlat format. See http://genome.ucsc.edu/goldenPath/gbdDescriptionsOld.html#RefFlat.
DEGseq
,
DEGexp
,
kidneyChr21.bed
,
liverChr21.bed
.