Package 'ComPrAn'

Title: Complexome Profiling Analysis package
Description: This package is for analysis of SILAC labeled complexome profiling data. It uses peptide table in tab-delimited format as an input and produces ready-to-use tables and plots.
Authors: Rick Scavetta [aut], Petra Palenikova [aut, cre]
Maintainer: Petra Palenikova <[email protected]>
License: MIT + file LICENSE
Version: 1.15.0
Built: 2024-12-29 04:36:25 UTC
Source: https://github.com/bioc/ComPrAn

Help Index


Create scatter plot

Description

This function creates a plot of all peptides that belong to a single protein

Usage

allPeptidesPlot(
  .listDF,
  protein,
  max_frac,
  meanLine = FALSE,
  repPepLine = FALSE,
  separateLabStates = FALSE,
  grid = TRUE,
  titleLabel = "all",
  titleAlign = "left",
  ylabel = "Precursor Area",
  xlabel = "Fraction",
  legendLabel = "Condition",
  labelled = "Labeled",
  unlabelled = "Unlabeled",
  controlSample = "",
  textSize = 12,
  axisTextSize = 8
)

Arguments

.listDF

list, list containing data frames of peptides for each protein indexed by 'Protein Group Accessions'

protein

character, 'Protein Group Accession' to show in the plot

max_frac

numeric, total number of fractions

meanLine

logical, specifies whether to plot a mean line

repPepLine

logical, specifies whether to plot a representative peptide line

separateLabStates

logical, specifies whether label states will be separated into facets

grid

logical, specifies presence/absence of gridline in the plot

titleLabel

character, what to call the plot

titleAlign

character, one of the 'left', 'center'/'centre', 'right', specifies alignment of the title in plot

ylabel

character

xlabel

character

legendLabel

character

labelled

character, label to be used for isLabel == TRUE

unlabelled

character, label to be used for isLabel == FALSE

controlSample

character, either labelled or unlabelled, this setting will adjust coloring based on which sample is a control

textSize

numeric, size of text in the plot

axisTextSize

numeric, size of axis labels in the plot

Value

plot

Examples

##Use example peptide data set, read in and clean data
inputFile <- system.file("extData", "data.txt", package = "ComPrAn")
peptides <- peptideImport(inputFile)
peptides <- cleanData(peptides, fCol = "Search ID")
## separate chemical modifications and labelling into separate columns
peptides <- splitModLab(peptides) 
## remove unneccessary columns, simplify rows
peptides <- simplifyProteins(peptides) 
## Pick representative peptide for each protein for both scenarios
peptide_index <- pickPeptide(peptides)

##create a plot showing all peptides of selected protein
protein <- "P52815"
max_frac <- 23
#default plot
allPeptidesPlot(peptide_index,protein, max_frac = max_frac)
#other plot version
allPeptidesPlot(peptide_index,protein, max_frac = max_frac,
repPepLine = TRUE, grid = FALSE, titleAlign = "center")
#other plot version
allPeptidesPlot(peptide_index,protein, max_frac = max_frac,
repPepLine = TRUE, meanLine = TRUE, separateLabStates =TRUE,
titleLabel = "GN")

Create a data frames with cluster assignment

Description

This function creates a data frame with column specifying clusters assigned ot each protein using the table and distance matrix produced by clusterComp() function.

Usage

assignClusters(.listDf, sample, method = "complete", cutoff = 0.5)

Arguments

.listDf

list of data frames produced by clusterComp() function

sample

which of the two samples you want to apply the function to (labeled/unlabeled).

method

character, One of 'average', 'single' or 'complete' (default), specifies the linkage method to be used inside R hclust() function

cutoff

numeric, specifies the h value in R cutree() function, height at which to 'cut the tree', everything with distance below this value is assigned into same cluster everything with larger distance is in a different cluster extreme possible values are 0 to 2 (might not be reached for all data sets)

Value

dataframe

See Also

clusterComp

Examples

##Use example normalised proteins file
inputFile <- system.file("extData", "dataNormProts.txt", package = "ComPrAn")
#read file in and change structure of table to required format
forAnalysis <- protImportForAnalysis(inputFile)
# create components necessary for clustering
clusteringDF <- clusterComp(forAnalysis,scenar = "A", PearsCor = "centered")
#assign clusters
labTab_clust <- assignClusters(.listDf = clusteringDF,sample = "labeled",
method = 'complete', cutoff = 0.5)
unlabTab_clust <- assignClusters(.listDf = clusteringDF,sample = "unlabeled",
                               method = 'complete', cutoff = 0.5)

Clean raw peptide complexomics data

Description

Perform initial, mandatory, cleaning of data Function to process raw input data into format required for subsequent analysis. .data is a data frame containing raw input data. This function checks (not neccessarily in this order):

  • renames Sequence ID column to Fraction and converts values in this column from letters to numbers

  • reorders Protein Group Accessions containing multiple proteins

  • removes rows in which PSM Ambiguity == 'Rejected'

  • removes rows in which # Protein Groups == 0

  • removes rows in which Precursor Area is NA

  • removes cols that are not used at all

Usage

cleanData(.data, fCol = "Search ID")

Arguments

.data

dataframe

fCol

character The column containing the fractions, e.g. "Search ID" (default)

Value

dataframe

Author(s)

Petra Palenikova [email protected]

Rick Scavetta [email protected]

Examples

##Use example peptide data set, read in and clean data
inputFile <- system.file("extData", "data.txt", package = "ComPrAn")
peptides <- peptideImport(inputFile)
peptides <- cleanData(peptides, fCol = "Search ID")

Create components necessary for clustering

Description

Reformat the table for the one neccessary for assignClusters function. Calculate the distance matirx using selected variant of correlation.

Usage

clusterComp(.df, scenar = "A", PearsCor = "centered")

Arguments

.df

data frame, table of normalised protein values

scenar

character, scenario intended for clustering, either "A" or "B"

PearsCor

character, pearsons correlation variant (centered/uncentered)

Value

list of data frames

Examples

##Use example normalised proteins file
inputFile <- system.file("extData", "dataNormProts.txt", package = "ComPrAn")
#read file in and change structure of table to required format
forAnalysis <- protImportForAnalysis(inputFile)
# create components necessary for clustering
clusteringDF <- clusterComp(forAnalysis,scenar = "A", PearsCor = "centered")

Execute the complexomics Shiny app

Description

Execute the complexomics Shiny app

Usage

compranApp()

Value

Shiny app

Examples

#' @examples
##to start the shiny app associated with ComPrAn package run
if(interactive()){
    compranApp()
}

Covert clustered tables into format for export

Description

Covert clustered tables into format for export

Usage

exportClusterAssignments(labClustTable, unlabClustTable)

Arguments

labClustTable

output: data frame containing columns: 'Protein Group Accessions' character 'Protein Descriptions' character 'Cluster number - unlabeled' integer 'Cluster number - labeled' integer

unlabClustTable

labClustTable, unlabClustTable: data frames, contain columns: 'Protein Group Accessions' character 'Protein Descriptions' character isLabel character ('TRUE'/'FALSE') - here in one data frame all are TRUE in second one all are FALSE columns 1 to n, numeric, n is the total number of fractions/slices, each of this columns contains 'Precursor Area' values in a given fraction(columns) for a protein(rows) cluster integer

Value

dataframe

Examples

##Use example normalised proteins file
inputFile <- system.file("extData", "dataNormProts.txt", package = "ComPrAn")
#read file in and change structure of table to required format
forAnalysis <- protImportForAnalysis(inputFile)
# create components necessary for clustering
clusteringDF <- clusterComp(forAnalysis,scenar = "A", PearsCor = "centered")
#assign clusters
labTab_clust <- assignClusters(.listDf = clusteringDF,sample = "labeled",
method = 'complete', cutoff = 0.5)
unlabTab_clust <- assignClusters(.listDf = clusteringDF,sample = "unlabeled",
                               method = 'complete', cutoff = 0.5)
#make table of cluster assginment
tableClusterExport <- exportClusterAssignments(labTab_clust,unlabTab_clust)

Extract Only Data Belonging to Representative Peptide

Description

Incomplete labelling - there are cases when in peptides containing multiple Lys/Arg not all of them are heavy in labelled samples. As in SILAC we assume that addition of label does not affect peptide properties, we are taking a mean 'Precursor Area' value as the representative 'Precursor Area' in such cases.

Usage

extractRepPeps(.data, scenario, label = "Label neccessary for scenario A")

Arguments

.data

dataframe containing all peptides of one protein

scenario

character "A", or "B"

label

character, selects for which label state the representative peptides will be exported, can have value of "TRUE" or "FALSE", required only for scenario "A"

Value

dataframe containing only representative peptide


Get normalised table for all proteins

Description

Extracts values for representative peptides for each protein, for both scenario A and scenario B. Results are combined into one data frame in a format either indended for further analysis or for export.

Usage

getNormTable(.listDf, purpose = "analysis")

Arguments

.listDf

list of data frames

purpose

character, purpose of use of function output, values either "analysis" of "export"

Value

dataframe

Examples

##Use example peptide data set, read in and clean data
inputFile <- system.file("extData", "data.txt", package = "ComPrAn")
peptides <- peptideImport(inputFile)
peptides <- cleanData(peptides, fCol = "Search ID")
## separate chemical modifications and labelling into separate columns
peptides <- splitModLab(peptides) 
## remove unneccessary columns, simplify rows
peptides <- simplifyProteins(peptides) 
## Pick representative peptide for each protein for both scenarios
peptide_index <- pickPeptide(peptides)
## extract table with normalised protein values for both scenarios
forAnalysis <- getNormTable(peptide_index,purpose = "analysis")

Make heatmap

Description

This function creates a heatmap for a subset of proteins in dataFrame specified in groupData, heatmap is divided into facets according to isLabel

Usage

groupHeatMap(
  dataFrame,
  groupData,
  groupName,
  titleAlign = "left",
  newNamesCol = NULL,
  colNumber = 2,
  ylabel = "Protein",
  xlabel = "Fraction",
  legendLabel = "Relative Protein Abundance",
  legendPosition = "right",
  grid = TRUE,
  labelled = "labeled",
  unlabelled = "unlabeled",
  orderColumn = NULL
)

Arguments

dataFrame

data frame, contains columns: 'Protein Group Accessions' character 'Protein Descriptions' character Fraction integer isLabel character ('TRUE'/'FALSE' values) 'Precursor Area' double scenario character

groupData

data frame, mandatory column: 'Protein Group Accessions' character - this column is used for filtering optional columns: any other column of type character that should be used for renaming

groupName

character, name that should be used for the group specified in groupData

titleAlign

character, one of the 'left', 'center'/'centre', 'right', specifies alignment of the title in plot

newNamesCol

character, if groupData contains column for re-naming and you want to use it, specify the column name in here

colNumber

numeric, values of 1 or 2, specifies whether facets will be shown side-by-side or above each other

ylabel

character

xlabel

character

legendLabel

character

legendPosition

character, one of "right" or "bottom"

grid

logical, specifies presence/absence of gridline in the plot

labelled

character, label to be used for isLabel == TRUE

unlabelled

character, label to be used for isLabel == FALSE

orderColumn

character, if groupData contains column for re-ordering and you want to use it, specify the column name in here

Value

plot

Examples

##Use example normalised proteins file
inputFile <- system.file("extData", "dataNormProts.txt", package = "ComPrAn")
#read file in and change structure of table to required format
forAnalysis <- protImportForAnalysis(inputFile)
##example plot:
groupDfn <- system.file("extData", "exampleGroup.txt", package = "ComPrAn")
groupName <- 'group1'
groupData <- data.table::fread(groupDfn)
groupHeatMap(forAnalysis[forAnalysis$scenario == "B",], groupData, groupName)

Title

Description

Title

Usage

makeBarPlotClusterSummary(df, name = "sample 1")

Arguments

df

data frame, contains columns: 'Protein Group Accessions' character 'Protein Descriptions' character isLabel character ('TRUE'/'FALSE') columns 1 to n, numeric, n is the total number of fractions/slices, each of this columns contains 'Precursor Area' values in a given fraction(columns) for a protein(rows) cluster integer

name

character, specifies the name of the sample

Value

plot

Examples

##Use example normalised proteins file
inputFile <- system.file("extData", "dataNormProts.txt", package = "ComPrAn")
#read file in and change structure of table to required format
forAnalysis <- protImportForAnalysis(inputFile)
# create components necessary for clustering
clusteringDF <- clusterComp(forAnalysis,scenar = "A", PearsCor = "centered")
#assign clusters
labTab_clust <- assignClusters(.listDf = clusteringDF,sample = "labeled",
method = 'complete', cutoff = 0.5)
unlabTab_clust <- assignClusters(.listDf = clusteringDF,sample = "unlabeled",
                               method = 'complete', cutoff = 0.5)
#Make bar plots for labeled and unlabeled samples
makeBarPlotClusterSummary(labTab_clust, name = 'labeled')
makeBarPlotClusterSummary(unlabTab_clust, name = 'unlabeled')

Make disstance matrix

Description

This function calculates distance matrix for a data frame, column by column requires uncenteredCor function to work

Usage

makeDist(df, centered = FALSE)

Arguments

df

data frame, contains columns: 'Protein Group Accessions' character 'Protein Descriptions' character isLabel character ('TRUE'/'FALSE') columns 1 to n, numeric, n is the total number of fractions/slices, each of this columns contains 'Precursor Area' values in a given fraction(columns) for a protein(rows)

centered

centered: logical,if TRUE return dist matrix based on centered Pearson correlation (uses R cor() function, fast) ,if FALSE return dist matrix based on uncentered Pearson correlation (uses custom uncenteredCor() function, slow)

Value

matrix


Convert extractRepPeps output to a Matrix

Description

Convert the dataframe as output from extractRepPeps() to matrix-like table return normalized or raw values of Precursor Area, by default return normalized values

Usage

normalizeTable(.data, applyNormalization = TRUE)

Arguments

.data

a dataframe

applyNormalization

logical apply normalization or not

Value

a matrix


Convert Normalized Dataframe to Export format

Description

This is a convenient function for plotting

Usage

normTableForExport(labTab, unlabTab, comboTab)

Arguments

labTab

a dataframe

unlabTab

a dataframe

comboTab

a dataframe

Value

a dataframe


Convert Normalized Dataframe To Long format

Description

This is a convenient function for plotting

Usage

normTableWideToLong(labTab, unlabTab, comboTab)

Arguments

labTab

a dataframe

unlabTab

a dataframe

comboTab

a dataframe

Value

a dataframe


Compare a Single Group of Proteins Between Two Label States

Description

This function creates a ?scatter plot? for a subset of proteins in dataFrame specified in groupData. Intended use of the function - using scenario A data, compare shape of the migration profile for a SINGLE GROUP of proteins BETWEEN the two LABEL STATES.

Usage

oneGroupTwoLabelsCoMigration(
  dataFrame,
  max_frac,
  groupData = NULL,
  groupName = "group1",
  meanLine = FALSE,
  medianLine = FALSE,
  ylabel = "Relative Protein Abundance",
  xlabel = "Fraction",
  legendLabel = "Condition",
  labelled = "Labeled",
  unlabelled = "Unlabeled",
  jitterPoints = 0.3,
  pointSize = 2.5,
  grid = FALSE,
  titleAlign = "left",
  alphaValue = 1,
  controlSample = "",
  textSize = 12,
  axisTextSize = 8
)

Arguments

dataFrame

dataFrame: data frame, data frame of normalised values for proteins from SCENARIO A, contains columns: 'Protein Group Accessions' character 'Protein Descriptions' character Fraction integer isLabel character ('TRUE'/'FALSE' values) 'Precursor Area' double scenario character

max_frac

numeric, total number of fractions

groupData

character vector, contins list of Protein Group Accessions that belong to the group we want to plot

groupName

character, name that should be used for the group specified in groupData

meanLine

logical, specifies whether to plot a mean line for all values in the group

medianLine

logical, specifies whether to plot a median line for all values in the group

ylabel

character

xlabel

character

legendLabel

character

labelled

character, label to be used for isLabel == TRUE

unlabelled

character, label to be used for isLabel == FALSE

jitterPoints

numeric

pointSize

numeric, size of the point in the plot

grid

logical, specifies presence/absence of gridline in the plot

titleAlign

character, one of the 'left', 'center'/'centre', 'right', specifies alignment of the title in plot

alphaValue

numeric, transparency of the point, values 0 to 1

controlSample

character, either labelled or unlabelled, this setting will adjust plot coloring based on which sample is a control

textSize

numeric, size of text in the plot

axisTextSize

numeric, size of axis labels in the plot

Value

plot

Examples

##Use example normalised proteins file
inputFile <- system.file("extData", "dataNormProts.txt", package = "ComPrAn")
#read file in and change structure of table to required format
forAnalysis <- protImportForAnalysis(inputFile)
##example plot:
groupDV <- c("Q16540","P52815","P09001","Q13405","Q9H2W6")
groupName <- 'group1' 
max_frac <- 23 
oneGroupTwoLabelsCoMigration(forAnalysis, max_frac, groupDV,groupName)

Report Proteins Present In Only One Label State

Description

This function returns NAMES of proteins present in only labelled/only unlabelld or both label states

Usage

onlyInOneLabelState(.data)

Arguments

.data

An environment containing dataframes

Value

a list with 3 items, each item is a vector containing names belonging to one of 3 groups

Examples

##Use example peptide data set, read in and clean data
inputFile <- system.file("extData", "data.txt", package = "ComPrAn")
peptides <- peptideImport(inputFile)
peptides <- cleanData(peptides, fCol = "Search ID")
## separate chemical modifications and labelling into separate columns
peptides <- splitModLab(peptides) 
## remove unneccessary columns, simplify rows
peptides <- simplifyProteins(peptides) 
## Pick representative peptide for each protein for both scenarios
peptide_index <- pickPeptide(peptides)
## extract list of names of proteins present in one/both samples
oneStateList <- onlyInOneLabelState(peptide_index)

Import raw peptide complexomics data

Description

Check presence of required columns inputFile is a character vector containing the location of peptide file This function checks:

  • are all required columns present

  • are these columns in correct format

Usage

peptideImport(inputFile)

Arguments

inputFile

character

Value

dataframe

Author(s)

Petra Palenikova [email protected]

Rick Scavetta [email protected]

Examples

##Use example peptide data set, read in data
inputFile <- system.file("extData", "data.txt", package = "ComPrAn")
peptides <- peptideImport(inputFile)

Select Top Peptide For Various Scenarios

Description

This function selects a single unique peptide to represent each 'Protein Group Accession' There are 2 ways of selecting peptides, both are perform as they are needed for different tasks later on.

  1. Scenario A: select peptide occuring in most fractions, do this individually for labelled/unlabelled (max value for any peptide is equal to number of fractions) in case of ties, pick peptide whith highest 'Precursor Area' in any fraction.

  2. Scenario B: select peptide occuring in most fractions counting both label states together (max value for any peptide is equal to twice the number of fractions) in case of ties, pick peptide with highest 'Precursor Area' in any fraction. Representative peptide in Scenario B is picked only for proteins that have shared peptide between label states.

Usage

pickPeptide(.data)

Arguments

.data

a dataframe

Value

list of data frames

Examples

##Use example peptide data set, read in and clean data
inputFile <- system.file("extData", "data.txt", package = "ComPrAn")
peptides <- peptideImport(inputFile)
peptides <- cleanData(peptides, fCol = "Search ID")
## separate chemical modifications and labelling into separate columns
peptides <- splitModLab(peptides) 
## remove unneccessary columns, simplify rows
peptides <- simplifyProteins(peptides) 
## Pick representative peptide for each protein for both scenarios
peptide_index <- pickPeptide(peptides)

Create Line Plots

Description

This function creates a line plot for a proteins in dataFrame specified by protein

Usage

proteinPlot(
  dataFrame,
  protein,
  max_frac,
  grid = TRUE,
  titleLabel = "all",
  titleAlign = "left",
  ylabel = "Relative Protein Abundance",
  xlabel = "Fraction",
  legendLabel = "Condition",
  labelled = "Labeled",
  unlabelled = "Unlabeled",
  controlSample = "",
  textSize = 12,
  axisTextSize = 8
)

Arguments

dataFrame

data frame, contains columns: 'Protein Group Accessions' character; 'Protein Descriptions' character;bFraction integer; isLabel character ("TRUE"/"FALSE" values);'Precursor Area' double; scenario character

protein

character the protein of interest

max_frac

integer total number of fractions

grid

logical specifies presence/absence of gridline in the plot

titleLabel

character, if it is 'all' or 'GN', it specifies whether to show full label or just the gene name, if any other character is used, the value of titleLabel will be used as plot title

titleAlign

character one of the 'left', 'center'/'centre', 'right', specifies alignment of the title in plot

ylabel

character

xlabel

character

legendLabel

character

labelled

character label to be used for isLabel == TRUE

unlabelled

character label to be used for isLabel == FALSE

controlSample

character, either labelled or unlabelled, this setting will adjust plot coloring based on which sample is a control

textSize

numeric, size of text in the plot

axisTextSize

numeric, size of axis labels in the plot

Value

a plot

Examples

##Use example normalised proteins file
inputFile <- system.file("extData", "dataNormProts.txt", package = "ComPrAn")
#read file in and change structure of table to required format
forAnalysis <- protImportForAnalysis(inputFile)
##example plot:
protein <- "P52815"
max_frac <- 23
proteinPlot(forAnalysis, protein, max_frac)

Modify import protein data

Description

This function converts imported protien table into format compatible with downstream analysis Imported file needs to contain following columns:

  • "Protein Group Accessions" - character/factor

  • "Protein Descriptions" - character

  • "scenario" - character/factor

  • "label" - logical

  • columns "1" to "n" - numeric

Usage

protImportForAnalysis(inputFile)

Arguments

inputFile

- character vector containing the location of protein file

Value

data frame

Examples

##Use example normalised proteins file
inputFile <- system.file("extData", "dataNormProts.txt", package = "ComPrAn")
#read file in and change structure of table to required format
forAnalysis <- protImportForAnalysis(inputFile)

Simplify Raw Proteins file

Description

  • For rows: Keep only one row with highest Precursor Area in cases where for a single Protein Group Accession in a single fraction there are multiple rows with the same combination of Sequence, Mods and Charge

  • For cols: remove columns that are not neccessary any more

Usage

simplifyProteins(.data, direction = c("rows", "cols"))

Arguments

.data

a dataframe

direction

character, rows, cols or both

Value

a dataframe

Examples

##Use example peptide data set, read in and clean data
inputFile <- system.file("extData", "data.txt", package = "ComPrAn")
peptides <- peptideImport(inputFile)
peptides <- cleanData(peptides, fCol = "Search ID")
## separate chemical modifications and labelling into separate columns
peptides <- splitModLab(peptides) 
## remove unneccessary columns, simplify rows
peptides <- simplifyProteins(peptides)

Split Modification and Label tags

Description

Splits up the Modifications column into lists of vectors for modifications(Mods) and labels(Labels) It adds two more columns to the data frame:

  • UniqueCombinedID_A: Unique combinations of Sequence, Mods and Charge for "scenario A".

  • UniqueCombinedID_B: Unique combinations of Sequence, Mods, Charge and Labels for "scenario B"

Usage

splitModLab(.data)

Arguments

.data

dataframe

Value

dataframe

Examples

##Use example peptide data set, read in and clean data
inputFile <- system.file("extData", "data.txt", package = "ComPrAn")
peptides <- peptideImport(inputFile)
peptides <- cleanData(peptides, fCol = "Search ID")
## separate chemical modifications and labelling into separate columns
peptides <- splitModLab(peptides)

Optional Filtering For Raw Data

Description

Filters only rows with specified values in columns Rank and Confidence Level , specified as cl

Usage

toFilter(.data, rank = 1, cl = c("Low", "Middle", "High"))

Arguments

.data

dataframe

rank

integer

cl

charater any combination of one or more of 'Low', 'Middle', or 'High'

Value

a dataframe

Examples

##Use example peptide data set, read in and clean data
inputFile <- system.file("extData", "data.txt", package = "ComPrAn")
peptides <- peptideImport(inputFile)
peptides <- cleanData(peptides, fCol = "Search ID")
##optional filtering based on rank and confidence level
peptides <- toFilter(peptides, rank = 1)

Compare a Two Groups of Proteins Within One Label State

Description

This function creates a scatter plot for a subset of proteins in dataFrame specified in group1Data and group2Data, label states are always separated into facets

Usage

twoGroupsWithinLabelCoMigration(
  dataFrame,
  max_frac,
  group1Data = NULL,
  group1Name = "group1",
  group2Data = NULL,
  group2Name = "group2",
  meanLine = FALSE,
  medianLine = FALSE,
  ylabel = "Relative Protein Abundance",
  xlabel = "Fraction",
  legendLabel = "Group",
  labelled = "Labeled",
  unlabelled = "Unlabeled",
  jitterPoints = 0.3,
  pointSize = 2.5,
  grid = FALSE,
  showTitle = FALSE,
  titleAlign = "left",
  alphaValue = 1,
  textSize = 12,
  axisTextSize = 8
)

Arguments

dataFrame

dataFrame: data frame, data frame of normalised values for proteins from SCENARIO A, contains columns: 'Protein Group Accessions' character 'Protein Descriptions' character Fraction integer isLabel character ('TRUE'/'FALSE' values) 'Precursor Area' double scenario character

max_frac

numeric, total number of fractions

group1Data

character vector, contins list of Protein Group Accessions that belong to the group we want to plot for group 1

group1Name

character, name that should be used for the group specified in group1Data

group2Data

character vector, contins list of Protein Group Accessions that belong to the group we want to plot for group 2

group2Name

character, name that should be used for the group specified in group2Data

meanLine

logical, specifies whether to plot a mean line for all values in the group

medianLine

logical, specifies whether to plot a median line for all values in the group

ylabel

character

xlabel

character

legendLabel

character

labelled

character, label to be used for isLabel == TRUE

unlabelled

character, label to be used for isLabel == FALSE

jitterPoints

numeric

pointSize

numeric, size of the point in the plot

grid

logical, specifies presence/absence of gridline in the plot

showTitle

logical

titleAlign

character, one of the 'left', 'center'/'centre', 'right', specifies alignment of the title in plot

alphaValue

numeric, transparency of the point, values 0 to 1

textSize

numeric, size of text in the plot

axisTextSize

numeric, size of axis labels in the plot

Details

Intended use of the function - using scenario A data, compare shape of the migration profile between a TWO GROUPS of proteins WITHIN the ONE LABEL STATE

Value

plot

Examples

##Use example normalised proteins file
inputFile <- system.file("extData", "dataNormProts.txt", package ="ComPrAn")
#read file in and change structure of table to required format
forAnalysis <- protImportForAnalysis(inputFile)
##example plot:
g1D <- c("Q16540","P52815","P09001","Q13405","Q9H2W6") #group 1 data vector
g1N <- 'group1'                                        #group 1 name
g2D <- c("Q9NVS2","Q9NWU5","Q9NX20","Q9NYK5","Q9NZE8") #group 2 data vector
g2N <- 'group2'                                        #group 2 name
max_frac <- 23 
twoGroupsWithinLabelCoMigration(forAnalysis, max_frac, g1D, g1N, g2D, g2N)

Perform uncentered correlation

Description

Perform uncentered correlation

Usage

uncenteredCor(xx, yy)

Arguments

xx

numeric vector

yy

numeric vector

Value

vector