Don’t have Git installed, see Git Guides
Don’t have Docker installed, see Docker Engine
CaDrA
container with its built image--name
: give an identity to the
container
-d
: run container in
detached mode
-p
: map host port to
container port [host_port]:[container_port]
-e
: set a default password to access
RStudio Server
For more information about the Docker syntax, see Docker run reference
Check if the container is built successfully
CaDrA
on RStudio Server hosted within a Docker
environmentUsing your preferred web browser, go to http://localhost:8787. You will be prompted to log into Rstudio Server. Enter the following credentials:
username: rstudio
password: CaDrA
When the Rstudio Server is opened, copy the following commands and run them in the R console. The script is used to search for candidate drivers that associated with the YAP/TAZ Activity in the BrCA dataset that provided with the package.
# Load R packages
library(CaDrA)
library(SummarizedExperiment)
## Read in BRCA GISTIC+Mutation object
utils::data(BRCA_GISTIC_MUT_SIG)
eset_mut_scna <- BRCA_GISTIC_MUT_SIG
## Read in input score
utils::data(TAZYAP_BRCA_ACTIVITY)
input_score <- TAZYAP_BRCA_ACTIVITY
## Samples to keep based on the overlap between the two inputs
overlap <- base::intersect(base::names(input_score), base::colnames(eset_mut_scna))
eset_mut_scna <- eset_mut_scna[,overlap]
input_score <- input_score[overlap]
## Binarize FS to only have 0's and 1's
SummarizedExperiment::assay(eset_mut_scna)[SummarizedExperiment::assay(eset_mut_scna) > 1] <- 1.0
## Pre-filter FS based on occurrence frequency
eset_mut_scna_flt <- CaDrA::prefilter_data(
FS = eset_mut_scna,
max_cutoff = 0.6, # max event frequency (60%)
min_cutoff = 0.03 # min event frequency (3%)
)
# Run candidate search
topn_res <- CaDrA::candidate_search(
FS = eset_mut_scna_flt,
input_score = input_score,
method = "ks_pval", # Use Kolmogorow-Smirnow scoring function
method_alternative = "less", # Use one-sided hypothesis testing
weights = NULL, # If weights is provided, perform a weighted-KS test
search_method = "both", # Apply both forward and backward search
top_N = 7, # Evaluate top 7 starting points for each search
max_size = 7, # Maximum size a meta-feature matrix can extend to
do_plot = FALSE, # Plot after finding the best features
best_score_only = FALSE # Return all results from the search
)
## Fetch the meta-feature set corresponding to its best scores over top N features searches
topn_best_meta <- CaDrA::topn_best(topn_res)
# Visualize the best results with the meta-feature plot
CaDrA::meta_plot(topn_best_list = topn_best_meta, input_score_label = "YAP/TAZ Activity")
# Evaluate results across top N features you started from
CaDrA::topn_plot(topn_res)
Any questions or issues? Please report them on our github issues.