Package 'CRImage'

Title: CRImage a package to classify cells and calculate tumour cellularity
Description: CRImage provides functionality to process and analyze images, in particular to classify cells in biological images. Furthermore, in the context of tumor images, it provides functionality to calculate tumour cellularity.
Authors: Henrik Failmezger <[email protected]>, Yinyin Yuan <[email protected]>, Oscar Rueda <[email protected]>, Florian Markowetz <[email protected]>
Maintainer: Henrik Failmezger <[email protected]>, Yinyin Yuan <[email protected]>
License: Artistic-2.0
Version: 1.55.0
Built: 2024-11-21 06:06:43 UTC
Source: https://github.com/bioc/CRImage

Help Index


CRImage is a package to analyze images and classify cells.

Description

CRImage allows classification of cells in biological images. It offers methods to segment cells or cell nuclei in biological images for example HE stained images. It offers methods to create a classifier and to classify cells in these images. Furthermore it allows the calculation of tumour cellularity for large microscope images.

CRImage makes use of the image processing package EBImage, which uses the 'ImageMagick' library for image I/O operations and the 'GTK' library to display images.

Details

Package: CRImage
Type: Package
Version: 1.0
Date: 2010-04-27
License: LGPL Version 2 or later
LazyLoad: yes

Package content

Image processing methods:

  • calculateThreshold

  • segmentImage

Classification:

  • createTrainingSet

  • createClassifier

  • classifyCells

Tumour cellularity

  • calculateCellularity

  • processAperio

Author(s)

Henrik Failmezger, <[email protected]>

Yinyin Yuan, <[email protected]>

Oscar Rueda, <[email protected]>

Florian Markowetz, <[email protected]>

CRI Cambridge

Li Ka Shing Centre

Robinson Way

Cambridge, CB2 0RE, UK

Ludwigs-Maximilians University of Munich

Examples

example(segmentImage)
example(createClassifier)
example(classifyImage)

Calculation of tumour cellularity

Description

The function calculates the tumour cellularity of an image by counting tumour and non tumour cells.

Usage

calculateCellularity(filename="",image=NA,classifier=NULL,cancerIdentifier=NA,KS=FALSE,maxShape=NA,minShape=NA,failureRegion=NA,colors=c(),threshold="otsu",classesToExclude=c(),numWindows=2,classifyStructures=FALSE,pixelClassifier=NA,ksToExclude=c(),densityToExclude=c(),numDensityWindows=4)

Arguments

filename

A path to an image file.

image

If filename is undefined, an Image object

classifier

A SVM object, created with createClassifier or directly with the package e1071

cancerIdentifier

A string which describes, how the cancer class is named.

KS

Apply kernel smoother?

maxShape

Maximum size of cell nuclei

minShape

Minimum size of cell nuclei

failureRegion

minimum size of failure regions

colors

Colors to paint the classes

threshold

Which threshold should be uses, "otsu" or "phansalkar"

classesToExclude

Should a class be excluded from cellularity calculation?

numWindows

Number of windows for the threshold.

classifyStructures

Use hierarchical classification. If yes a pixel classifier has to be defined.

pixelClassifier

A SVM to classify pixel based on their color values. Needed if hierarchical classification should be applied.

ksToExclude

These classes are excluded from kernel smoothing.

densityToExclude

This class is excluded from cellularity calculation.

numDensityWindows

Number of windows for the density plot.

Details

The method calculates tumour cellularity of an image. The cells of the image are classified and the cellularity is: numTumourCells/numPixel. Furthermore the number of cells of the different classes are counted. A heatmap of cellularity is created. The image is divided in 16 subwindows and cellularity is calculated for every subwindow. Green in the heatmaps indicates strong cellularity, white low cellularity.

Value

A list containing

cellularity values

a vector, the n first values indicate the n numbers of cells in the n classes, the n + 1th value indicates the tumour cellularity, The n + 2th value is the ratio of tumour cells by all cells

cancerHeatmap

Heatmap of cancer density

Author(s)

Henrik Failmezger, [email protected]

Examples

t = system.file("extdata", "trainingData.txt", package="CRImage")
#read training data
trainingData=read.table(t,header=TRUE)
#create classifier
classifier=createClassifier(trainingData)[[1]]
#calculation of cellularity
f = system.file("extdata", "exImg.jpg", package="CRImage")
exImg=readImage(f)
cellularity=calculateCellularity(classifier=classifier,filename=f,KS=TRUE,maxShape=800,minShape=40,failureRegion=2000,classifyStructures=FALSE,cancerIdentifier="c",numDensityWindows=2,colors=c("green","red"))

Calculates Mean and Standard deviation of an image

Description

Mean and SD calculation

Usage

calculateMeanStdTarget(imgT)

Arguments

imgT

the Image to calculate.

Details

Mean and SD

Value

Vector with mean and standard deviation.

Author(s)

Henrik Failmezger, [email protected]

Examples

#read the target image
	f1= system.file("extdata", "exImg2.jpg", package="CRImage")
	targetImage=readImage(f1)
	#read the image whose color values should be adapted
	f2= system.file("extdata", "exImg3.jpg", package="CRImage")
	imgToConvert=readImage(f2)
	#calculate mean and standard deviation of target color channels
	mst=calculateMeanStdTarget(targetImage)
	# create a white pixel mask
	whitePixelMask=imgToConvert[,,1]>0.85 & imgToConvert[,,2]>0.85 & imgToConvert[,,3]>0.85
	#adapt color channels of image
imgCorrected=colorCorrection(imgToConvert,mst,whitePixelMask)

Does Otsu thresholding

Description

The function applies Otsu thresholding on the image.

Usage

calculateOtsu(allGreyValues)

Arguments

allGreyValues

Vector of grey values.

Details

The function calculates a value which separates the grey value histogram the best in foreground and background.

Value

the threshold

Author(s)

Henrik Failmezger, [email protected]

References

Nobuyuki Otsu: A threshold selection method from grey level histograms. In: IEEE Transactions on Systems, Man, and Cybernetics. New York 9.1979, S.62-66. ISSN 1083-4419

See Also

calculateThreshold localOtsuThreshold

Examples

f1= system.file("extdata", "exImg2.jpg", package="CRImage")
print(f1)
img=readImage(f1)
print(img)
#convert to grayscale
imgG=EBImage::channel(img,'grey')
#threshold value
t=calculateOtsu(as.vector(imgG))

A function to classify cells

Description

The function classifies cells and paints the different class types in the image.

Usage

classifyCells(classifier,filename="",image=NA,segmentedImage=NA,featuresObjects=NA,paint=TRUE,KS=FALSE,cancerIdentifier=NA, maxShape=NA,minShape=NA,failureRegion=NA,colors=c(),classesToExclude=c(),threshold="otsu",numWindows=2,structures=NA,classifyStructures=FALSE,pixelClassifier=NA,ksToExclude=c())

Arguments

classifier

A Support Vector Machine created by createClassifier or directly by the package e1071

filename

A path to an image file.

image

An 'Image' object or an array.

segmentedImage

An 'Image' object or an array.The corresponding segmented image (created by segmentImage)

featuresObjects

Cell feature file of the segmentedImage (created by segmentImage)

paint

If true, the classified cells are painted with different colors in the image

KS

Use Kernel Smoohter in classification?

cancerIdentifier

A string which describes, how the cancer class is named.

maxShape

Maximum size of cell nuclei

minShape

Minimum size of cell nuclei

failureRegion

minimum size of failure regions

colors

Colors to paint the classes

classesToExclude

Which class should be excluded?

threshold

Which thresholding method should be used, "otsu" or "phansalkar"

numWindows

Number of windows to use for thresholding.

structures

If the image is already segmented, structures can be inserted to enable hierarchical classification.

classifyStructures

Use hierarchical classification. If yes a pixel classifier has to be defined.

pixelClassifier

A SVM to classify pixel based on their color values. Needed if hierarchical classification should be applied.

ksToExclude

These classes are excluded from kernel smoothing.

Details

The kernels smoother improves the classification for cells which are likely to occur in clusters, like tumour cells. The kernel smoothing method can only be applied for two classes. If there are more classes only the normal svm without kernel smoothing is applied. Different classes are labeled with different colors in the image.

Value

A list with

comp1

classes

comp2

Classes, painted in the image, if paint was true

Author(s)

Henrik Failmezger, [email protected]

Examples

t = system.file("extdata", "trainingData.txt", package="CRImage")
#read training data
trainingData=read.table(t,header=TRUE)
#create classifier
classifier=createClassifier(trainingData)[[1]]
#classify cells
f = system.file("extdata", "exImg.jpg", package="CRImage")
classesValues=classifyCells(classifier,filename=f,KS=TRUE,maxShape=800,minShape=40,failureRegion=2000)

Color transfer between images.

Description

The colors of one image are adapted to the colors of a target image.

Usage

colorCorrection(imgO, meanStdTarget,whiteMask = c())

Arguments

imgO

The image who's colors should be adapted

meanStdTarget

Array with mean and standard deviation of the target image.

whiteMask

Boolean mask of white pixel in the image. These pixels are excluded from color correction.

Details

Mean and standard deviation of the target image can be calculated using the function calculateMeanStdTarget.

Value

The image with adapted colors.

Author(s)

Henrik Failmezger, [email protected]

References

Reinhard, E.; Adhikhmin, M.; Gooch, B.; Shirley, P.; , "Color transfer between images," Computer Graphics and Applications, IEEE , vol.21, no.5, pp.34-41, Sep/Oct 2001 doi: 10.1109/38.946629 URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=946629&isnumber=20481

See Also

calculateMeanStandardTarget

Examples

#read the target image
	f1= system.file("extdata", "exImg2.jpg", package="CRImage")
	targetImage=readImage(f1)
	#read the image whose color values should be adapted
	f2= system.file("extdata", "exImg3.jpg", package="CRImage")
	imgToConvert=readImage(f2)
	#calculate mean and standard deviation of target color channels
	mst=calculateMeanStdTarget(targetImage)
	# create a white pixel mask
	whitePixelMask=imgToConvert[,,1]>0.85 & imgToConvert[,,2]>0.85 & imgToConvert[,,3]>0.85
	#adapt color channels of image
	imgCorrected=colorCorrection(imgToConvert,mst,whitePixelMask)

Conversion from HSV color space to RGB color space

Description

The function converts images in the HSV colour space to the RGB colour space.

Usage

convertHSVToRGB(imgHSV)

Arguments

imgHSV

An 'Image' object or an array in the HSV colour space.

Details

Standard colour space conversion.

Value

An array in the RGB colour space.

Author(s)

Henrik Failmezger, [email protected]

See Also

convertRGBToHSV convertRGBToLAB convertLABToRGB

Examples

f= system.file("extdata", "exImg.jpg", package="CRImage")
img=readImage(f)
#conversion to RGB color space
imgRGB=convertHSVToRGB(img)

Conversion of LAB colour space to RGB colour space

Description

Color space conversion.

Usage

convertLABToRGB(imgLAB)

Arguments

imgLAB

LAB channel vectors.

Details

Color space conversion

Value

RGB channel vectors.

Author(s)

Henrik Failmezger, [email protected]

Examples

f= system.file("extdata", "exImg.jpg", package="CRImage")
img=readImage(f)
#conversion to HSV color space
imgRGB=convertLABToRGB(img)

Conversion from RGB color space to HSV color space

Description

The RGB Image is converted to an HSV image.

Usage

convertRGBToHSV(img)

Arguments

img

The RGB image

Details

The entries of the array are Hue, Saturation and Value.

Value

The image in HSV color space.

Author(s)

Henrik Failmezger, [email protected]

See Also

convertHSVToRGB convertRGBToLAB convertLABToRGB

Examples

f= system.file("extdata", "exImg.jpg", package="CRImage")
img=readImage(f)
#conversion to HSV color space
imgHSV=convertRGBToHSV(img)

Converts RGB to LAB color space.

Description

Conversion of Color spaces.

Usage

convertRGBToLAB(imgT)

Arguments

imgT

The RGB image.

Details

Color space conversion

Value

The image in LAB color space.

Author(s)

Henrik Failmezger, [email protected]

Examples

f= system.file("extdata", "exImg.jpg", package="CRImage")
img=readImage(f)
#conversion to LAB color space
imgLAB=convertRGBToLAB(img)

Allelic Copy Number correction for cellularity

Description

This function segments copy number and corrects log-ratios (LRR) and beta allele frequencies (BAF) values for cellularity.

Usage

correctCopyNumber(arr="Sample1", chr=NULL, p=NULL, z=NULL, min.value=-5)

Arguments

arr

Name of the array.

chr

Chromosome to run. If NULL, all chromosomes are run.

p

Percentage of tumoural cells

.

z

Copy Number Data. Must be a dataframe with the following columns: Name (id of the probe), Chr (chromosome), Pos (position), LRR (log ratios) and BAF (beta allele frequencies).

min.value

Value assigned to the probes that have 0 copies after correction.

Details

The data.frame z must contain only SNP probes, that is probes with both LRR and BAF values. It is recommended that all replicated probes are merged so the positions are unique. This function calls DNAcopy to segment the LRR and then correct the segmented profiles for normal contamination according to the method described in the reference below (see for details).

Value

A list with 2 components:

y

a data.frame with as many rows as probes containing the following variables: Chrom (chromosome), Pos (position), Orig.LRR (LRR before correction) Orig.BAF (BAF before correction), Corr.LRR (LRR after cellularity correction) and Corr.BAF (BAF after correction)

seg

a data.frame with the segmented data. Contains the following columns: ID (name of the array), chrom (chromosome), loc.start (start of the region), loc.end (end of the region), num.mark (number of probes in the region), seg.mean (LRR of the region), BAF (BAF of the regions), num.BAF (number of SNP probes in the region), Sa (estimated absolute copy number for the first allele), Sb (estimated absolute copy number for the first allele), LRR.tum (corrected LRR for the region), BAF.tum (corrected BAF for the region).

Note

Includes an adaptation of aCGH mergeLevels function to fix a problem with ansari.test.

Author(s)

Oscar M. Rueda, [email protected]

References

Yuan, Y et al. Quantitative image analysis of cellular heterogeneity in primary breast tumors enriches genomic assays. In prep.

Examples

LRR <- c(rnorm(100, 0, 1), rnorm(10, -2, 1), rnorm(20, 3, 1),
       rnorm(100,0, 1)) 
BAF <- c(rnorm(100, 0.5, 0.1), rnorm(5, 0.2, 0.01), rnorm(5, 0.8, 0.01), rnorm(10, 0.25, 0.1), rnorm(10, 0.75, 0.1),
       rnorm(100,0.5, 0.1)) 

Pos <- sample(x=1:500, size=230, replace=TRUE)
Pos <- cumsum(Pos)
Chrom <- rep(1, length(LRR))
z <- data.frame(Name=1:length(LRR), Chrom=Chrom, Pos=Pos, LRR=LRR, BAF=BAF)
res <- correctCopyNumber(arr="Sample1", chr=1, p=0.75, z=z)

Thresholding

Description

Creates a binary image from a grayscale image by thresholding.

Usage

createBinaryImage(imgG,img=NULL,method="otsu",threshold=NULL,numWindows=1,whitePixelMask=c())

Arguments

img

An Image object or an array.

imgG

The grey valued Image object.

method

Either "otsu" or "phansalkar"

threshold

Fixed threshold

numWindows

Number of windows to use for threshold calculation.

whitePixelMask

Boolean mask of white pixels, if they should be excluded from thresholding

Details

The functions returns the binary image resulting from the thresholding. If threshold is defined, all pixels smaller than this value will be fixed to 1 all other values will be set to 0. If threshold is undefined, the thresholding value is calculated automatically using 'otsu' or 'phansalkar' thresholding.

The function 'otsu' does Otsu thresholding on the grey level histograms of the image. The function 'phansalkar' does thresholding using the mean and standard deviation of a specified window. The thresholding is done on the RGB as well as the LAP color space and the results are ORed. The window size is dim(img)/numWindows. White pixel can be excluded from thresholding (e.g. if white is background) by defining a whitePixelMask

Value

The binary image.

Author(s)

Henrik Failmezger, [email protected]

References

Neerad Phansalkar, Sumit More, Ashish Sabale, Dr. Madhuri Joshi, "Adaptive Local Thresholding for Detection of Nuclei in Diversly Stained Cytology Images," 2011 IEEE International Conference in Communications and Signal Processing (ICCSP), pp. 218, 10 Feb. 2011

Nobuyuki Otsu: A threshold selection method from grey level histograms. In: IEEE Transactions on Systems, Man, and Cybernetics. New York 9.1979, S.62-66. ISSN 1083-4419

Examples

f= system.file("extdata", "exImg.jpg", package="CRImage")
img=readImage(f)
#conversion to grayscale
imgG=EBImage::channel(img,"gray")
imgB=createBinaryImage(imgG,img=img,method="otsu",numWindows=4)
#white pixel mask
whitePixelMask=img[,,1]>0.85 & img[,,2]>0.85 & img[,,3]>0.85
#exclude white pixels from thresholding
imgB=createBinaryImage(imgG,img=img,method="otsu",numWindows=4,whitePixelMask)
#phansalkar threshold
imgB=createBinaryImage(imgG,img=img,method="phansalkar",numWindows=4)

Construction of a classifier

Description

Creates a classifier for a training set.

Usage

createClassifier(trainingData, cross = FALSE)

Arguments

trainingData

A table, created by segmentImage with manually added classes.

cross

Does 10-fold cross validation to test the classifiers performance.

Details

Topological features include the density of cells and the size of the surrounding cytoplasma of a cell. These features depend on the size of the image. If training image and the image to classify have different size, these features can fool the classification and should not be enabled.

Value

A List containing:

classifier

The classifier

performance

cross validation performance

Author(s)

Henrik Failmezger, [email protected]

See Also

'createTrainingSet','classifyCells'

Examples

f = system.file("extdata", "trainingData.txt", package="CRImage")
#read training data
trainingData=read.table(f,header=TRUE)
#create classifier
classifier=createClassifier(trainingData)[[1]]

Interactive Session for cell labeling

Description

The functions creates an interactive session in order to label cells with their classes. The labeled cells can be used as training set for the classifier. Note!! This is until now only tested for MacOsX.

Usage

labelCells(img, segmentedImage, classes, classColours, nblocks = 3, labeledPoints = NULL, filename = NULL, filenameImage = NULL,transformCoordinates=FALSE)

Arguments

img

The image.

segmentedImage

The segmented image.

classes

The possible class labels.

classColours

The colors for the class labels.

nblocks

The image can be separated in several blocks, as zooming is not possible.

labeledPoints

Labeled cells from a previous training session.

filename

The table of labeled cells is saved at this location.

filenameImage

The image with the labeled cells is saved at this location.

transformCoordinates

deprecated

Details

Use the keys: a: In order to add a label to a cell. d: In order to delete a label from a cell. c: To switch between classes. q: To quit the interactive session. r: To refresh the session (labeled cells will be shown after refreshing)

Value

A table with columns: index: the index of the cell in the segmented image. x: x-coordinate of the cell y: y-coordinate of the cell classCell: Label of the cell xLocal: Local x coordinate in the subimage(block) yLocal: Local y coordinate in the subimage(block) block: Block number in which the cell arises.

Author(s)

Henrik Failmezger

Examples

##---- Should be DIRECTLY executable !! ----
##-- ==>  Define data, use random,
##--	or do  help(data=index)  for the standard data sets.

## The function is currently defined as

Plot CN profiles corrected for cellularity

Description

This function takes the result of a call to correctCopyNumber and plots the results.

Usage

plotCorrectedCN(CN, chr=NULL)

Arguments

CN

object result of a call to correctCopyNumber.

chr

chromosome to plot.

Details

A panel with four plots is created. The top panel shows LRR (with DNAcopy segmentation overlayed) and BAF before correction and the bottom panel shows the plots after correction.

Value

No value is returned.

Author(s)

Oscar M. Rueda, [email protected]

References

Yuan, Y et al. Quantitative image analysis of cellular heterogeneity in primary breast tumors enriches genomic assays. In prep.

Examples

LRR <- c(rnorm(100, 0, 1), rnorm(10, -2, 1), rnorm(20, 3, 1),
       rnorm(100,0, 1)) 
BAF <- c(rnorm(100, 0.5, 0.1), rnorm(5, 0.2, 0.01), rnorm(5, 0.8, 0.01), rnorm(10, 0.25, 0.1), rnorm(10, 0.75, 0.1),
       rnorm(100,0.5, 0.1)) 

Pos <- sample(x=1:500, size=230, replace=TRUE)
Pos <- cumsum(Pos)
Chrom <- rep(1, length(LRR))
z <- data.frame(Name=1:length(LRR), Chrom=Chrom, Pos=Pos, LRR=LRR, BAF=BAF)
res <- correctCopyNumber(arr="Sample1", chr=1, p=0.75, z=z)
plotCorrectedCN(res, chr=1)

Cellularity Calculation of Aperio TX Scanner

Description

Procession of Aperio TX Slides.

Usage

processAperio(classifier=classifier,inputFolder=inputFolder,outputFolder=outputFolder,identifier=identifier,numSlides=numSlides,cancerIdentifier=cancerIdentifier,classOther = NA,maxShape=800,minShape=40,failureRegion=2000,slideToProcess=NA,KS=TRUE,colors=c(),classesToExclude=c(),threshold="otsu",numWindows=2,colorCorrection=FALSE,classifyStructures=FALSE,ksToExclude=c(),pixelClassifier=NA,densityToExclude=c(),numDensityWindows=32,resizeFactor=4,plotCellTypeDensity=TRUE,greyscaleImage=0,penClassifier=NULL,referenceHist=NULL,fontSize = 10)

Arguments

classifier

The classifier.

inputFolder

The path to the image folder.

outputFolder

The path to the output folder.

identifier

The identifier of the files ("Ss" or "Da")

numSlides

The number of sections in the image.

cancerIdentifier

The identifier of the cancer class

classOther

deprecated

maxShape

Maximum size of cell nuclei

minShape

Minimum size of cell nuclei

failureRegion

minimum size of failure regions

slideToProcess

Set this parameter if only a certain slide should be processed

KS

Apply Kernel Smoother?

colors

Colors to paint the classes

classesToExclude

Which class should be excluded?

threshold

Which thresholding method should be used, "otsu" or "phansalkar" possible

numWindows

Number of windows to use for thresholding.

colorCorrection

deprecated

classifyStructures

Use hierarchical classification. If yes a pixel classifier has to be defined.

ksToExclude

These classes are excluded from kernel smoothing.

pixelClassifier

A SVM to classify pixel based on their color values. Needed if hierarchical classification should be applied.

densityToExclude

This class is excluded from cellularity calculation.

numDensityWindows

Number of windows for the density plot.

resizeFactor

Specifies the size of the cell density image. If this variable is not defined, the size of the thumbnail is used for the cell density image, else the size is calculated by size(thumbnail)*resizeFactor. The thumbnail is the small overview image, created by the Aperio software.

plotCellTypeDensity

Plot the density of different cell types?

greyscaleImage

Color channel of the RGB image that should be used for thresholding

penClassifier

Classifier to exclude low quality images (will be part of next release)

referenceHist

Colour Histogram of a reference image that can be used to calculate the quality of the recent image. (will be part of next release)

fontSize

will be part of next release

Details

The function processes images of Aperio TX scanners. The images have to be saved in the CWS format.

Value

Four folders are created in the output folder.

Files

Cellularity values and cell numbers are saved in the file

classifiedImage

Subimages with labeled tumour and non tumour cells

tumourDensity

Cancer heatmaps for every subimage

cellCoordinates

Coordinates and cell class for every cell in the subimage

resizeFactor

Size of the cellularity density image, calculated by size(thumbnail) * resizeFactor. Whereas the thumbnail is the small overview image produced by Aperio.

Author(s)

Henrik Failmezger, [email protected]

Examples

#t = system.file("extdata", "trainingData.txt", package="CRImage")
#read training data
#trainingData=read.table(t,header=TRUE)
#create classifier
#classifier=createClassifier(trainingData,topo=FALSE)[[1]]
#classify aperio
#f = system.file("extdata",  package="CRImage")
#f=file.path(f,"8905")
#dir.create("AperiOutput")
#takes long time!

f = system.file("extdata",  package="CRImage")
fc=file.path(f,"testClassifier")
load(fc)
fp=file.path(f,"pixelClassifier")
load(fp)
pixelClassifier=model
pathToImage=file.path(f,"8905")

pathToOutput="" #specify an output folder here

#processAperio(classifier=classifier,inputFolder=pathToImage,outputFolder=pathToOutput,identifier="Da",numSlides=1,cancerIdentifier="c",maxShape=800,minShape=40,failureRegion=2000,slideToProcess=1,KS=FALSE,colors=c("white","green","blue","brown"),classesToExclude=c('a','l','nl'),threshold="otsu",ksToExclude=c('l','nl'),pixelClassifier=pixelClassifier,classifyStructures=TRUE,densityToExclude=c('a'),numDensityWindows=8,resizeFactor=1.5,plotCellTypeDensity=FALSE,greyscaleImage=1)

Do Sauvola thresholding

Description

Thresholding method using mean and standard deviation.

Usage

SauvolaThreshold(allGreyValues)

Arguments

allGreyValues

Vector of gray values.

Details

A threshold for the gray values is returned

Value

The threshold.

Author(s)

Henrik Failmezger, [email protected]

References

J. Sauvola, M. Pietikainen, "Adaptive Document Image Binarization," Pattern Recognition, vol. 33, 225-236, 2000

See Also

createBinaryImage

Examples

f1= system.file("extdata", "exImg2.jpg", package="CRImage")
print(f1)
img=readImage(f1)
print(img)
#convert to grayscale
imgG=EBImage::channel(img,'grey')
#threshold value
t=SauvolaThreshold(as.vector(imgG))

Segmentation of an image

Description

The function segments cells or cell nuclei in the image.

Usage

segmentImage(filename="",image=NA,maxShape=NA,minShape=NA,failureRegion=NA,threshold="otsu",numWindows=2, colorCorrection=FALSE, classifyStructures=FALSE,pixelClassifier=NULL,greyscaleImage=0,penClassifier=NULL,referenceHist=NULL)

Arguments

filename

A path to an image

image

An 'image' object, if no filename is specified.

maxShape

Maximum size of cell nuclei

minShape

Minimum size of cell nuclei

failureRegion

minimum size of failure regions

threshold

Thresholding method, "otsu" or "phansalkar"

numWindows

Number of windows to use for thresholding.

colorCorrection

deprecated

classifyStructures

Segment structures in the image, if yes a pixel classifier has to be defined

pixelClassifier

A SVM which classifies RGB color values in foreground and background.

greyscaleImage

Channel of the RGB image, to use for thresholding, if 0 use a joined greyscale image.

penClassifier

Classifier to exclude low quality images(will be part of next release)

referenceHist

Color histogram of a reference image, that can be used to estimate the quality of the recent image (will be part of next release)

Details

The image is converted to greyscale and thresholded. Clutter is deleted using morphological operations. Clustered objects are separated using watershed algorithm. Segmented Cell nuclei, which exceed the maximum size are thresholded and segmented again. Cell nuclei which fall below the minimum size are deleted. Dark regions which exceed the parameter failureRegion are considered as artefacts and deleted. If the parameters are not defined, the operations will not be executed. Features are generated for every segmented object.

Value

A list is returned containing

image

The original image

segmented image

The segmented image

Author(s)

Henrik Failmezger, [email protected]

References

EBImage, 'http://www.bioconductor.org/packages/release/bioc/html/EBImage.html'

Examples

#segment image
#f = system.file('extdata' ,'exImg.jpg',package='CRImage')
#segmentationValues=segmentImage(f,maxShape=800,minShape=40,failureRegion=2000,threshold="otsu",numWindows=4)
#image=segmentationValues[[1]]
#segmentedImage=segmentationValues[[2]]
#imageFeatures=segmentationValues[[3]]