Title: | Copy Number Visualization |
---|---|
Description: | CNViz takes probe, gene, and segment-level log2 copy number ratios and launches a Shiny app to visualize your sample's copy number profile. You can also integrate loss of heterozygosity (LOH) and single nucleotide variant (SNV) data. |
Authors: | Rebecca Greenblatt [aut, cre] |
Maintainer: | Rebecca Greenblatt <[email protected]> |
License: | Artistic-2.0 |
Version: | 1.15.0 |
Built: | 2024-12-17 03:28:43 UTC |
Source: | https://github.com/bioc/CNViz |
A dataset containing the study name and aggregated gene level copy number data
all_tcga2018_data
all_tcga2018_data
A data frame with 14944 rows and 6 variables:
hugo gene symbol
proportion of cohort with gain in this gene
proportion of cohort with amplification in this gene
proportion of cohort with shallow deletion in this gene
proportion of cohort with deep deletion in this gene
cancer type and sample size
https://github.com/waldronlab/cBioPortalData See data-raw folder.
A dataset containing the names and studyIds of the 2018 TCGA studies from cBioPortal.
cbio_studies
cbio_studies
A data frame with 32 rows and 2 variables:
Name of diagnosis and sample size
studyId that can be used in the cBioPortalData R package
https://github.com/waldronlab/cBioPortalData See data-raw folder.
A dataset containing the chr, start and end position for cytobands according to hg38.
cytoband_data
cytoband_data
A data frame with 863 rows and 6 variables:
chromosome
start position
end position
cytoband name
color
HEX color
https://genome.ucsc.edu/cgi-bin/hgTables
A dataset containing simulated gene data as sample input for launchCNViz
data(gene_data)
data(gene_data)
A dataframe with 112 rows and 6 variables
chromosome
start location
end location
gene name
log2 copy number ratio
weight given to log2 value
loss of heterozygosity
Center for Personalized Diagnositics at the University of Pennsylvania
CNViz launches a shiny application to visualize your sample's copy number data. At least one of probe_data, gene_data, or segment_data must be supplied; sample_name, variant_data and meta_data are all optional. The more inputs supplied, the more informative the application will be. See the CNViz vignette for more information. Use the hg38 reference genome. CNViz only displays a single sample's data.
launchCNViz( sample_name = "sample", probe_data = data.frame(), gene_data = data.frame(), segment_data = data.frame(), variant_data = data.frame(), meta_data = data.frame() )
launchCNViz( sample_name = "sample", probe_data = data.frame(), gene_data = data.frame(), segment_data = data.frame(), variant_data = data.frame(), meta_data = data.frame() )
sample_name |
A string with the ID/name of your sample. |
probe_data |
A dataframe or GRanges object containing probe-level data. If a dataframe, column names must include chr, gene, start, end, log2. chr/seqnames column should be formatted as 'chr1' through 'chrX', 'chrY'. start, end and log2 should be numeric. If a GRanges object, gene and log2 are metadata columns. Optional column/metadata: weight, where weight is numeric. |
gene_data |
A dataframe or GRanges object containing gene-level data - one row per gene. If a dataframe, column names must include chr, gene, start, end, log2. chr/seqnames column should be formatted as 'chr1' through 'chrX', 'chrY'. start, end and log2 should be numeric. If a GRanges object, gene and log2 are metadata columns. Optional columns/metadata: weight, loh; where weight is numeric and loh values are TRUE or FALSE. |
segment_data |
A dataframe or GRanges object containing segment-level data. If a dataframe, column names must include chr, start, end, log2. chr column should be formatted as 'chr1' through 'chrX', 'chrY'. start, end and log2 should be numeric. If a GRanges object, log2 is a metadata column. Optional column/metadata: loh; where loh values are TRUE or FALSE. |
variant_data |
A dataframe or VRanges object containg SNVs and short indels and columns of your choosing. If a dataframe, the only required columns are gene and mutation_id. Optional column: start; where start indicates the starting position of the mutation. If a VRanges object, make sure gene is one of the metadata columns, so it can be tied to the gene or probe data; a mutation_id column can also be included, otherwise it will be constructed. Additional columns might include depth, allelic_fraction, ref, alt. |
meta_data |
A dataframe containing your sample's metadata - columns of your choosing. Optional column: ploidy; ploidy will be rounded to the nearest whole number. Additional columns might include purity. This dataframe should only have one row. |
a Shiny application
probes <- data.frame(chr = c("chr1", "chr1", "chr4", "chr4", "chrX"), gene = c("NOTCH2", "NOTCH2", "KIT", "TET2", "BTK"), start = c(119922221, 119967406,54732072,105243553,101360541), end = c(119922461,119967646,54732192,105243793,101360781), log2 = c(-0.0832403,-0.0578757,0.2131540,-0.3189430,-0.7876670), weight = c(0.684114, 0.681546,0.606129,0.682368,0.405772)) segments <- data.frame(chr = c("chr1","chr1", "chr4", "chr4", "chrX"), start = c(1050069, 124932724, 1942322, 51743951, 1198732), end = c(122026459, 246947668, 49712061, 188110779, 37098762), log2 = c(1, 1, 1, 1, 0.5849625), loh = c(FALSE, FALSE, FALSE, TRUE, TRUE)) meta <- data.frame(purity = c(.5), ploidy = c(2), sex = c("Female")) launchCNViz(sample_name = "sample123", probe_data = probes, segment_data = segments, meta_data = meta)
probes <- data.frame(chr = c("chr1", "chr1", "chr4", "chr4", "chrX"), gene = c("NOTCH2", "NOTCH2", "KIT", "TET2", "BTK"), start = c(119922221, 119967406,54732072,105243553,101360541), end = c(119922461,119967646,54732192,105243793,101360781), log2 = c(-0.0832403,-0.0578757,0.2131540,-0.3189430,-0.7876670), weight = c(0.684114, 0.681546,0.606129,0.682368,0.405772)) segments <- data.frame(chr = c("chr1","chr1", "chr4", "chr4", "chrX"), start = c(1050069, 124932724, 1942322, 51743951, 1198732), end = c(122026459, 246947668, 49712061, 188110779, 37098762), log2 = c(1, 1, 1, 1, 0.5849625), loh = c(FALSE, FALSE, FALSE, TRUE, TRUE)) meta <- data.frame(purity = c(.5), ploidy = c(2), sex = c("Female")) launchCNViz(sample_name = "sample123", probe_data = probes, segment_data = segments, meta_data = meta)
A dataset containing simulated metadata as sample input for launchCNViz
data(meta_data)
data(meta_data)
A dataframe with 1 rows and 2 variables
sample purity
tumor ploidy
Center for Personalized Diagnositics at the University of Pennsylvania
A dataset containing simulated probe data as sample input for launchCNViz
data(probe_data)
data(probe_data)
A data frame with 2006 rows and 6 variables:
chromosome
start location
end location
gene name
log2 copy number ratio
weight given to log2 value
Center for Personalized Diagnositics at the University of Pennsylvania
A dataset containing simulated segment data as sample input for launchCNViz
data(segment_data)
data(segment_data)
A dataframe with 101 rows and 5 variables
chromosome
start location
end location
log2 copy number ratio
loss of heterozygosity
Center for Personalized Diagnositics at the University of Pennsylvania
A dataset containing simulated SNV and indel data as sample input for launchCNViz
data(variant_data)
data(variant_data)
A dataframe with 119 rows and 4 variables
gene name
string with information about snv
read depth
starting location
Center for Personalized Diagnositics at the University of Pennsylvania