Title: | Identifies false positives of CNV calling tools by using SNV calls |
---|---|
Description: | CNVfilteR identifies those CNVs that can be discarded by using the single nucleotide variant (SNV) calls that are usually obtained in common NGS pipelines. |
Authors: | Jose Marcos Moreno-Cabrera [aut, cre] , Bernat Gel [aut] |
Maintainer: | Jose Marcos Moreno-Cabrera <[email protected]> |
License: | Artistic-2.0 |
Version: | 1.21.0 |
Built: | 2024-12-29 05:13:54 UTC |
Source: | https://github.com/bioc/CNVfilteR |
Adds a 'cn' column to the cnvs.gr
data.frame or GRanges.
auxAddCNcolumn(cnvs.gr)
auxAddCNcolumn(cnvs.gr)
cnvs.gr |
|
For each row, cn
column is filled with 1 if cnv
is "deletion", 3 if cnv
is "duplication"
input cnvs.gr
with the new column 'cn'
Obtains VCF source from a given VCF file path. Auxiliar function used by loadSNPsFromVCF
.
auxGetVcfSource(vcf.source = NULL, vcf.file)
auxGetVcfSource(vcf.source = NULL, vcf.file)
vcf.source |
VCF source. Leave NULL to allow the function to recognize it. Otherwise, the function will not try to recognize the source. (Defaults to NULL) |
vcf.file |
VCF file path |
VCF source
Auxiliar function called by loadVCFs
to process variants
auxProcessVariants( vars, cnvGR, heterozygous.range, homozygous.range, min.total.depth, exclude.indels, regions.to.exclude )
auxProcessVariants( vars, cnvGR, heterozygous.range, homozygous.range, min.total.depth, exclude.indels, regions.to.exclude )
vars |
|
cnvGR |
|
heterozygous.range |
Heterozygous range. Variants not in the homozygous/heterozygous intervals will be excluded. |
homozygous.range |
Homozygous range. Variants not in the homozygous/heterozygous intervals will be excluded. |
min.total.depth |
Minimum total depth. Variants under this value will be excluded. |
exclude.indels |
Whether to exclude indels when loading the variants. TRUE is the recommended value given that indels frequency varies in a different way than SNVs. |
regions.to.exclude |
A |
Processed vars
Identifies those copy number calls that can be filtered out
filterCNVs( cnvs.gr, vcfs, expected.ht.mean = 50, expected.dup.ht.mean1 = 33.3, expected.dup.ht.mean2 = 66.6, sigmoid.c1 = 2, sigmoid.c2.vector = c(28, 38.3, 44.7, 55.3, 61.3, 71.3), dup.threshold.score = 0.5, ht.deletions.threshold = 30, verbose = FALSE, margin.pct = 10 )
filterCNVs( cnvs.gr, vcfs, expected.ht.mean = 50, expected.dup.ht.mean1 = 33.3, expected.dup.ht.mean2 = 66.6, sigmoid.c1 = 2, sigmoid.c2.vector = c(28, 38.3, 44.7, 55.3, 61.3, 71.3), dup.threshold.score = 0.5, ht.deletions.threshold = 30, verbose = FALSE, margin.pct = 10 )
cnvs.gr |
|
vcfs |
List of |
expected.ht.mean |
Expected heterozygous SNV/indel allele frequency (defaults to 50) |
expected.dup.ht.mean1 |
Expected heterozygous SNV/indel allele frequency when the variant IS NOT in the same allele than the CNV duplication call. (defaults to 33.3) |
expected.dup.ht.mean2 |
Expected heterozygous SNV/indel allele frequency when the variant IS in the same allele than the CNV duplication call. (defaults to 66.6) |
sigmoid.c1 |
Sigmoid c1 parameter. (defaults to 2) |
sigmoid.c2.vector |
Vector containing sigmoid c2 parameters for the six sigmoids functions. (defaults to c(28, 38.3, 44.7, 55.3, 61.3, 71.3)) |
dup.threshold.score |
Limit value to decide if a CNV duplication can be filtered out or not. A CNV duplication can be filtered out if the total score computed from heterozygous variants in the CNV is equal or greater than |
ht.deletions.threshold |
Minimum percentage of heterozygous variants falling in a CNV deletion to filter that CNV. (defaults to 30) |
verbose |
Whether to show information messages. (defaults to TRUE) |
margin.pct |
Variants in the CNV but close to the ends of the CNV will be ignored. |
Checks all the variants (SNV and optionally INDELs) in each CNV present in cnvs.gr
to decide whether a CNV can be filtered out or not.
It returns an S3 object with 3 elments: cnvs
, variantsForEachCNV
and filterParameters
. See return section for further details.
A CNV deletion can be filtered out if there is at least ht.deletions.threshold
A CNV duplication can be filtered out if the score
is >= dup.threshold.score
after computing all heterozygous variants falling in the CNV.
If a CNV can be filtered out, then the value TRUE is set in the filter
column of the cnvs
element.
A S3 object with 3 elements:
cnvs
: GRanges
with the input CNVs and the meta-columns added during the call:
cnv.id
: CNV id
filter
: Set to TRUE if the CNV can be filtered out
n.total.variants
: Number of variants in the CNV
n.hm.variants
: Number of homozygous variants. They do not give any evidenced for confirming or discarding the CNV.
n.ht.discard.CNV
: For a CNV duplication, number of heterozygous variants in that discard the CNV (those with a positive score)
n.ht.confirm.CNV
: For a CNV duplication, number of heterozygous variants that confirm the CNV (those with a negative score)
ht.pct
: Percentage of heterozygous variants for deletion CNVs
score
: total score when computing all the variants scores
variantsForEachCNV
: named list where each name correspond to a CNV id and the value is a data.frame
with all variants falling in that CNV
filterParameters
: input parameters used for filtering
# Load CNVs data cnvs.file <- system.file("extdata", "DECoN.CNVcalls.csv", package = "CNVfilteR", mustWork = TRUE) cnvs.gr <- loadCNVcalls(cnvs.file = cnvs.file, chr.column = "Chromosome", start.column = "Start", end.column = "End", cnv.column = "CNV.type", sample.column = "Sample") # Load VCFs data vcf.files <- c(system.file("extdata", "variants.sample1.vcf.gz", package = "CNVfilteR", mustWork = TRUE), system.file("extdata", "variants.sample2.vcf.gz", package = "CNVfilteR", mustWork = TRUE)) vcfs <- loadVCFs(vcf.files, cnvs.gr = cnvs.gr) # Filter CNVs results <- filterCNVs(cnvs.gr, vcfs) # Check CNVs that can be filtered out as.data.frame(results$cnvs[results$cnvs$filter == TRUE])
# Load CNVs data cnvs.file <- system.file("extdata", "DECoN.CNVcalls.csv", package = "CNVfilteR", mustWork = TRUE) cnvs.gr <- loadCNVcalls(cnvs.file = cnvs.file, chr.column = "Chromosome", start.column = "Start", end.column = "End", cnv.column = "CNV.type", sample.column = "Sample") # Load VCFs data vcf.files <- c(system.file("extdata", "variants.sample1.vcf.gz", package = "CNVfilteR", mustWork = TRUE), system.file("extdata", "variants.sample2.vcf.gz", package = "CNVfilteR", mustWork = TRUE)) vcfs <- loadVCFs(vcf.files, cnvs.gr = cnvs.gr) # Filter CNVs results <- filterCNVs(cnvs.gr, vcfs) # Check CNVs that can be filtered out as.data.frame(results$cnvs[results$cnvs$filter == TRUE])
Returns score for a given allele frequency
getVariantScore( freq, expected.ht.mean, expected.dup.ht.mean1, expected.dup.ht.mean2, sigmoid.c1, sigmoid.c2.vector, sigmoid.int1, sigmoid.int2 )
getVariantScore( freq, expected.ht.mean, expected.dup.ht.mean1, expected.dup.ht.mean2, sigmoid.c1, sigmoid.c2.vector, sigmoid.int1, sigmoid.int2 )
freq |
Variant allele frequency |
expected.ht.mean |
Expected heterozygous SNV/indel allele frequency |
expected.dup.ht.mean1 |
Expected heterozygous SNV/indel allele frequency when the variant IS NOT in the same allele than the CNV duplication call |
expected.dup.ht.mean2 |
Expected heterozygous SNV/indel allele frequency when the variant IS in the same allele than the CNV duplication call |
sigmoid.c1 |
Sigmoid c1 parameter |
sigmoid.c2.vector |
Vector containing sigmoid c2 parameters for the six sigmoids functions |
sigmoid.int1 |
Sigmoid int 1 |
sigmoid.int2 |
Sigmoid int 2 |
Returns a value between -1 and 1. If the allele frequency increases the evidence of discarding a CNV, then the score is positive. If the allele frequency decreases the evidence for discarding a CNV, the score is negative.
The model is based on the fuzzy logic and the score is calculated using sigmoids. See the vignette to get more details.
variant score in the [-1, 1] range
Loads CNV calls from a csv/tsv file
loadCNVcalls( cnvs.file, chr.column, start.column, end.column, coord.column = NULL, cnv.column, sample.column, sample.name = NULL, gene.column = NULL, deletion = "deletion", duplication = "duplication", ignore.unexpected.rows = FALSE, sep = "\t", skip = 0, genome = "hg19", exclude.non.canonical.chrs = TRUE, check.names.cnvs.file = FALSE )
loadCNVcalls( cnvs.file, chr.column, start.column, end.column, coord.column = NULL, cnv.column, sample.column, sample.name = NULL, gene.column = NULL, deletion = "deletion", duplication = "duplication", ignore.unexpected.rows = FALSE, sep = "\t", skip = 0, genome = "hg19", exclude.non.canonical.chrs = TRUE, check.names.cnvs.file = FALSE )
cnvs.file |
Path to csv/tsv file containing the CNV calls. |
chr.column |
Which column stores the chr location of the CNV. |
start.column |
Which column stores the start location of the CNV. |
end.column |
Which column stores the end location of the CNV. |
coord.column |
CNV location in the chr:start-end format. Example: "1:538001-540000". If NULL, |
cnv.column |
Which column stores the type of CNV (deletion or duplication). |
sample.column |
Which column stores the sample name. |
sample.name |
Sample name for all CNVs defined in |
gene.column |
Which columns store the gene or genes affected (optional). (Defaults to NULL) |
deletion |
Text used in the |
duplication |
Text used in the |
ignore.unexpected.rows |
Whether to ignore the rows which CNV |
sep |
Separator symbol to load the csv/tsv file. (Defaults to "\t") |
skip |
Number of rows that should be skipped when reading the csv/tsv file. (Defaults to 0) |
genome |
The name of the genome. (Defaults to "hg19") |
exclude.non.canonical.chrs |
Whether to exclude non canonical chromosomes (Defaults to TRUE) |
check.names.cnvs.file |
Whether to check |
Loads a csv/tsv file containing CNV calls, and transform it into a GRanges with cnv
and sample
metadata columns.
A GRanges
with a range per each CNV and the metadata columns:
cnv
: type of CNV, "duplication" or "deletion"
sample
: sample name
Returns NULL if cnvs.file
has no CNVs
# Load CNVs data cnvs.file <- system.file("extdata", "DECoN.CNVcalls.csv", package = "CNVfilteR", mustWork = TRUE) cnvs.gr <- loadCNVcalls(cnvs.file = cnvs.file, chr.column = "Chromosome", start.column = "Start", end.column = "End", cnv.column = "CNV.type", sample.column = "Sample")
# Load CNVs data cnvs.file <- system.file("extdata", "DECoN.CNVcalls.csv", package = "CNVfilteR", mustWork = TRUE) cnvs.gr <- loadCNVcalls(cnvs.file = cnvs.file, chr.column = "Chromosome", start.column = "Start", end.column = "End", cnv.column = "CNV.type", sample.column = "Sample")
Loads SNPs (SNVs/indels) from a VCF file
loadSNPsFromVCF( vcf.file, vcf.source = NULL, ref.support.field = NULL, alt.support.field = NULL, list.support.field = NULL, regions.to.filter = NULL, genome = "hg19", exclude.non.canonical.chrs = TRUE, verbose = TRUE )
loadSNPsFromVCF( vcf.file, vcf.source = NULL, ref.support.field = NULL, alt.support.field = NULL, list.support.field = NULL, regions.to.filter = NULL, genome = "hg19", exclude.non.canonical.chrs = TRUE, verbose = TRUE )
vcf.file |
VCF file path |
vcf.source |
VCF source, i.e., the variant caller used to generate the VCF file. If set, the function will not try to recognize the source. (Defaults to NULL) |
ref.support.field |
Reference allele depth field. (Defaults to NULL) |
alt.support.field |
Alternative allele depth field. (Defaults to NULL) |
list.support.field |
Allele support field in a list format: reference allele, alternative allele. (Defaults to NULL) |
regions.to.filter |
The regions to which limit the VCF import. It can be used to speed up the import process. (Defaults to NULL) |
genome |
The name of the genome (Defaults to "hg19") |
exclude.non.canonical.chrs |
Whether to exclude non canonical chromosomes (Defaults to TRUE) |
verbose |
Whether to show information messages. (Defaults to TRUE) |
Given a VCF file path, the function recognizes the variant caller source to decide which fields should be used to calculate
ref/alt support and allelic frequency (see return
). Current supported variant callers are VarScan2, Strelka/Strelka2, freebayes,
HaplotypeCaller, UnifiedGenotyper and Torrent Variant Caller.
Optionally, the fields where the data is stored can be manually set by using the parameters ref.support.field
,
alt.support.field
and list.support.field
Requirement: a TabixFile (.tbi) should exists in the same directory of the VCF file.
A list where names are sample names, and values are GRanges
objects containing the variants for each sample, including the following metadata columns:
ref.support
: Reference allele depth field
alt.support
: Alternative allele depth field
alt.freq
: allelic frequency
total.depth
: total depth
vcf.file <- system.file("extdata", "variants.sample1.vcf.gz", package = "CNVfilteR", mustWork = TRUE) vcf <- loadSNPsFromVCF(vcf.file)
vcf.file <- system.file("extdata", "variants.sample1.vcf.gz", package = "CNVfilteR", mustWork = TRUE) vcf <- loadSNPsFromVCF(vcf.file)
Loads VCFs files
loadVCFs( vcf.files, sample.names = NULL, cnvs.gr, min.total.depth = 10, regions.to.exclude = NULL, vcf.source = NULL, ref.support.field = NULL, alt.support.field = NULL, list.support.field = NULL, homozygous.range = c(90, 100), heterozygous.range = c(28, 72), exclude.indels = TRUE, genome = "hg19", exclude.non.canonical.chrs = TRUE, verbose = TRUE )
loadVCFs( vcf.files, sample.names = NULL, cnvs.gr, min.total.depth = 10, regions.to.exclude = NULL, vcf.source = NULL, ref.support.field = NULL, alt.support.field = NULL, list.support.field = NULL, homozygous.range = c(90, 100), heterozygous.range = c(28, 72), exclude.indels = TRUE, genome = "hg19", exclude.non.canonical.chrs = TRUE, verbose = TRUE )
vcf.files |
vector of VCFs paths. Both .vcf and .vcf.gz extensions are allowed. |
sample.names |
Sample names vector containing sample names for each |
cnvs.gr |
|
min.total.depth |
Minimum total depth. Variants under this value will be excluded. (Defaults to 10) |
regions.to.exclude |
A |
vcf.source |
VCF source, i.e., the variant caller used to generate the VCF file. If set, the |
ref.support.field |
Reference allele depth field. (Defaults to NULL) |
alt.support.field |
Alternative allele depth field. (Defaults to NULL) |
list.support.field |
Allele support field in a list format: reference allele, alternative allele. (Defaults to NULL) |
homozygous.range |
Homozygous range. Variants not in the homozygous/heterozygous intervals will be excluded. (Defaults to |
heterozygous.range |
Heterozygous range. Variants not in the homozygous/heterozygous intervals will be excluded. (Defaults to |
exclude.indels |
Whether to exclude indels when loading the variants. TRUE is the recommended value given that indels frequency varies in a different way than SNVs. (Defaults to TRUE) |
genome |
The name of the genome. (Defaults to "hg19") |
exclude.non.canonical.chrs |
Whether to exclude non canonical chromosomes (Defaults to TRUE) |
verbose |
Whether to show information messages. (Defaults to TRUE) |
Loads VCF files and computes alt allele frequency for each variant. It uses
loadSNPsFromVCF
function load the data and identify the
correct VCF format for allele frequency computation.
If sample.names is not provided, the sample names included in the VCF itself will be used. Both single-sample and multi-sample VCFs are accepted, but when multi-sample VCFs are used, sample.names parameter must be NULL.
If vcf is not compressed with bgzip, the function compresses it and generates the .gz file. If .tbi file does not exist for a given VCF file, the function also generates it. All files are generated in a temporary folder.
A list where names are the sample names, and values are the GRanges
objects for each sample.
Important: Compressed VCF must be compressed with [bgzip ("block gzip") from Samtools htslib](http://www.htslib.org/doc/bgzip.html) and not using the standard Gzip utility.
# Load CNVs data (required by loadVCFs to speed up the load process) cnvs.file <- system.file("extdata", "DECoN.CNVcalls.csv", package = "CNVfilteR", mustWork = TRUE) cnvs.gr <- loadCNVcalls(cnvs.file = cnvs.file, chr.column = "Chromosome", start.column = "Start", end.column = "End", cnv.column = "CNV.type", sample.column = "Sample") # Load VCFs data vcf.files <- c(system.file("extdata", "variants.sample1.vcf.gz", package = "CNVfilteR", mustWork = TRUE), system.file("extdata", "variants.sample2.vcf.gz", package = "CNVfilteR", mustWork = TRUE)) vcfs <- loadVCFs(vcf.files, cnvs.gr = cnvs.gr)
# Load CNVs data (required by loadVCFs to speed up the load process) cnvs.file <- system.file("extdata", "DECoN.CNVcalls.csv", package = "CNVfilteR", mustWork = TRUE) cnvs.gr <- loadCNVcalls(cnvs.file = cnvs.file, chr.column = "Chromosome", start.column = "Start", end.column = "End", cnv.column = "CNV.type", sample.column = "Sample") # Load VCFs data vcf.files <- c(system.file("extdata", "variants.sample1.vcf.gz", package = "CNVfilteR", mustWork = TRUE), system.file("extdata", "variants.sample2.vcf.gz", package = "CNVfilteR", mustWork = TRUE)) vcfs <- loadVCFs(vcf.files, cnvs.gr = cnvs.gr)
Plots all CNVs on chromosome ideograms
plotAllCNVs(cnvs.gr, genome = "hg19")
plotAllCNVs(cnvs.gr, genome = "hg19")
cnvs.gr |
|
genome |
The name of the genome. (Defaults to "hg19") |
Plots all CNVs defined at cnvs.gr
on a view of horizontal ideograms representing all chromosomes.
invisibly returns a karyoplot
object
cnvs.file <- system.file("extdata", "DECoN.CNVcalls.2.csv", package = "CNVfilteR", mustWork = TRUE) cnvs.gr <- loadCNVcalls(cnvs.file = cnvs.file, chr.column = "Chromosome", start.column = "Start", end.column = "End", cnv.column = "CNV.type", sample.column = "Sample") # Plot all CNVs plotAllCNVs(cnvs.gr)
cnvs.file <- system.file("extdata", "DECoN.CNVcalls.2.csv", package = "CNVfilteR", mustWork = TRUE) cnvs.gr <- loadCNVcalls(cnvs.file = cnvs.file, chr.column = "Chromosome", start.column = "Start", end.column = "End", cnv.column = "CNV.type", sample.column = "Sample") # Plot all CNVs plotAllCNVs(cnvs.gr)
Plots scoring model used for CNV duplications
plotScoringModel( expected.ht.mean, expected.dup.ht.mean1, expected.dup.ht.mean2, sigmoid.c1, sigmoid.c2.vector )
plotScoringModel( expected.ht.mean, expected.dup.ht.mean1, expected.dup.ht.mean2, sigmoid.c1, sigmoid.c2.vector )
expected.ht.mean |
Expected heterozygous SNV/indel allele frequency |
expected.dup.ht.mean1 |
Expected heterozygous SNV/indel allele frequency when the variant IS NOT in the same allele than the CNV duplication call |
expected.dup.ht.mean2 |
Expected heterozygous SNV/indel allele frequency when the variant IS in the same allele than the CNV duplication call |
sigmoid.c1 |
Sigmoid c1 parameter |
sigmoid.c2.vector |
Vector containing sigmoid c2 parameters for the six sigmoids functions |
nothing
# Load CNVs data cnvs.file <- system.file("extdata", "DECoN.CNVcalls.csv", package = "CNVfilteR", mustWork = TRUE) cnvs.gr <- loadCNVcalls(cnvs.file = cnvs.file, chr.column = "Chromosome", start.column = "Start", end.column = "End", cnv.column = "CNV.type", sample.column = "Sample") # Load VCFs data vcf.files <- c(system.file("extdata", "variants.sample1.vcf.gz", package = "CNVfilteR", mustWork = TRUE), system.file("extdata", "variants.sample2.vcf.gz", package = "CNVfilteR", mustWork = TRUE)) vcfs <- loadVCFs(vcf.files, cnvs.gr = cnvs.gr) # Filter CNVs results <- filterCNVs(cnvs.gr, vcfs) # Plot scoring model for duplication CNVs p <- results$filterParameters plotScoringModel(expected.ht.mean = p$expected.ht.mean, expected.dup.ht.mean1 = p$expected.dup.ht.mean1, expected.dup.ht.mean2 = p$expected.dup.ht.mean2, sigmoid.c1 = p$sigmoid.c1, sigmoid.c2.vector = p$sigmoid.c2.vector)
# Load CNVs data cnvs.file <- system.file("extdata", "DECoN.CNVcalls.csv", package = "CNVfilteR", mustWork = TRUE) cnvs.gr <- loadCNVcalls(cnvs.file = cnvs.file, chr.column = "Chromosome", start.column = "Start", end.column = "End", cnv.column = "CNV.type", sample.column = "Sample") # Load VCFs data vcf.files <- c(system.file("extdata", "variants.sample1.vcf.gz", package = "CNVfilteR", mustWork = TRUE), system.file("extdata", "variants.sample2.vcf.gz", package = "CNVfilteR", mustWork = TRUE)) vcfs <- loadVCFs(vcf.files, cnvs.gr = cnvs.gr) # Filter CNVs results <- filterCNVs(cnvs.gr, vcfs) # Plot scoring model for duplication CNVs p <- results$filterParameters plotScoringModel(expected.ht.mean = p$expected.ht.mean, expected.dup.ht.mean1 = p$expected.dup.ht.mean1, expected.dup.ht.mean2 = p$expected.dup.ht.mean2, sigmoid.c1 = p$sigmoid.c1, sigmoid.c2.vector = p$sigmoid.c2.vector)
Plots a CNV with all the variants in it
plotVariantsForCNV( cnvfilter.results, cnv.id, points.cex = 1, points.pch = 19, legend.x.pos = 0.08, legend.y.pos = 0.25, legend.cex = 0.8, legend.text.width = NULL, legend.show = TRUE, karyotype.cex = 1, cnv.label.cex = 1, x.axis.bases.cex = 0.7, x.axis.bases.digits = 5, y.axis.title.cex = 0.8, y.axis.label.cex = 0.8, cnv.zoom.margin = TRUE )
plotVariantsForCNV( cnvfilter.results, cnv.id, points.cex = 1, points.pch = 19, legend.x.pos = 0.08, legend.y.pos = 0.25, legend.cex = 0.8, legend.text.width = NULL, legend.show = TRUE, karyotype.cex = 1, cnv.label.cex = 1, x.axis.bases.cex = 0.7, x.axis.bases.digits = 5, y.axis.title.cex = 0.8, y.axis.label.cex = 0.8, cnv.zoom.margin = TRUE )
cnvfilter.results |
S3 object returned by |
cnv.id |
CNV id for which to plot variants |
points.cex |
Points cex (size). (Defaults to 1) |
points.pch |
Points pch (symbol). (Defaults to 19) |
legend.x.pos |
Legend x position. (Defaults to 0.08) |
legend.y.pos |
Legend y position. (Defaults to 0.25) |
legend.cex |
Legend cex. (Defaults to 0.8) |
legend.text.width |
Legend text width (Defaults to NULL) |
legend.show |
Whether to show the legend (Defaults to TRUE) |
karyotype.cex |
karyotype cex: affects top title and chromosome text (at bottom). (Defaults to 1) |
cnv.label.cex |
"CNV" text cex. (Defaults to 1) |
x.axis.bases.cex |
X-axis bases position cex. (Defaults to 0.7) |
x.axis.bases.digits |
X-axis bases position number of digits. (Defaults to 5) |
y.axis.title.cex |
Y-axis title cex. (Defaults to 0.8) |
y.axis.label.cex |
Y-axis labels cex. (Defaults to 0.8) |
cnv.zoom.margin |
If TRUE, the zoom leaves an small margin at both sides of the CNV. False otherwise. (Defaults to TRUE) |
invisibly returns a karyoplot
object
# Load CNVs data cnvs.file <- system.file("extdata", "DECoN.CNVcalls.csv", package = "CNVfilteR", mustWork = TRUE) cnvs.gr <- loadCNVcalls(cnvs.file = cnvs.file, chr.column = "Chromosome", start.column = "Start", end.column = "End", cnv.column = "CNV.type", sample.column = "Sample") # Load VCFs data vcf.files <- c(system.file("extdata", "variants.sample1.vcf.gz", package = "CNVfilteR", mustWork = TRUE), system.file("extdata", "variants.sample2.vcf.gz", package = "CNVfilteR", mustWork = TRUE)) vcfs <- loadVCFs(vcf.files, cnvs.gr = cnvs.gr) # Filter CNVs results <- filterCNVs(cnvs.gr, vcfs) # Check CNVs that can be filtered out as.data.frame(results$cnvs[results$cnvs$filter == TRUE]) # Plot one of them plotVariantsForCNV(results, "3")
# Load CNVs data cnvs.file <- system.file("extdata", "DECoN.CNVcalls.csv", package = "CNVfilteR", mustWork = TRUE) cnvs.gr <- loadCNVcalls(cnvs.file = cnvs.file, chr.column = "Chromosome", start.column = "Start", end.column = "End", cnv.column = "CNV.type", sample.column = "Sample") # Load VCFs data vcf.files <- c(system.file("extdata", "variants.sample1.vcf.gz", package = "CNVfilteR", mustWork = TRUE), system.file("extdata", "variants.sample2.vcf.gz", package = "CNVfilteR", mustWork = TRUE)) vcfs <- loadVCFs(vcf.files, cnvs.gr = cnvs.gr) # Filter CNVs results <- filterCNVs(cnvs.gr, vcfs) # Check CNVs that can be filtered out as.data.frame(results$cnvs[results$cnvs$filter == TRUE]) # Plot one of them plotVariantsForCNV(results, "3")