Package 'CNORode'

Title: ODE add-on to CellNOptR
Description: Logic based ordinary differential equation (ODE) add-on to CellNOptR.
Authors: David Henriques, Thomas Cokelaer, Attila Gabor, Federica Eduati, Enio Gjerga
Maintainer: Attila Gabor <[email protected]>
License: GPL-2
Version: 1.49.0
Built: 2025-01-17 04:08:23 UTC
Source: https://github.com/bioc/CNORode

Help Index


A cnodata from CellNoptR

Description

A cnodata from CellNoptR to use with provided examples


A cnolist from CellNoptR

Description

A cnolist from CellNoptR to use with provided examples


A cnolist from CellNoptR

Description

A cnolist from CellNoptR to use with provided CNORode examples.


Logic based ODE extension for CellNOptR

Description

This package is used for the simulation and fitting of logic based ODE models based on the Odefy approach.

Details

Package: CNORode
Type: Package
Version: 1.2.0
Date: 2012-03-14
License: GPL-3
LazyLoad: yes

Author(s)

David Henriques, Thomas Cokelaer Maintainer: David Henriques <[email protected]>

References

Dominik Wittmann, Jan Krumsiek, Julio S. Rodriguez, Douglas Lauffenburger, Steffen Klamt, and Fabian Theis. Transforming boolean models to continuous models: methodology and application to t-cell receptor signaling. BMC Systems Biology, 3(1):98+, September 2009.

Egea, J.A., Maria, R., Banga, J.R. (2010) An evolutionary method for complex-process optimization. Computers & Operations Research 37(2): 315-324.

Egea, J.A., Balsa-Canto, E., Garcia, M.S.G., Banga, J.R. (2009) Dynamic optimization of nonlinear processes with an enhanced scatter search method. Industrial & Engineering Chemistry Research 49(9): 4388-4401.

Jan Krumsiek, Sebastian Polsterl, Dominik Wittmann, and Fabian Theis. Odefy - from discrete to continuous models. BMC Bioinformatics, 11(1):233+, 2010.

R. Serban and A. C. Hindmarsh, "CVODES: the Sensitivity-Enabled ODE Solver in SUNDIALS," Proceedings of IDETC/CIE 2005, Sept. 2005, Long Beach, CA. Also available as LLNL technical report UCRL-JP-200039.

C. Terfve, T. Cokelaer, A. MacNamara, D. Henriques, E. Goncalves, MK. Morris, M. van Iersel, DA Lauffenburger, J. Saez-Rodriguez. CellNOptR: a flexible toolkit to train protein signaling networks to data using multiple logic formalisms. BMC Systems Biology, 2012, 6:133:

See Also

CellNOptR, parEstimationLBode, getLBodeModelSim, parEstimationLBode plotLBodeFitness.


Create a list with ODE parameter information needed to perform parameter estimation

Description

Creates a list with the continuous parameters to simulate the model, upper and lower bounds for the parameter estimation, parameters names, indices of the parameters and other information.

Usage

createLBodeContPars(model, LB_n = 1, LB_k = 0.1, LB_tau = 0.01, 
	UB_n = 5, UB_k = 0.9, UB_tau = 10, default_n = 3, default_k = 0.5,
	default_tau = 1, LB_in = c(), UB_in = c(), opt_n = TRUE, opt_k = TRUE,
	opt_tau = TRUE, random = FALSE)

Arguments

model

The logic model to be simulated.

LB_n

A numeric value to be used as lower bound for all parameters of type n.

LB_k

A numeric value to be used as lower bound for all parameters of type k.

LB_tau

A numeric value to be used as lower bound for all parameters of type tau.

UB_n

A numeric value to be used as upper bound for all parameters of type n.

UB_k

A numeric value to be used as upper bound for all parameters of type k.

UB_tau

A numeric value to be used as upper bound for all parameters of type tau.

default_n

The default parameter to be used for every parameter of type n.

default_k

The default parameter to be used for every parameter of type k.

default_tau

The default parameter to be used for every parameter of type tau.

LB_in

An array with the the same length as ode_parameters$parValues with lower bounds for each specific parameter.

UB_in

An array with the the same length as ode_parameters$parValues with upper bounds for each specific parameter.

opt_n

Add all parameter n to the index of parameters to be fitted.

opt_k

Add all parameter k to the index of parameters to be fitted.

opt_tau

Add all parameter tau to the index of parameters to be fitted.

random

logical value that determines that a random solution is for the parameters to be optimized.

Value

parNames

An array containing the names of the parameters.

parValues

An array containing the values of the parameters, in the same order as the names.

index_opt_pars

An array containing the indexes for the parameters to be fitted.

index_n

An array containing the indexes of the parameters of type n.

index_k

An array containing the indexes of the parameters of type k.

index_tau

An array containing the indexes of the parameters of type tau.

LB

An array containing the lower bound for each parameter.

UB

An array containing the upper bound for each parameter.

Author(s)

David Henriques, Thomas Cokelaer

Examples

library(CNORode)
	data("ToyCNOlist",package="CNORode");
	data("ToyModel",package="CNORode");
	data("ToyIndices",package="CNORode");
	ode_parameters=createLBodeContPars(model, opt_n=FALSE,default_n=2,
	random=TRUE,LB_k=0.25,UB_k=0.8,LB_tau=0.01,UB_tau=10);

Crossvalidate ODE model

Description

k-fold crossvalidation for logic ODE model

Usage

crossvalidateODE(
  CNOlist,
  model,
  nfolds = 10,
  foldid = NULL,
  type = "datapoint",
  parallel = FALSE,
  ode_parameters = NULL,
  paramsSSm = NULL,
  method = "essm"
)

Arguments

CNOlist

Cnolist which contains all the experiments

model

a model prepared for the training

nfolds

number of folds - default is 10. Although nfolds can be as large as the sample size (leave-one-out CV), it is not recommended for large datasets.

foldid

an optional vector of values between '1' and 'nfold' identifying what fold each observation is in. If supplied, 'nfold' can be missing.

type

define the way to do the crossvalidation. The default is 'type="datapoint"', which assigns the data randomly into folds. The option 'type="experiment"' uses whole experiments for crossvalidation (all data corresponding to a cue combination). The 'type=observable' uses the subset of nodes across all experiments for crossvalidation.

parallel

use for parallel execution, requires the doParallel package

ode_parameters

list of fitted logic ODE parameter

paramsSSm

parameters for the SSm optimizer for running the optimization in crossvalidation

method

Selection of optimization method: only "ga" or "essm" arguments are accepted

Details

Does a k-fold cross-validation for logic ODE CellNOpt models. In k-iterations a fraction of the data is eliminated from the CNOlist. The model is trained on the remaining data and then the model predicts the held-out data. Then the prediction accuracy is reported for each iteration.

See Also

parEstimationLBode


Create default options to perform parameter estimation with a genetic algorithm.

Description

This function returns a list with several arguments for performing parameter estimation with the genetic algorithm from the package genalg.

Usage

defaultParametersGA()

Value

mutationChance

NA

popSize

200

iters

100

elitism

NA

time

1

monitor

TRUE

verbose

0

transfer_function

3

reltol

1e-04

atol

0.001

maxStepSize

Inf

maxNumSteps

1e+05

maxErrTestsFails

50

nan_fac = 1

0

Author(s)

David Henriques, Thomas Cokelaer

See Also

CellNOptR parEstimationLBode parEstimationLBodeGA


Create default options to perform parameter estimation with scatter search meta-heuristic.

Description

This function returns a list with several arguments for performing parameter estimation with scatter search meta-heuristic algorithm from the package essR.

Usage

defaultParametersSSm()

Value

maxeval

Inf

maxtime

100

ndiverse

NULL

dim_refset

NULL

local_solver

NULL

verbose

0

transfer_function

3

reltol

1e-04

atol

0.001

maxStepSize

Inf

maxNumSteps

1e+05

maxErrTestsFails

50

nan_fac

1

lambda_tau

0

lambda_k

0

bootstrap

0

SSpenalty_fac

0

SScontrolPenalty_fac

0

boot_seed

sample(1:10000,1)

Author(s)

David Henriques, Thomas Cokelaer, Federica Eduati

See Also

CellNOptR parEstimationLBode parEstimationLBodeSSm


Returns the objective function to perform parameter estimation.

Description

This function configures returns the objective function that can be used to evaluate the fitness of a logic based ODE model using a particular set of parameters. This function can be particularly useful if you are planing to couple a nonlinear optimization solver. The returned value of the objective function corresponds to the mean squared value normalized by the number of data points.

Usage

getLBodeContObjFunction(cnolist, model, ode_parameters, indices=NULL, time = 1, 
	verbose = 0, transfer_function = 3, reltol = 1e-04, atol = 0.001, maxStepSize = Inf, 
	maxNumSteps = 1e+05, maxErrTestsFails = 50, nan_fac = 1, lambda_tau=0, lambda_k=0,
	bootstrap=F, SSpenalty_fac=0, SScontrolPenalty_fac=0, boot_seed=sample(1:10000,1))

Arguments

cnolist

A list containing the experimental design and data.

model

The logic model to be simulated.

ode_parameters

A list with the ODEs parameter information. Obtained with createLBodeContPars.

indices

Indices to map data in the model. Obtained with indexFinder function from CellNOptR.

time

An integer with the index of the time point to start the simulation. Default is 1.

verbose

A logical value that triggers a set of comments.

transfer_function

The type of used transfer. Use 1 for no transfer function, 2 for Hill function and 3 for normalized Hill function.

reltol

Relative Tolerance for numerical integration.

atol

Absolute tolerance for numerical integration.

maxStepSize

The maximum step size allowed to ODE solver.

maxNumSteps

The maximum number of internal steps between two points being sampled before the solver fails.

maxErrTestsFails

Specifies the maximum number of error test failures permitted in attempting one step.

nan_fac

A penalty for each data point the model is not able to simulate. We recommend higher than 0 and smaller that 1.

lambda_tau

Tunable regularisation parameters to penalise L1-norm of parameters tau and induce sparsity. We recommend testing values between 0 and 100 (in log scale) to find best compromise between good fit and sparse model. Default =0, corresponding to no regularisation.

lambda_k

Tunable regularisation parameters to penalise L1-norm of parameters k and induce sparsity. We recommend testing values between 0 and 100 (in log scale) to find best compromise between good fit and sparse model. Default =0, corresponding to no regularisation.

bootstrap

If set to TRUE performs random sampling with replacement of the measurements used in the optimisation (to be run multiple times to get bootstrapped distribution of parameters). Default =FALSE, no bootstrapping.

SSpenalty_fac

Penalty factor for penalising solutions which do not reach steady state. Default =0.

SScontrolPenalty_fac

Penalty factor for penalising solutions for which the control (unperturbed) condition (assumed to be first row) does not reach steady state. Default =0.

boot_seed

Seed used for random sampling if bootstrap=TRUE. Default chose random seed between 0 and 10000

Details

Check CellNOptR for details about the cnolist and the model format. For more details in the configuration of the ODE solver check the CVODES manual.

Value

Returns a function to evaluate the model fitness. This function receives a vector containing both continuous parameters and integer values representing which reactions should be kept in the model.

Author(s)

David Henriques, Thomas Cokelaer, Federica Eduati

See Also

CellNOptR createLBodeContPars

Examples

library(CNORode)
	data("ToyCNOlist",package="CNORode");
	data("ToyModel",package="CNORode");
	data("ToyIndices",package="CNORode");
	
	ode_parameters=createLBodeContPars(model,random=TRUE);
	minlp_obj_function=getLBodeContObjFunction(cnolistCNORodeExample, model,ode_parameters,indices);
	
	x=ode_parameters$parValues;
	
	f=minlp_obj_function(x);

Simulate value signals a CNO list With Logic-Based ODEs.

Description

This function receives a set of inputs, namely the cnolist and the model and returns a list with the same size of the cnolist$valueSignals.

Usage

getLBodeDataSim(cnolist, model, ode_parameters = NULL, indices = NULL,
	timeSignals=NULL, time = 1, verbose = 0, transfer_function = 3, 
	reltol = 1e-04, atol = 0.001, maxStepSize = Inf, maxNumSteps = 1e+05, 
	maxErrTestsFails = 50)

Arguments

cnolist

A list containing the experimental design and data.

model

A list with the ODEs parameter information. Obtained with createLBodeContPars.

ode_parameters

A list with the ODEs parameter information. Obtained with makeParameterList function.

indices

Indices to map data in the model. Obtained with indexFinder function from CellNOptR.

timeSignals

An array containing a different timeSignals. If you use this argument, it will also modify the dimensions from valueSignals.

time

An integer with the index of the time point to start the simulation. Default is 1.

verbose

A logical value that triggers a set of comments.

transfer_function

The type of used transfer. Use 1 for no transfer function, 2 for Hill function and 3 for normalized Hill function.

reltol

Relative Tolerance for numerical integration.

atol

Absolute tolerance for numerical integration.

maxStepSize

The maximum step size allowed to ODE solver.

maxNumSteps

The maximum number of internal steps between two points being sampled before the solver fails.

maxErrTestsFails

Specifies the maximum number of error test failures permitted in attempting one step.

Details

Check CellNOptR for details about the cnolist and the model format. For more details in the configuration of the ODE solver check the CVODES manual.

Value

Returns a list with simulated data that has the same structure as the cnolist$valueSignals. One matrix for each time-point.

Author(s)

David Henriques, Thomas Cokelaer

See Also

CellNOptR parEstimationLBode parEstimationLBodeSSm

Examples

library(CNORode)
data("ToyCNOlist",package="CNORode");
data("ToyModel",package="CNORode");
data("ToyIndices",package="CNORode");
dataSimulation=getLBodeDataSim(cnolistCNORodeExample, model,indices=indices);

Get the objective function to evaluate the fitness of a given model structure and set of parameters.

Description

This function configures returns the objective function that can be used to evaluate the fitness of a logic based ODE model using a particular set of parameters and model structure. This function can be particular useful if you are planing to couple a mixed integer nonlinear programming optimization solver. The returned value of the objective function corresponds to the mean squared value.

Usage

getLBodeMINLPObjFunction(cnolist, model, ode_parameters, indices=NULL, time = 1, 
	verbose = 0, transfer_function = 3, reltol = 1e-04, atol = 0.001, maxStepSize = Inf, 
	maxNumSteps = 1e+05, maxErrTestsFails = 50, nan_fac = 1)

Arguments

cnolist

A list containing the experimental design and data.

model

The logic model to be simulated.

ode_parameters

A list with the ODEs parameter information. Obtained with createLBodeContPars.

indices

Indices to map data in the model. Obtained with indexFinder function from CellNOptR.

time

An integer with the index of the time point to start the simulation. Default is 1.

verbose

A logical value that triggers a set of comments.

transfer_function

The type of used transfer. Use 1 for no transfer function, 2 for Hill function and 3 for normalized Hill function.

reltol

Relative Tolerance for numerical integration.

atol

Absolute tolerance for numerical integration.

maxStepSize

The maximum step size allowed to ODE solver.

maxNumSteps

The maximum number of internal steps between two points being sampled before the solver fails.

maxErrTestsFails

Specifies the maximum number of error test failures permitted in attempting one step.

nan_fac

A penalty for each data point the model is not able to simulate. We recommend higher than 0 and smaller that 1.

Details

Check CellNOptR for details about the cnolist and the model format. For more details in the configuration of the ODE solver check the CVODES manual.

Value

Returns a function to evaluate the model fitness. This function receives a continuous parameter vector.

Author(s)

David Henriques, Thomas Cokelaer

See Also

CellNOptR createLBodeContPars

Examples

library(CNORode)
data("ToyCNOlist",package="CNORode");
data("ToyModel",package="CNORode");
data("ToyIndices",package="CNORode");

ode_parameters=createLBodeContPars(model,random=TRUE);
minlp_obj_function=getLBodeMINLPObjFunction(cnolistCNORodeExample, model,ode_parameters,indices);

n_int_vars=dim(model$interMat)[2];
x_int=round(runif(n_int_vars))
x_cont=ode_parameters$parValues;
x=c(x_cont,x_int);
f=minlp_obj_function(x);

Simulate the logic-based ODE model

Description

This function simulates a logic-based ODE model and return a list with one matrix for each time point. The input species in the model are filled with NA values. If the simulation of a particular set of initial conditions fails the solver will fill the experience row with NA values.

Usage

getLBodeModelSim(cnolist, model, ode_parameters = NULL, indices = NULL, timeSignals=NULL,
	time = 1,verbose = 0, transfer_function = 3, reltol = 1e-04, atol = 0.001, maxStepSize = Inf,
	maxNumSteps = 1e+05, maxErrTestsFails = 50)

Arguments

cnolist

A list containing the experimental design and data.

model

The logic model to be simulated.

ode_parameters

A list with the ODEs parameter information. Obtained with createLBodeContPars.

indices

Indices to map data in the model. Obtained with indexFinder function from CellNOptR.

timeSignals

An array containing a different timeSignals. If you use this argument, it will also modify the dimensions from valueSignals.

time

An integer with the index of the time point to start the simulation. Default is 1.

verbose

A logical value that triggers a set of comments.

transfer_function

The type of used transfer. Use 1 for no transfer function, 2 for Hill function and 3 for normalized Hill function.

reltol

Relative Tolerance for numerical integration.

atol

Absolute tolerance for numerical integration.

maxStepSize

The maximum number of internal steps between two points being sampled before the solver fails.

maxNumSteps

The maximum number of internal steps between two points being sampled before the solver fails.

maxErrTestsFails

Specifies the maximum number of error test failures permitted in attempting one step.

Details

Check CellNOptR for details about the cnolist and the model format. For more details in the configuration of the ODE solver check the CVODES manual.

Value

Returns a list with simulated data with similar structure to cnolist$valueSignals. Contains one matrix for each time-point. Each matrix contains one row per experiment and one columns per model species.

Author(s)

David Henriques, Thomas Cokelaer

See Also

CellNOptR createLBodeContPars

Examples

library(CNORode)
data('ToyCNOlist',package='CNORode');
data('ToyModel',package='CNORode');
data('ToyIndices',package='CNORode');
modelSimulation=getLBodeModelSim(cnolistCNORodeExample, model,indices=indices);

Get a function to simulate a logic based ODE model.

Description

This function is internally used by CNORode to configure the simulation function with default arguments.

Usage

getLBodeSimFunction(cnolist1, model1, adjMatrix1, indices1, odeParameters1,
	time1 = 1, verbose1 = 0, transfer_function1 = 3, reltol1 = 1e-04, atol1 = 0.001,
	maxStepSize1 = Inf, maxNumSteps1 = 1e+05, maxErrTestsFails1 = 50)

Arguments

cnolist1

A list containing the experimental design and data.

model1

The logic model to be simulated.

adjMatrix1

An adjacency matrix from the model.

indices1

Indices to map data in the model. Obtained with indexFinder function from CellNOptR.

odeParameters1

A list with the ODEs parameter information. Obtained with createLBodeContPars.

time1

An integer with the index of the time point to start the simulation. Default is 1.

verbose1

A logical value that triggers a set of comments.

transfer_function1

The type of used transfer. Use 1 for no transfer function, 2 for Hill function and 3 for normalized Hill function.

reltol1

Relative Tolerance for numerical integration.

atol1

Absolute tolerance for numerical integration.

maxStepSize1

The maximum step size allowed to ODE solver.

maxNumSteps1

The maximum number of internal steps between two points being sampled before the solver fails.

maxErrTestsFails1

Specifies the maximum number of error test failures permitted in attempting one step.

Value

A function that returns a simulated model.

Note

This function is for CNORode internal use.

Author(s)

David Henriques, Thomas Cokelaer

See Also

CellNOptR CNORode


Find which species in the model are states.

Description

Receives an adjacency matrix (model$interMat from CellNoptR) and finds which species are states (i.e. not inputs).

Usage

getStates(adjacency)

Arguments

adjacency

An adjacency matrix from the model.

Value

A numeric vector with 0's for positions which are states and 1's for positions which are.

Note

For internal use of CNORode.

Author(s)

David Henriques, Thomas Cokelaer

See Also

incidence2Adjacency


Convert an incidence matrix into an adjacency matrix.

Description

Convert the incidence matrix (model representation of CellNoptR) into an adjacency matrix. Denotes the inputs/output relationships.

Usage

incidence2Adjacency(model)

Arguments

model

Model from CellNoptR.

Value

Directed Adjacency matrix of size n_species by n_species.

Note

For internal use of CNORode.

Author(s)

David Henriques, Thomas Cokelaer

See Also

CellNOptR


Indices that relate cnolist to model

Description

A list with indices that relate the cnolist with the model from CellNOptR


Search for the best combination of continuous parameters and logic gates.

Description

This function uses essR to search for the best set of continuous parameters and model structure. The objective function is the same as the one provided by getLBodeMINLPObjFunction.

Usage

minlpLBodeSSm(cnolist, model, ode_parameters = NULL, int_x0=NULL, indices = NULL, maxeval = Inf,
	maxtime = 100, ndiverse = NULL, dim_refset = NULL, local_solver = NULL, time = 1, 
	verbose = 0, transfer_function = 3, reltol = 1e-04, atol = 0.001, maxStepSize = Inf,
	maxNumSteps = 1e+05, maxErrTestsFails = 50, nan_fac = 1)

Arguments

cnolist

A list containing the experimental design and data.

model

The logic model to be simulated.

ode_parameters

A list with the ODEs parameter information. Obtained with createLBodeContPars.

int_x0

Vector with initial solution for integer parameters.

indices

Indices to map data in the model. Obtained with indexFinder function from CellNOptR.

maxeval

Maximum number of evaluation in the optimization procedure.

maxtime

Maximum number of evaluation spent in optimization procedure.

ndiverse

Duration of the optinisation procedure.

dim_refset

Number of diverse initial solutions.

local_solver

Local solver to be used in SSm.

time

An integer with the index of the time point to start the simulation. Default is 1.

verbose

A logical value that triggers a set of comments.

transfer_function

The type of used transfer. Use 1 for no transfer function, 2 for Hill function and for normalized Hill function.

reltol

Relative Tolerance for numerical integration.

atol

Absolute tolerance for numerical integration.

maxStepSize

The maximum step size allowed to ODE solver.

maxNumSteps

The maximum number of internal steps between two points being sampled before the solver fails.

maxErrTestsFails

Specifies the maximum number of error test failures permitted in attempting one step.

nan_fac

A penalty for each data point the model is not able to simulate. We recommend higher than 0 and smaller that 1.

Details

Check CellNOptR for details about the cnolist and the model format. For more details in the configuration of the ODE solver check the CVODES manual.

Value

LB_n

A numeric value to be used as lower bound for all parameters of type n.

LB_k

A numeric value to be used as lower bound for all parameters of type k.

LB_tau

A numeric value to be used as lower bound for all parameters of type tau.

UB_n

A numeric value to be used as upper bound for all parameters of type n.

UB_k

A numeric value to be used as upper bound for all parameters of type k.

UB_tau

A numeric value to be used as upper bound for all parameters of type tau.

default_n

The default parameter to be used for every parameter of type n.

default_k

The default parameter to be used for every parameter of type k.

default_tau

The default parameter to be used for every parameter of type tau.

LB_in

An array with the the same length as ode_parameters$parValues with lower bounds for each specific parameter.

UB_in

An array with the the same length as ode_parameters$parValues with upper bounds for each specific parameter.

opt_n

Add all parameter n to the index of parameters to be fitted.

opt_k

Add all parameter k to the index of parameters to be fitted.

opt_tau

Add all parameter tau to the index of parameters to be fitted.

random

A logical value that determines that a random solution is for the parameters to be optimised.

model

The best fitting found model structure.

smm_results

A list containing the information provided by the nonlinear optimization solver.

Author(s)

David Henriques, Thomas Cokelaer

See Also

CellNOptR createLBodeContPars essR

Examples

## Not run: 
data("ToyCNOlist",package="CNORode");
data("ToyModel",package="CNORode");
data("ToyIndices",package="CNORode");
	
ode_parameters=createLBodeContPars(model,random=TRUE);

#Visualize initial solution
simulatedData=plotLBodeFitness(cnolistCNORodeExample, model,ode_parameters,indices=indices)
ode_parameters=minlpLBodeSSm(cnolistCNORodeExample, model,ode_parameters);

model=ode_parameters$model;

#Visualize fitted solution
simulatedData=plotLBodeFitness(cnolistCNORodeExample, model,indices=indices);

## End(Not run)

A model from CellNoptR

Description

A model from CellNoptR to use with provided examples


Perform parameter estimation using a genetic algorithm (package genalg) or ssm (if package essm available).

Description

This function is an alias to the parEstimationLBode variants (parEstimationLBodeGA and parEstimationLBodeSSm)

Usage

parEstimationLBode(cnolist, model, method="ga", ode_parameters = NULL, indices = NULL,
	paramsGA=NULL, paramsSSm=NULL)

Arguments

cnolist

A list containing the experimental design and data.

model

The logic model to be simulated.

method

Only "ga" or "essm" arguments are accepted.

ode_parameters

A list with the ODEs parameter information. Obtained with createLBodeContPars.

indices

Indices to map data in the model. Obtained with indexFinder function from CellNOptR.

paramsGA

A list of GA parameters. default is the list returned by defaultParametersGA.

paramsSSm

A list of SSm parameters. default is the list returned bydefaultParametersSSm.

Value

LB_n

A numeric value to be used as lower bound for all parameters of type n.

LB_k

A numeric value to be used as lower bound for all parameters of type k.

LB_tau

A numeric value to be used as lower bound for all parameters of type tau.

UB_n

A numeric value to be used as upper bound for all parameters of type n.

UB_k

A numeric value to be used as upper bound for all parameters of type k.

UB_tau

A numeric value to be used as upper bound for all parameters of type tau.

default_n

The default parameter to be used for every parameter of type n.

default_k

The default parameter to be used for every parameter of type k.

default_tau

The default parameter to be used for every parameter of type tau.

LB_in

An array with the the same length as ode_parameters$parValues with lower bounds for each specific parameter.

UB_in

An array with the the same length as ode_parameters$parValues with upper bounds for each specific parameter.

opt_n

Add all parameter n to the index of parameters to be fitted.

opt_k

Add all parameter k to the index of parameters to be fitted.

opt_tau

Add all parameter tau to the index of parameters to be fitted.

random

A logical value that determines that a random solution is for the parameters to be optimized.

res

A list containing the information provided by the solver.

Author(s)

David Henriques, Thomas Cokelaer

See Also

CellNOptR createLBodeContPars rbga

Examples

data("ToyCNOlist",package="CNORode");
data("ToyModel",package="CNORode");
data("ToyIndices",package="CNORode");
	
ode_parameters=createLBodeContPars(model,random=TRUE);
#Visualize initial solution
simulatedData=plotLBodeFitness(cnolistCNORodeExample, model,ode_parameters,indices=indices)
paramsGA = defaultParametersGA()
paramsGA$maxStepSize = 1
paramsGA$popSize = 10
paramsGA$iter = 10
paramsGA$transfer_function = 2
	
ode_parameters=parEstimationLBode(cnolistCNORodeExample,model,ode_parameters=ode_parameters,
	paramsGA=paramsGA)
#Visualize fitted solution
simulatedData=plotLBodeFitness(cnolistCNORodeExample, model,ode_parameters,indices=indices)

Perform parameter estimation using a genetic algorithm (package genalg).

Description

This function uses a genetic algorithm (package genalg) to perform parameter estimation. The objective function is the same as the one provided by getLBodeContObjFunction.

Usage

parEstimationLBodeGA(cnolist, model, ode_parameters = NULL, indices = NULL, mutationChance = NA, popSize = 200, iters = 100, 
		elitism = NA, time = 1, monitor = TRUE, verbose = 0, transfer_function = 3, reltol = 1e-04, 
		atol = 0.001, maxStepSize = Inf, maxNumSteps = 1e+05, maxErrTestsFails = 50, nan_fac = 1)

Arguments

cnolist

A list containing the experimental design and data.

model

The logic model to be simulated.

ode_parameters

A list with the ODEs parameter information. Obtained with createLBodeContPars.

indices

Indices to map data in the model. Obtained with indexFinder function from CellNOptR.

mutationChance

the chance that a gene in the chromosome mutates. By default 1/(size+1). It affects the convergence rate and the probing of search space: a low chance results in quicker convergence, while a high chance increases the span of the search space.

popSize

the population size.

iters

the number of iterations.

elitism

the number of chromosomes that are kept into the next generation. By default is about 20% of the population size

time

An integer with the index of the time point to start the simulation. Default is 1.

monitor

If TRUE a plot will be generated to monitor the objective function

verbose

A logical value that triggers a set of comments.

transfer_function

The type of used transfer. Use 1 for no transfer function, 2 for Hill function and 3 for normalized Hill function.

reltol

Relative Tolerance for numerical integration.

atol

Absolute tolerance for numerical integration.

maxStepSize

The maximum step size allowed to ODE solver.

maxNumSteps

The maximum number of internal steps between two points being sampled before the solver fails.

maxErrTestsFails

Specifies the maximum number of error test failures permitted in attempting one step.

nan_fac

A penalty for each data point the model is not able to simulate. We recommend higher than 0 and smaller that 1.

Value

LB_n

A numeric value to be used as lower bound for all parameters of type n.

LB_k

A numeric value to be used as lower bound for all parameters of type k.

LB_tau

A numeric value to be used as lower bound for all parameters of type tau.

UB_n

A numeric value to be used as upper bound for all parameters of type n.

UB_k

A numeric value to be used as upper bound for all parameters of type k.

UB_tau

A numeric value to be used as upper bound for all parameters of type tau.

default_n

The default parameter to be used for every parameter of type n.

default_k

The default parameter to be used for every parameter of type k.

default_tau

The default parameter to be used for every parameter of type tau.

LB_in

An array with the the same length as ode_parameters$parValues with lower bounds for each specific parameter.

UB_in

An array with the the same length as ode_parameters$parValues with upper bounds for each specific parameter.

opt_n

Add all parameter n to the index of parameters to be fitted.

opt_k

Add all parameter k to the index of parameters to be fitted.

opt_tau

Add all parameter tau to the index of parameters to be fitted.

random

A logical value that determines that a random solution is for the parameters to be optimized.

res

A list containing the information provided by the nonlinear optimization solver (genalg).

Author(s)

David Henriques, Thomas Cokelaer

See Also

CellNOptR createLBodeContPars rbga

Examples

data("ToyCNOlist",package="CNORode");
data("ToyModel",package="CNORode");
data("ToyIndices",package="CNORode");
	
ode_parameters=createLBodeContPars(model,random=TRUE);
#Visualize intial simulation
#simulatedData=plotLBodeFitness(cnolistCNORodeExample, model,ode_parameters,indices=indices)

ode_parameters=parEstimationLBodeGA(cnolistCNORodeExample,model,ode_parameters=ode_parameters,
indices=indices,maxStepSize=1,atol=1e-3,reltol=1e-5,transfer_function=2,popSize=10,iter=40);

#Visual solution after optimization
simulatedData=plotLBodeFitness(cnolistCNORodeExample, model,indices=indices,ode_parameters=ode_parameters);

Perform parameter estimation using essR.

Description

This function uses essR to perform parameter estimation. The objective function is the same as the one provided by getLBodeContObjFunction.

Usage

parEstimationLBodeSSm(cnolist, model, ode_parameters = NULL, indices = NULL, 
	maxeval = Inf, maxtime = 100, ndiverse = NULL, dim_refset = NULL, local_solver = NULL,
	time = 1, verbose = 0, transfer_function = 3, reltol = 1e-04, atol = 0.001, 
	maxStepSize = Inf, maxNumSteps = 1e+05, maxErrTestsFails = 50, nan_fac = 1,
	lambda_tau = 0, lambda_k = 0, bootstrap = FALSE, SSpenalty_fac = 0, 
    SScontrolPenalty_fac = 0, boot_seed = sample(1:10000,1))

Arguments

cnolist

A list containing the experimental design and data.

model

The logic model to be simulated.

ode_parameters

A list with the ODEs parameter information. Obtained with createLBodeContPars.

indices

Indices to map data in the model. Obtained with indexFinder function from CellNOptR.

maxeval

Maximum number of evaluation in the optimization procedure.

maxtime

Duration of the optimization procedure.

ndiverse

Number of diverse initial solutions.

dim_refset

Size of the reference set.

local_solver

Local solver to be used in SSm.

time

An integer with the index of the time point to start the simulation. Default is 1.

verbose

A logical value that triggers a set of comments.

transfer_function

The type of used transfer. Use 1 for no transfer function, 2 for Hill function and 3 for normalized Hill function.

reltol

Relative Tolerance for numerical integration.

atol

Absolute tolerance for numerical integration.

maxStepSize

The maximum step size allowed to ODE solver.

maxNumSteps

The maximum number of internal steps between two points being sampled before the solver fails.

maxErrTestsFails

Specifies the maximum number of error test failures permitted in attempting one step.

nan_fac

A penalty for each data point the model is not able to simulate. We recommend higher than 0 and smaller that 1.

lambda_tau

penalty parameter for node parameters (tau)

lambda_k

penalty parameter for edge parameters (k)

bootstrap

Boolean, default: FALSE. If the residuals should be bootstrapped.

SSpenalty_fac

Steady-state penalty: at the end of the simulation the model states should reach steady state. The steady state is measured by the sum of sqares of the state derivatives.

SScontrolPenalty_fac

Steady-state penalty for a control experiment, the default is 0. The first condition should represent a control condition (no stimulus or inhibition). Then the model simulation is penalised if it deviates from the initial conditions. This is to make sure that the predicted dynamics is not due to the initial conditions, but becuase of the stimuli.

boot_seed

random seed used for the bootsrapping.

Details

Check CellNOptR for details about the cnolist and the model format. For more details in the configuration of the ODE solver check the CVODES manual.

Value

LB_n

A numeric value to be used as lower bound for all parameters of type n.

LB_k

A numeric value to be used as lower bound for all parameters of type k.

LB_tau

A numeric value to be used as lower bound for all parameters of type tau.

UB_n

A numeric value to be used as upper bound for all parameters of type n.

UB_k

A numeric value to be used as upper bound for all parameters of type k.

UB_tau

A numeric value to be used as upper bound for all parameters of type tau.

default_n

The default parameter to be used for every parameter of type n.

default_k

The default parameter to be used for every parameter of type k.

default_tau

The default parameter to be used for every parameter of type tau.

LB_in

An array with the the same length as ode_parameters$parValues with lower bounds for each specific parameter.

UB_in

An array with the the same length as ode_parameters$parValues with upper bounds for each specific parameter.

opt_n

Add all parameter n to the index of parameters to be fitted.

opt_k

Add all parameter k to the index of parameters to be fitted.

opt_tau

Add all parameter tau to the index of parameters to be fitted.

random

A logical value that determines that a random solution is for the parameters to be optimized.

smm_results

A list containing the information provided by the nonlinear optimization solver.

Author(s)

David Henriques, Thomas Cokelaer

See Also

CellNOptR createLBodeContPars

Examples

## Not run: 
data("ToyCNOlist",package="CNORode");
data("ToyModel",package="CNORode");
data("ToyIndices",package="CNORode");

ode_parameters=createLBodeContPars(model,random=TRUE);

#Visualize intial simulation
simulatedData=plotLBodeFitness(cnolistCNORodeExample, model,ode_parameters,indices=indices)

ode_parameters=parEstimationLBodeSSm(cnolistCNORodeExample,model,ode_parameters,
indices=indices,maxtime=20,ndiverse=50,dim_refset=6);

#Visualize fitterd solution
simulatedData=plotLBodeFitness(cnolistCNORodeExample, model,indices=indices,ode_parameters=ode_parameters);

## End(Not run)

A pknmodel from CellNoptR

Description

A pknmodel from CellNoptR to use with provided examples


Plot data against simulated values.

Description

Plots the simulated values with the logic-based ODE against the the data contained contained the data contained in the cnolist. The data values are represented with a black line and the simulated values with a blue line. Additionally this functions returns the the simulated values.

Usage

plotLBodeFitness(cnolist, model, ode_parameters = NULL, indices = NULL,
 		adjMatrix = NULL, time = 1, verbose = 0, transfer_function = 3, reltol = 1e-04,
		atol = 0.001, maxStepSize = Inf, maxNumSteps = 1e+05, maxErrTestsFails = 50,
   		plot_index_signals = NULL, plot_index_experiments = NULL,
plot_index_cues = NULL, colormap="heat", plotParams=list(margin=0.1, width=15, height=12,
                  cmap_scale=1, cex=1.6, ymin=NULL)
  

)

Arguments

cnolist

A list containing the experimental design and data.

model

The logic model to be simulated.

ode_parameters

A list with the ODEs parameter information. Obtained with createLBodeContPars.

indices

Indices to map data in the model. Obtained with indexFinder function from CellNOptR.

adjMatrix

Model representation in the form of an adjacency matrix. When not provided will be automatically computed based in the model.

time

An integer with the index of the time point to start the simulation. Default is 1.

verbose

A logical value that triggers a set of comments.

transfer_function

The type of used transfer. Use 1 for no transfer function, 2 for Hill function and 3 for normalized Hill function.

reltol

Relative Tolerance for numerical integration.

atol

Absolute tolerance for numerical integration.

maxStepSize

The maximum step size allowed to ODE solver.

maxNumSteps

The maximum number of internal steps between two points being sampled before the solver fails.

maxErrTestsFails

Specifies the maximum number of error test failures permitted in attempting one step.

plot_index_signals

In case you only want to plot some signals, provide an integer vector with the indexes.

plot_index_experiments

In case you only want to plot some experiments, provide an integer vector with the indexes.

plot_index_cues

In case you only want to plot some cues, provide an integer vector with the indexes.

colormap

Uses the same colormap as in CellNOptR by default. If set to "green", it uses the deprecated colormap.

plotParams

additional parameters to refine the ploggin. See plotOptimResultsPan function in CellNOptR for more details.

Details

Check CellNOptR for details about the cnolist and the model format. For more details in the configuration of the ODE solver check the CVODES manual.

Value

Returns a list with simulated data that has the same structure as the cnolist$valueSignals. One matrix for each time-point.

Author(s)

David Henriques, Thomas Cokelaer

See Also

CellNOptR createLBodeContPars

Examples

library(CNORode)
	data("ToyCNOlist",package="CNORode");
	data("ToyModel",package="CNORode");
	data("ToyIndices",package="CNORode");
	ode_parameters=createLBodeContPars(model,random=TRUE);
	dataSimulation=plotLBodeFitness(cnolistCNORodeExample, model,indices=indices);

Simulate the model and plot the obtained with the different experimental conditions.

Description

Plots the simulated values of the logic based ODE model. Only dynamic states are plotted, i.e. those that are not inputs. a blue line. Additionally this functions returns the the simulated values.

Usage

plotLBodeModelSim(cnolist, model, ode_parameters = NULL, indices = NULL, 
	adjMatrix = NULL, timeSignals=NULL, time = 1, verbose = 0, transfer_function = 3,
	reltol = 1e-04, atol = 0.001, maxStepSize = Inf, maxNumSteps = 1e+05,
	maxErrTestsFails = 50, large = FALSE, nsplit = 4, show = TRUE)

Arguments

cnolist

A list containing the experimental design and data.

model

The logic model to be simulated.

ode_parameters

A list with the ODEs parameter information. Obtained with createLBodeContPars.

indices

Indices to map data in the model. Obtained with indexFinder function from CellNOptR.

adjMatrix

Model representation in the form of an adjacency matrix. When not provided will be automatically computed based in the model.

timeSignals

An array containing a different timeSignals. If you use this argument, it will also modify the dimensions from valueSignals.

time

An integer with the index of the time point to start the simulation. Default is 1.

verbose

A logical value that triggers a set of comments.

transfer_function

The type of used transfer. Use 1 for no transfer function, 2 for Hill function and 3 for normalized Hill function.

reltol

Relative Tolerance for numerical integration.

atol

Absolute tolerance for numerical integration.

maxStepSize

The maximum step size allowed to ODE solver.

maxNumSteps

The maximum number of internal steps between two points being sampled before the solver fails.

maxErrTestsFails

Specifies the maximum number of error test failures permitted in attempting one step.

large

Boolean variable defining if the plot should split into several subplots.

nsplit

In case the large plot options is selected define how many subplots will exist. Default is 4.

show

Boolean variable defining if we shold plot the CNOlist object.

Value

Returns a list with simulated Model values. One matrix of size number of species by number of experimental conditions for each time-point.

Author(s)

David Henriques, Thomas Cokelaer

See Also

CellNOptR createLBodeContPars

Examples

library(CNORode)
	data("ToyCNOlist",package="CNORode");
	data("ToyModel",package="CNORode");
	data("ToyIndices",package="CNORode");
	modelSimulation=plotLBodeModelSim(cnolistCNORodeExample, model,indices=indices);

runCNORode

Description

A one-line wrapper of the CNORode pipeline

Usage

runCNORode(
  model,
  data,
  compression = TRUE,
  results_folder = "CNORode_results",
  cutNONC = TRUE,
  expansion = FALSE,
  LB_n = 1,
  LB_k = 0.1,
  LB_tau = 0.01,
  UB_n = 5,
  UB_k = 0.9,
  UB_tau = 10,
  default_n = 3,
  default_k = 0.5,
  default_tau = 1,
  opt_n = TRUE,
  opt_k = TRUE,
  opt_tau = TRUE,
  random = TRUE,
  maxeval = 1e+05,
  maxtime = 60,
  transfer_function = 3,
  nan_fac = 1,
  lambda_tau = 0,
  lambda_k = 0
)

Arguments

model

A filename of prior knowledge network (PKN) in the SIF format

data

A measurement filename in the MIDAS format

compression

compress the prior knowledge network (TRUE), see preprocessing

results_folder

results folder for the analysis.

cutNONC

cut non-observable non-controllable node from PKN (TRUE), see preprocessing

expansion

expand OR gates in the PKN (FALSE), see preprocessing

LB_n

lower bound on parameter n, see createLBodeContPars

LB_k

lower bound on parameter k, see createLBodeContPars

LB_tau

lower bound on parameter tau, see createLBodeContPars

UB_n

upper bound on parameter n, see createLBodeContPars

UB_k

upper bound on parameter k, see createLBodeContPars

UB_tau

upper bound on parameter tau, see createLBodeContPars

default_n

default value of parameter n, see createLBodeContPars

default_k

default value of parameter k, see createLBodeContPars

default_tau

default value of parameter tau, see createLBodeContPars

opt_n

should parameter n be optimised, see createLBodeContPars

opt_k

should parameter k be optimised, see createLBodeContPars

opt_tau

should parameter tau be optimised, see createLBodeContPars

random

initial parameter vector generation (TRUE: random, FALSE: half of the LB-UB)

maxeval

maximum number of funciton evaluations in the optimisation, see parEstimationLBodeSSm

maxtime

maximum CPU time (in seconds) spent on optimisation before calling final refinement, see parEstimationLBodeSSm

transfer_function

trandfer function types represented by the edges, see parEstimationLBodeSSm

nan_fac

penalty for NA simulations, see parEstimationLBodeSSm

lambda_tau

regularisation penalty for tau parameters, see parEstimationLBodeSSm

lambda_k

regularisation penalty for k parameters for optimisation, see parEstimationLBodeSSm

Examples

## Not run: 
model = system.file("extdata", "ToyModelMMB_FeedbackAnd.sif",package="CNORode")
data = system.file("extdata", "ToyModelMMB_FeedbackAnd.csv", package="CNORode")
res = runCNORode(model,data,results_folder = "./results")

## End(Not run)

converts output of getLBodeModelSim to cnolist

Description

This function converts the simulated data returned by getLBodeModelSim into a valid CNOlist data structure.

Usage

simdata2cnolist(sim_data, cnolist, model)

Arguments

sim_data

structure returned by getLBodeModelSim

cnolist

A list containing the experimental design and data.

model

The logic model to be simulated.

Value

a CNOlist

Author(s)

Thomas Cokelaer

See Also

CellNOptR createLBodeContPars

Examples

data('ToyCNOlist',package='CNORode');
data('ToyModel',package='CNORode');
data('ToyIndices',package='CNORode');
simdata = getLBodeModelSim(cnolistCNORodeExample, model,indices=indices)
cnolist = simdata2cnolist(simdata, cnolistCNORodeExample, model)

cnolist = simdata2cnolist(simdata, cnolistCNORodeExample, model)

Simulate value signals a CNO list With Logic-Based ODEs.

Description

This function receives a set of inputs, namely the cnolist and the model and returns a list with the same size of the cnolist$valueSignals.

Usage

simulate(cnolist, model, ode_parameters=NULL, indices=NULL,
	adjMatrix=NULL, time=1, verbose=0, transfer_function=3,
	reltol=1e-04, atol=0.001, maxStepSize=Inf, maxNumSteps=1e+05, 
	maxErrTestsFails=50)

Arguments

cnolist

A list containing the experimental design and data.

model

A list with the ODEs parameter information. Obtained with createLBodeContPars.

ode_parameters

A list with the ODEs parameter information. Obtained with makeParameterList function.

indices

Indices to map data in the model. Obtained with indexFinder function from CellNOptR.

adjMatrix

The adjacency matrix. Recomputed if not provided

time

An integer with the index of the time point to start the simulation. Default is 1.

verbose

A logical value that triggers a set of comments.

transfer_function

The type of used transfer. Use 1 for no transfer function, 2 for Hill function and 3 for normalized Hill function.

reltol

Relative Tolerance for numerical integration.

atol

Absolute tolerance for numerical integration.

maxStepSize

The maximum step size allowed to ODE solver.

maxNumSteps

The maximum number of internal steps between two points being sampled before the solver fails.

maxErrTestsFails

Specifies the maximum number of error test failures permitted in attempting one step.

Details

Check CellNOptR for details about the cnolist and the model format. For more details in the configuration of the ODE solver check the CVODES manual.

Value

Returns a list with simulated data that has the same structure as the cnolist$valueSignals. One matrix for each time-point.

Author(s)

David Henriques, Thomas Cokelaer

See Also

CellNOptR parEstimationLBode parEstimationLBodeSSm

Examples

library(CNORode)
data("ToyCNOlist",package="CNORode");
data("ToyModel",package="CNORode");
data("ToyIndices",package="CNORode");
dataSimulation = simulate(cnolistCNORodeExample, model,indices=indices);