Package 'CBEA'

Title: Competitive Balances for Taxonomic Enrichment Analysis in R
Description: This package implements CBEA, a method to perform set-based analysis for microbiome relative abundance data. This approach constructs a competitive balance between taxa within the set and remainder taxa per sample. More details can be found in the Nguyen et al. 2021+ manuscript. Additionally, this package adds support functions to help users perform taxa-set enrichment analyses using existing gene set analysis methods. In the future we hope to also provide curated knowledge driven taxa sets.
Authors: Quang Nguyen [aut, cre]
Maintainer: Quang Nguyen <[email protected]>
License: MIT + file LICENSE
Version: 1.7.0
Built: 2024-11-19 03:29:28 UTC
Source: https://github.com/bioc/CBEA

Help Index


Enrichment analysis using competitive compositional balances (CBEA)

Description

cbea is used compute enrichment scores per sample for pre-defined sets using the CBEA (Competitive Balances for Enrichment Analysis).

Usage

cbea(
  obj,
  set,
  output,
  distr = NULL,
  adj = FALSE,
  n_perm = 100,
  parametric = TRUE,
  thresh = 0.05,
  init = NULL,
  control = NULL,
  parallel_backend = NULL,
  ...
)

## S4 method for signature 'TreeSummarizedExperiment'
cbea(
  obj,
  set,
  output,
  distr = NULL,
  abund_values,
  adj = FALSE,
  n_perm = 100,
  parametric = TRUE,
  thresh = 0.05,
  init = NULL,
  control = NULL,
  parallel_backend = NULL,
  ...
)

## S4 method for signature 'data.frame'
cbea(
  obj,
  set,
  taxa_are_rows = FALSE,
  id_col = NULL,
  output,
  distr = NULL,
  adj = FALSE,
  n_perm = 100,
  parametric = TRUE,
  thresh = 0.05,
  init = NULL,
  control = NULL,
  parallel_backend = NULL,
  ...
)

## S4 method for signature 'matrix'
cbea(
  obj,
  set,
  taxa_are_rows = FALSE,
  output,
  distr = NULL,
  adj = FALSE,
  n_perm = 100,
  parametric = TRUE,
  thresh = 0.05,
  init = NULL,
  control = NULL,
  parallel_backend = NULL,
  ...
)

Arguments

obj

The element of class TreeSummarizedExperiment, data.frame, or matrix. phyloseq is not supported due to conflicting dependencies and TreeSummarizedExperiment is much more compact.

set

BiocSet. Sets to be tested for enrichment in the BiocSet format. Taxa names must be in the same format as elements in the set.

output

(String). The form of the output of the model. Has to be either zscore, cdf, raw, pval, or sig

distr

(String). The choice of distribution for the null. Can be either mnorm (2 component mixture normal), norm (Normal distribution), or NULL if parametric is TRUE.

adj

(Logical). Whether correlation adjustment procedure is utilized. Defaults to FALSE.

n_perm

(Numeric). Add bootstrap resamples to both the permuted and unpermuted data set. This might help with stabilizing the distribution fitting procedure, especially if the sample size is low. Defaults to 1.

parametric

(Logical). Indicate whether a parametric distribution will be fitted to estimate z-scores, CDF values, and p-values. Defaults to TRUE

thresh

(Numeric). Threshold for significant p-values if sig is the output. Defaults to 0.05

init

(Named List). Initialization parameters for estimating the null distribution. Default is NULL.

control

(Named List). Additional arguments to be passed to fitdistr and normmixEM. Defaults to NULL.

parallel_backend

See documentation cbea

...

Additional arguments not used at the moment.

abund_values

(Character). Character value for selecting the assay to be the input to cbea

taxa_are_rows

(Logical). Indicate whether the data frame or matrix has taxa as rows

id_col

(Character Vector). Vector of character to indicate metadata columns to keep (for example, sample_id)

Details

This function support different formats of the OTU table, however for best results please use TreeSummarizedExperiment. phyloseq is supported, however CBEA will not explicitly import phyloseq package and will require users to install them separately. If use data.frame or matrix, users should specify whether taxa are rows using the taxa_are_rows option. Additionally, for data.frame, users can specify metadata columns to be kept via the id_col argument.
The output argument specifies what type of values will be returned in the final matrix. The options pval or sig returns either unadjusted p-values or dummy variables indicating whether a set is significantly enriched in that sample (based on unadjusted p-values thresholded at thresh). The option raw returns raw scores computed for each set without any distribution fitting or inference procedure. Users can use this option to examine the distribution of CBEA scores under the null.

Value

R An n by m matrix of enrichment scores at the sample level

Examples

data(hmp_gingival)
seq <- hmp_gingival$data
set <- hmp_gingival$set
# n_perm = 10 to reduce runtime
mod <- cbea(obj = seq, set = set, output = "zscore",
    abund_values = "16SrRNA",
    distr = "norm", parametric = TRUE,
    adj = TRUE, thresh = 0.05, n_perm = 10)

Get CBEA scores for a given matrix and a vector of column indices

Description

Get CBEA scores for a given matrix and a vector of column indices

Usage

get_raw_score(X, idx)

Arguments

X

(Matrix). OTU table of matrix format where taxa are columns and samples are rows

idx

(Integer vector). Vector of integers indicating the column ids of taxa in a set

Value

A matrix of size n by 1 where n is the total number of samples

Examples

data(hmp_gingival)
seq <- hmp_gingival$data
seq_matrix <- SummarizedExperiment::assays(seq)[[1]]
seq_matrix <- t(seq_matrix) + 1
rand_set <- sample(seq_len(ncol(seq_matrix)), size = 10)
scores <- get_raw_score(X = seq_matrix, idx = rand_set)

Glance at CBEAout object

Description

This function cleans up all diagnostics of the cbea method (from the CBEAout object) into a nice tibble::tibble()

Usage

## S3 method for class 'CBEAout'
glance(x, statistic, ...)

Arguments

x

An object of type CBEAout

statistic

What type of diagnostic to return. Users can choose to return fit_diagnostic which returns goodness of fit statistics for the different fitted distributions (e.g. log likelihoods) while fit_comparison returns comparisons across different distributions and raw values (and data) across the 4 l-moments.

...

Unused, kept for consistency with generics

Value

A tibble::tibble() summarizing diagnostic fits per set (as row)

Examples

# load the data
data(hmp_gingival)
mod <- cbea(hmp_gingival$data, hmp_gingival$set, abund_values = "16SrRNA",
    output = "sig", distr = "norm", adj = FALSE, n_perm = 5, parametric = TRUE)
glance(mod, "fit_diagnostic")

Geometric mean of a vector

Description

Compute geometric mean of a vector using exp(mean(log(.x))) format

Usage

gmean(vec)

Arguments

vec

A vector of values with length n

Value

A numeric value of the geometric mean of the vector vec

Examples

ex <- abs(rnorm(10))
gmean(ex)

Geometric mean of rows of a matrix

Description

This function computes the geometric mean by row of a numeric matrix

Usage

gmeanRow(X)

Arguments

X

A numeric matrix with n rows and p columns

Value

A numeric vector of the geometric mean of the matrix X with length n

Examples

ex <- matrix(rnorm(100), nrow = 10, ncol = 10)
ex <- abs(ex)
gmeanRow(ex)

Gingival data set from the Human Microbiome Project

Description

Gingival data set from the Human Microbiome Project

Usage

data(hmp_gingival)

Format

A list with two elements

data

The microbiome relative abundance data with relevant metadata obtained from the Human Microbiome Project via the HMP16SData package (snapshot: 11-15-2021). The data set is hosted the container of type phyloseq. Using the mia package users can convert it to the TreeSummarizedExperiment type.

set

Sets of microbes based on their metabolism annotation at the Genera level. Annotations obtained via Calagaro et al.'s repository on Zenodo (https://doi.org/10.5281/zenodo.3942108)

References

Data can be downloaded directly from https://hmpdacc.org/hmp/

R interface of the data from https://doi.org/doi:10.18129/B9.bioc.HMP16SData

Beghini F, Renson A, Zolnik CP, Geistlinger L, Usyk M, Moody TU, et al. Tobacco Exposure Associated with Oral Microbiota Oxygen Utilization in the New York City Health and Nutrition Examination Study. Annals of Epidemiology. 2019;34:18–25.e3. doi:10.1016/j.annepidem.2019.03.005

Consortium THMP, Huttenhower C, Gevers D, Knight R, Abubucker S, Badger JH, et al. Structure, Function and Diversity of the Healthy Human Microbiome. Nature. 2012;486(7402):207–214. doi:10.1038/nature11234.

Calgaro M, Romualdi C, Waldron L, Risso D, Vitulo N. Assessment of Statistical Methods from Single Cell, Bulk RNA-Seq, and Metagenomics Applied to Microbiome Data. Genome Biology. 2020;21(1):191. doi:10.1186/s13059-020-02104-1

Schiffer L, Azhar R, Shepherd L, Ramos M, Geistlinger L, Huttenhower C, et al. HMP16SData: Efficient Access to the Human Microbiome Project through Bioconductor. American Journal of Epidemiology. 2019;doi:10.1093/aje/kwz006.


Creating an output object of type CBEAout

Description

This function takes a list of lists from each object and turns it into a CBEAout type object

Usage

new_CBEAout(out, call)

Arguments

out

A list containing scores for each set

call

A list containing all important arguments for printing

Value

A new CBEAout object (which is a cleaner list of lists)


The Two Component Mixture Normal Distribution

Description

The Two Component Mixture Normal Distribution

Usage

pmnorm(q, mu, sigma, lambda, log = FALSE, verbose = FALSE)

dmnorm(x, mu, sigma, lambda, log = FALSE, verbose = FALSE)

Arguments

q, x

(Vector). Values to calculate distributional values of.

mu

(Vector). A two value vector of mean values.

sigma

(Vector). A two value vector of component-wise variances

lambda

(Vector). A two value vector of component mixing coefficients

log

(Boolean). Whether returning probabilities are in log format

verbose

(Boolean). Whether to return component values.

Value

A numeric value representing the probability density value of a two-component mixture distribution

Functions

  • pmnorm: Cumulative Distribution Function

  • dmnorm: Probability Density Function

Examples

library(mixtools)
    lambda <- c(0.7,0.3)
    mu <- c(1,2)
    sigma <- c(1,1)
    v <- rnormmix(100, lambda=lambda, mu=mu, sigma=sigma)
    pmnorm(v, lambda=lambda,mu=mu,sigma=sigma)
    dmnorm(v, lambda=lambda,mu=mu,sigma=sigma)

Print dispatch for CBEAout objects

Description

Print dispatch for CBEAout objects

Usage

## S3 method for class 'CBEAout'
print(x, ...)

Arguments

x

The CBEAout object

...

Undefined arguments, keeping consistency for generics

Value

Text for printing


Tidy a CBEAout object

Description

This function takes in a CBEA type object and collects all values across all sets and samples that were evaluated.

Usage

## S3 method for class 'CBEAout'
tidy(x, ...)

Arguments

x

A CBEAout object.

...

Unused, included for generic consistency only.

Value

A tidy tibble::tibble() summarizing scores per sample per set.

Examples

# load the data
data(hmp_gingival)
mod <- cbea(hmp_gingival$data, hmp_gingival$set, abund_values = "16SrRNA",
    output = "sig", distr = "norm", adj = FALSE, n_perm = 5, parametric = TRUE)
tidy(mod)