Title: | A CAusal Reasoning tool for Network Identification (from gene expression data) using Integer VALue programming |
---|---|
Description: | An upgraded causal reasoning tool from Melas et al in R with updated assignments of TFs' weights from PROGENy scores. Optimization parameters can be freely adjusted and multiple solutions can be obtained and aggregated. |
Authors: | Enio Gjerga [aut] , Panuwat Trairatphisan [aut], Anika Liu [ctb], Alberto Valdeolivas [ctb], Nikolas Peschke [ctb], Aurelien Dugourd [ctb], Attila Gabor [cre], Olga Ivanova [aut] |
Maintainer: | Attila Gabor <[email protected]> |
License: | GPL-3 |
Version: | 2.17.0 |
Built: | 2024-12-29 03:50:13 UTC |
Source: | https://github.com/bioc/CARNIVAL |
Checks if provided option names are valid.
checkOptionsValidity(solver = getSupportedSolvers()$lpSolve, ...)
checkOptionsValidity(solver = getSupportedSolvers()$lpSolve, ...)
solver |
one of the solvers available from getSupportedSolvers(). |
... |
any possible options from the solver's list |
TRUE/FALSE depending on the status of the checks
checkOptionsValidity(solver="lpSolve")
checkOptionsValidity(solver="lpSolve")
Sets default CARNIVAL options for cbc.
defaultCbcSolveCarnivalOptions(...)
defaultCbcSolveCarnivalOptions(...)
... |
any possible options from the solver's list |
default CbB solver options as a list.
#defaultCbcSolveCarnivalOptions()
#defaultCbcSolveCarnivalOptions()
Sets default CARNIVAL options for cplex.
defaultCplexCarnivalOptions(...)
defaultCplexCarnivalOptions(...)
... |
any possible options from the solver's list |
default CPLEX solver options as a list.
defaultCplexCarnivalOptions()
defaultCplexCarnivalOptions()
Sets default options from cplex documentation.
defaultCplexSpecificOptions(...)
defaultCplexSpecificOptions(...)
... |
any possible options from the solver's list |
default CPLEX solver options as a list.
defaultCplexSpecificOptions()
defaultCplexSpecificOptions()
Sets default CARNIVAL options for lpSolve.
defaultLpSolveCarnivalOptions(...)
defaultLpSolveCarnivalOptions(...)
... |
any possible options from the solver's list |
default lpSolve solver options as a list.
defaultLpSolveCarnivalOptions()
defaultLpSolveCarnivalOptions()
generateLpFileCarnival
generateLpFileCarnival
generateLpFileCarnival( perturbations = NULL, measurements, priorKnowledgeNetwork, weights = NULL, carnivalOptions = defaultLpSolveCarnivalOptions() )
generateLpFileCarnival( perturbations = NULL, measurements, priorKnowledgeNetwork, weights = NULL, carnivalOptions = defaultLpSolveCarnivalOptions() )
perturbations |
(optional, if inverse CARNIVAL flavour is used further) vector of targets of perturbations. |
measurements |
vector of the measurements (i.e. DoRothEA/VIPER normalised enrichment scores) |
priorKnowledgeNetwork |
data frame of the prior knowledge network |
weights |
(optional) vector of the additional weights: e.g. PROGENy pathway scores or measured protein activities. |
carnivalOptions |
the list of options for the run. See defaultLpSolveCarnivalOptions(), defaultCplexCarnivalOptions, defaultCbcCarnivalOptions. |
Prepares the input data for the run: tranforms data into lp file and .Rdata file. These files can be reused to run CARNIVAL without preprocessing step using runCarnivalFromLp(..)
paths to .lp file and .RData file that can be used for runFromLpCarnival()
load(file = system.file("toy_perturbations_ex1.RData", package="CARNIVAL")) load(file = system.file("toy_measurements_ex1.RData", package="CARNIVAL")) load(file = system.file("toy_network_ex1.RData", package="CARNIVAL")) ## lpSolve #res1 = generateLpFileCarnival(perturbations = toy_perturbations_ex1, # measurements = toy_measurements_ex1, # priorKnowledgeNetwork = toy_network_ex1, # carnivalOptions = defaultLpSolveCarnivalOptions()) #res1["lpFile"] ##path to generated lp file #res1["parsedDataFile"] ##path to data file used during generation ## Examples for cbc and cplex are commented out because these solvers are not part of R environment ## and need to be installed separately ## ## cbc ## res2 = generateLpFileCarnival(perturbations = toy_perturbations_ex1, ## measurements = toy_measurements_ex1, ## priorKnowledgeNetwork = toy_network_ex1, ## carnivalOptions = defaultCbcCarnivalOptions()) ## ## res2["lpFile"] ##path to generated lp file ## res2["parsedDataFile"] ##path to data file used during generation ## ## cplex ## res3 = generateLpFileCarnival(perturbations = toy_perturbations_ex1, ## measurements = toy_measurements_ex1, ## priorKnowledgeNetwork = toy_network_ex1, ## carnivalOptions = defaultCplexCarnivalOptions()) ## ## res3["lpFile"] ##path to generated lp file ## res3["parsedDataFile"] ##path to data file used during generation
load(file = system.file("toy_perturbations_ex1.RData", package="CARNIVAL")) load(file = system.file("toy_measurements_ex1.RData", package="CARNIVAL")) load(file = system.file("toy_network_ex1.RData", package="CARNIVAL")) ## lpSolve #res1 = generateLpFileCarnival(perturbations = toy_perturbations_ex1, # measurements = toy_measurements_ex1, # priorKnowledgeNetwork = toy_network_ex1, # carnivalOptions = defaultLpSolveCarnivalOptions()) #res1["lpFile"] ##path to generated lp file #res1["parsedDataFile"] ##path to data file used during generation ## Examples for cbc and cplex are commented out because these solvers are not part of R environment ## and need to be installed separately ## ## cbc ## res2 = generateLpFileCarnival(perturbations = toy_perturbations_ex1, ## measurements = toy_measurements_ex1, ## priorKnowledgeNetwork = toy_network_ex1, ## carnivalOptions = defaultCbcCarnivalOptions()) ## ## res2["lpFile"] ##path to generated lp file ## res2["parsedDataFile"] ##path to data file used during generation ## ## cplex ## res3 = generateLpFileCarnival(perturbations = toy_perturbations_ex1, ## measurements = toy_measurements_ex1, ## priorKnowledgeNetwork = toy_network_ex1, ## carnivalOptions = defaultCplexCarnivalOptions()) ## ## res3["lpFile"] ##path to generated lp file ## res3["parsedDataFile"] ##path to data file used during generation
Returns the list of options needed/supported for each solver.
getOptionsList(solver = "", onlyRequired = FALSE)
getOptionsList(solver = "", onlyRequired = FALSE)
solver |
one of the solvers available from getSupportedSolvers() |
onlyRequired |
logic, set to TRUE if you want to obtain only required options for the run |
list of options, solver-dependent
Returns the list of supported solvers.
getSupportedSolvers()
getSupportedSolvers()
list of currently supported solvers.
Checks validity of all inputs of CARNIVAL
isInputValidCarnival( perturbations = NULL, measurements, priorKnowledgeNetwork, weights = NULL, carnivalOptions = defaultLpSolveCarnivalOptions() )
isInputValidCarnival( perturbations = NULL, measurements, priorKnowledgeNetwork, weights = NULL, carnivalOptions = defaultLpSolveCarnivalOptions() )
perturbations |
(optional, if inverse CARNIVAL flavour is used further) vector of targets of perturbations. |
measurements |
vector of the measurements (i.e. DoRothEA/VIPER normalised enrichment scores) |
priorKnowledgeNetwork |
data frame of the prior knowledge network |
weights |
(optional) vector of the additional weights: e.g. PROGENy pathway scores or measured protein activities. |
carnivalOptions |
the list of options for the run. See defaultLpSolveCarnivalOptions(), defaultCplexCarnivalOptions, defaultCbcCarnivalOptions. |
TRUE if everything passed the checks.
load(file = system.file("toy_perturbations_ex1.RData", package="CARNIVAL")) load(file = system.file("toy_measurements_ex1.RData", package="CARNIVAL")) load(file = system.file("toy_network_ex1.RData", package="CARNIVAL")) ## lpSolve #isInputValidCarnival(perturbations = toy_perturbations_ex1, # measurements = toy_measurements_ex1, # priorKnowledgeNetwork = toy_network_ex1, # carnivalOptions = defaultLpSolveCarnivalOptions())
load(file = system.file("toy_perturbations_ex1.RData", package="CARNIVAL")) load(file = system.file("toy_measurements_ex1.RData", package="CARNIVAL")) load(file = system.file("toy_network_ex1.RData", package="CARNIVAL")) ## lpSolve #isInputValidCarnival(perturbations = toy_perturbations_ex1, # measurements = toy_measurements_ex1, # priorKnowledgeNetwork = toy_network_ex1, # carnivalOptions = defaultLpSolveCarnivalOptions())
Parses the cplex log file and reads some basic information.
parseCplexLog(log)
parseCplexLog(log)
log |
path of log file resulted from a carnival run OR the content
of this file read by |
list variable with following fields: - 'convergence' a table that contains information on the convergence of CPLEX - 'n_solutions' number of solutions found - 'objective' objective function value - 'termination_reason': reason of termination
Attila Gabor, 2021
runCARNIVAL
runCARNIVAL
runCARNIVAL( inputObj = NULL, measObj = measObj, netObj = netObj, weightObj = NULL, solverPath = NULL, solver = c("lpSolve", "cplex", "cbc", "gurobi"), timelimit = 3600, mipGAP = 0.05, poolrelGAP = 1e-04, limitPop = 500, poolCap = 100, poolIntensity = 4, poolReplace = 2, alphaWeight = 1, betaWeight = 0.2, threads = 0, cleanTmpFiles = TRUE, keepLPFiles = TRUE, clonelog = -1, dir_name = getwd() )
runCARNIVAL( inputObj = NULL, measObj = measObj, netObj = netObj, weightObj = NULL, solverPath = NULL, solver = c("lpSolve", "cplex", "cbc", "gurobi"), timelimit = 3600, mipGAP = 0.05, poolrelGAP = 1e-04, limitPop = 500, poolCap = 100, poolIntensity = 4, poolReplace = 2, alphaWeight = 1, betaWeight = 0.2, threads = 0, cleanTmpFiles = TRUE, keepLPFiles = TRUE, clonelog = -1, dir_name = getwd() )
inputObj |
Data frame of the list for target of perturbation - optional or default set to NULL to run invCARNIVAL when inputs are not known. |
measObj |
Data frame of the measurement file (i.e. DoRothEA normalised enrichment scores) - always required. |
netObj |
Data frame of the prior knowledge network - always required. |
weightObj |
Data frame of the additional weight (i.e. PROGENy pathway score or measured protein activities) - optional or default set as NULL to run CARNIVAL without weights. |
solverPath |
Path to executable cbc/cplex file - default set to NULL, in which case the solver from lpSolve package is used. |
solver |
Solver to use: lpSolve/cplex/cbc (Default set to lpSolve). |
timelimit |
CPLEX/Cbc parameter: Time limit of CPLEX optimisation in seconds (default set to 3600). |
mipGAP |
CPLEX parameter: the absolute tolerance on the gap between the best integer objective and the objective of the best node remaining. When this difference falls below the value of this parameter, the linear integer optimization is stopped (default set to 0.05) |
poolrelGAP |
CPLEX/Cbc parameter: Allowed relative gap of accepted solution comparing within the pool of accepted solution (default: 0.0001) |
limitPop |
CPLEX parameter: Allowed number of solutions to be generated (default: 500) |
poolCap |
CPLEX parameter: Allowed number of solution to be kept in the pool of solution (default: 100) |
poolIntensity |
CPLEX parameter: Intensity of solution searching (0,1,2,3,4 - default: 4) |
poolReplace |
CPLEX parameter: Replacement strategy of solutions in the pool (0,1,2 - default: 2 = most diversified solutions) |
alphaWeight |
Objective function: weight for mismatch penalty (default: 1 - will only be applied once measurement file only contains discrete values) |
betaWeight |
Objective function: weight for node penalty (default: 0.2) |
threads |
CPLEX/CBC parameter: Number of threads to use default: 0 for maximum number possible threads on system |
cleanTmpFiles |
logic (default-TRUE), specifying if the tmp files made by solvers should be cleaned after run. |
keepLPFiles |
logic (default=TRUE), specifying if the LP file should be kept. |
clonelog |
determines if CPLEX clones the log files in case of multi-threaded optimization, default: -1, (no cloning) |
dir_name |
Specify directory name to store results. by default set to NULL |
Run CARNIVAL pipeline using to the user-provided list of inputs or run CARNIVAL built-in examples. The function is from v1.2 of CARNIVAL and is left for backward compatibility.
The function will return a list of results containing:
1. weightedSIF: A table with 4 columns containing the combined network solutions from CARNIVAL. It contains the Source of the interaction (Node1), Sign of the interaction (Sign), the Target of the interaction (Node2) and the weight of the interaction (Weight) which shows how often an interaction appears across all solutions.
2. nodesAttributes: A table with 6 columns containing information about infered protein activity states and attributes. It contains the Protein IDs (Node); how often this node has taken an activity of 0, 1 and -1 across the solutions (ZeroAct, UpAct, DownAct); the average activities across solutions (AvgAct); and the node attribute (measured, target, inferred).
3. sifAll: A list of separate network solutions.
4. attributesAll: A list of separate inferred node activities in each solution.
5. diagnostics: reports the convergence of optimization and reason of the termination. Only for CPLEX solver.
Enio Gjerga, 2020 [email protected]
load(file = system.file("toy_perturbations_ex1.RData", package="CARNIVAL")) load(file = system.file("toy_measurements_ex1.RData", package="CARNIVAL")) load(file = system.file("toy_network_ex1.RData", package="CARNIVAL")) ## lpSolve #res1 = runCARNIVAL(inputObj = toy_perturbations_ex1, # measObj = toy_measurements_ex1, # netObj = toy_network_ex1, # solver = 'lpSolve') #res1$weightedSIF ##see @return #res1$nodesAttributes ## see @return #res1$sifAll ## see @return #res1$attributesAll ## see @return ## Examples for cbc and cplex are commented out because these solvers are not part of R environment ## and need to be installed separately ## ## cbc ## res2 = runCARNIVAL(inputObj = toy_perturbations_ex1, ## measObj = toy_measurements_ex1, ## netObj = toy_network_ex1, ## solver = 'cbc') ## ## res2$weightedSIF ##see @return ## res2$nodesAttributes ## see @return ## res2$sifAll ## see @return ## res2$attributesAll ## see @return ## ## cplex ## res3 = runCARNIVAL(inputObj = toy_perturbations_ex1, ## measObj = toy_measurements_ex1, ## netObj = toy_network_ex1, ## solver = 'cplex') ## ## res3$weightedSIF ##see @return ## res3$nodesAttributes ## see @return ## res3$sifAll ## see @return ## res3$attributesAll ## see @return
load(file = system.file("toy_perturbations_ex1.RData", package="CARNIVAL")) load(file = system.file("toy_measurements_ex1.RData", package="CARNIVAL")) load(file = system.file("toy_network_ex1.RData", package="CARNIVAL")) ## lpSolve #res1 = runCARNIVAL(inputObj = toy_perturbations_ex1, # measObj = toy_measurements_ex1, # netObj = toy_network_ex1, # solver = 'lpSolve') #res1$weightedSIF ##see @return #res1$nodesAttributes ## see @return #res1$sifAll ## see @return #res1$attributesAll ## see @return ## Examples for cbc and cplex are commented out because these solvers are not part of R environment ## and need to be installed separately ## ## cbc ## res2 = runCARNIVAL(inputObj = toy_perturbations_ex1, ## measObj = toy_measurements_ex1, ## netObj = toy_network_ex1, ## solver = 'cbc') ## ## res2$weightedSIF ##see @return ## res2$nodesAttributes ## see @return ## res2$sifAll ## see @return ## res2$attributesAll ## see @return ## ## cplex ## res3 = runCARNIVAL(inputObj = toy_perturbations_ex1, ## measObj = toy_measurements_ex1, ## netObj = toy_network_ex1, ## solver = 'cplex') ## ## res3$weightedSIF ##see @return ## res3$nodesAttributes ## see @return ## res3$sifAll ## see @return ## res3$attributesAll ## see @return
runCarnivalFromLp
runCarnivalFromLp
runFromLpCarnival( lpFile = "", parsedDataFile = "", carnivalOptions = defaultLpSolveCarnivalOptions() )
runFromLpCarnival( lpFile = "", parsedDataFile = "", carnivalOptions = defaultLpSolveCarnivalOptions() )
lpFile |
full path to .lp file |
parsedDataFile |
full path to preprocessed .RData file |
carnivalOptions |
the list of options for the run. See defaultLpSolveCarnivalOptions(), defaultLpSolveCarnivalOptions, defaultCbcCarnivalOptions. |
Runs CARNIVAL pipeline with preparsed data - lp file and Rdata file containing variables for ILP formulation.
The function will return a list of results containing: 1. weightedSIF: A table with 4 columns containing the combined network solutions from CARNIVAL. It contains the Source of the interaction (Node1), Sign of the interaction (Sign), the Target of the interaction (Node2) and the weight of the interaction (Weight) which shows how often an interaction appears across all solutions.
2. nodesAttributes: A table with 6 columns containing information about infered protein activity states and attributes. It contains the Protein IDs (Node); how often this node has taken an activity of 0, 1 and -1 across the solutions (ZeroAct, UpAct, DownAct); the average activities across solutions (AvgAct); and the node attribute (measured, target, inferred).
3. sifAll: A list of separate network solutions.
4. attributesAll: A list of separate inferred node activities in each solution.
5. diagnostics: reports the convergence of optimization and reason of the termination. Only for CPLEX solver.
Enio Gjerga, Olga Ivanova 2020-2021 [email protected]
lpFilePath = system.file("toy_lp_file_ex1.lp", package="CARNIVAL") parsedDataFilePath = system.file("toy_parsed_data_ex1.RData", package="CARNIVAL") ## lpSolve #res1 = runFromLpCarnival(lpFile = lpFilePath, # parsedDataFile = parsedDataFilePath, # carnivalOptions = defaultLpSolveCarnivalOptions()) #res1$weightedSIF ##see @return #res1$nodesAttributes ## see @return #res1$sifAll ## see @return #res1$attributesAll ## see @return ## Examples for cbc and cplex are commented out because these solvers are not part of R environment ## and need to be installed separately ## ## cbc ## res2 = runFromLpCarnival(lpFile = lpFilePath, ## parsedDataFile = parsedDataFilePath, ## carnivalOptions = defaultLpCbcCarnivalOptions()) ## ## res2$weightedSIF ##see @return ## res2$nodesAttributes ## see @return ## res2$sifAll ## see @return ## res2$attributesAll ## see @return ## ## cplex ## res3 = runFromLpCarnival(lpFile = lpFilePath, ## parsedDataFile = parsedDataFilePath, ## carnivalOptions = defaultLpCplexCarnivalOptions()) ## ## res3$weightedSIF ##see @return ## res3$nodesAttributes ## see @return ## res3$sifAll ## see @return ## res3$attributesAll ## see @return
lpFilePath = system.file("toy_lp_file_ex1.lp", package="CARNIVAL") parsedDataFilePath = system.file("toy_parsed_data_ex1.RData", package="CARNIVAL") ## lpSolve #res1 = runFromLpCarnival(lpFile = lpFilePath, # parsedDataFile = parsedDataFilePath, # carnivalOptions = defaultLpSolveCarnivalOptions()) #res1$weightedSIF ##see @return #res1$nodesAttributes ## see @return #res1$sifAll ## see @return #res1$attributesAll ## see @return ## Examples for cbc and cplex are commented out because these solvers are not part of R environment ## and need to be installed separately ## ## cbc ## res2 = runFromLpCarnival(lpFile = lpFilePath, ## parsedDataFile = parsedDataFilePath, ## carnivalOptions = defaultLpCbcCarnivalOptions()) ## ## res2$weightedSIF ##see @return ## res2$nodesAttributes ## see @return ## res2$sifAll ## see @return ## res2$attributesAll ## see @return ## ## cplex ## res3 = runFromLpCarnival(lpFile = lpFilePath, ## parsedDataFile = parsedDataFilePath, ## carnivalOptions = defaultLpCplexCarnivalOptions()) ## ## res3$weightedSIF ##see @return ## res3$nodesAttributes ## see @return ## res3$sifAll ## see @return ## res3$attributesAll ## see @return
runInverseCarnival
runInverseCarnival
runInverseCarnival( measurements, priorKnowledgeNetwork, weights = NULL, carnivalOptions = defaultLpSolveCarnivalOptions() )
runInverseCarnival( measurements, priorKnowledgeNetwork, weights = NULL, carnivalOptions = defaultLpSolveCarnivalOptions() )
measurements |
vector of the measurements (i.e. DoRothEA/VIPER normalised enrichment scores) |
priorKnowledgeNetwork |
data frame of the prior knowledge network |
weights |
(optional) vector of the additional weights: e.g. PROGENy pathway score or measured protein activities. |
carnivalOptions |
the list of options for the run. See defaultLpSolveCarnivalOptions(), defaultLpSolveCarnivalOptions, defaultCbcCarnivalOptions. |
TODO Replace with correct description
The function will return a list of results containing:
1. weightedSIF: A table with 4 columns containing the combined network solutions from CARNIVAL. It contains the Source of the interaction (Node1), Sign of the interaction (Sign), the Target of the interaction (Node2) and the weight of the interaction (Weight) which shows how often an interaction appears across all solutions.
2. nodesAttributes: A table with 6 columns containing information about infered protein activity states and attributes. It contains the Protein IDs (Node); how often this node has taken an activity of 0, 1 and -1 across the solutions (ZeroAct, UpAct, DownAct); the average activities across solutions (AvgAct); and the node attribute (measured, target, inferred).
3. sifAll: A list of separate network solutions.
4. attributesAll: A list of separate inferred node activities in each solution.
5. diagnostics: reports the convergence of optimization and reason of the termination. Only for CPLEX solver.
Enio Gjerga, Olga Ivanova 2020-2021 [email protected]
load(file = system.file("toy_measurements_ex1.RData", package="CARNIVAL")) load(file = system.file("toy_network_ex1.RData", package="CARNIVAL")) ## lpSolve #res1 = runInverseCarnival(measurements = toy_measurements_ex1, # priorKnowledgeNetwork = toy_network_ex1, # carnivalOptions = defaultLpSolveCarnivalOptions()) #res1$weightedSIF ##see @return #res1$nodesAttributes ## see @return #res1$sifAll ## see @return #res1$attributesAll ## see @return ## Examples for cbc and cplex are commented out because these solvers are not part of R environment ## and need to be installed separately ## ## cbc ## res2 = runInverseCarnival(measurements = toy_measurements_ex1, ## priorKnowledgeNetwork = toy_network_ex1, ## carnivalOptions = defaultCbcCarnivalOptions()) ## ## res2$weightedSIF ##see @return ## res2$nodesAttributes ## see @return ## res2$sifAll ## see @return ## res2$attributesAll ## see @return ## ## cplex ## res3 = runVanillaCarnival(measurements = toy_measurements_ex1, ## priorKnowledgeNetwork = toy_network_ex1, ## carnivalOptions = defaultCplexCarnivalOptions()) ## ## res3$weightedSIF ##see @return ## res3$nodesAttributes ## see @return ## res3$sifAll ## see @return ## res3$attributesAll ## see @return
load(file = system.file("toy_measurements_ex1.RData", package="CARNIVAL")) load(file = system.file("toy_network_ex1.RData", package="CARNIVAL")) ## lpSolve #res1 = runInverseCarnival(measurements = toy_measurements_ex1, # priorKnowledgeNetwork = toy_network_ex1, # carnivalOptions = defaultLpSolveCarnivalOptions()) #res1$weightedSIF ##see @return #res1$nodesAttributes ## see @return #res1$sifAll ## see @return #res1$attributesAll ## see @return ## Examples for cbc and cplex are commented out because these solvers are not part of R environment ## and need to be installed separately ## ## cbc ## res2 = runInverseCarnival(measurements = toy_measurements_ex1, ## priorKnowledgeNetwork = toy_network_ex1, ## carnivalOptions = defaultCbcCarnivalOptions()) ## ## res2$weightedSIF ##see @return ## res2$nodesAttributes ## see @return ## res2$sifAll ## see @return ## res2$attributesAll ## see @return ## ## cplex ## res3 = runVanillaCarnival(measurements = toy_measurements_ex1, ## priorKnowledgeNetwork = toy_network_ex1, ## carnivalOptions = defaultCplexCarnivalOptions()) ## ## res3$weightedSIF ##see @return ## res3$nodesAttributes ## see @return ## res3$sifAll ## see @return ## res3$attributesAll ## see @return
runVanillaCarnival
runVanillaCarnival
runVanillaCarnival( perturbations, measurements, priorKnowledgeNetwork, weights = NULL, carnivalOptions = defaultLpSolveCarnivalOptions() )
runVanillaCarnival( perturbations, measurements, priorKnowledgeNetwork, weights = NULL, carnivalOptions = defaultLpSolveCarnivalOptions() )
perturbations |
vector of targets of perturbations. |
measurements |
vector of the measurements (i.e. DoRothEA/VIPER normalised enrichment scores) |
priorKnowledgeNetwork |
data frame of the prior knowledge network |
weights |
(optional) vector of the additional weights: e.g. PROGENy pathway score or measured protein activities. |
carnivalOptions |
the list of options for the run. See defaultLpSolveCarnivalOptions(), defaultLpSolveCarnivalOptions, defaultCbcCarnivalOptions. |
Runs full CARNIVAL pipeline, vanilla(classic) flavour.
The function will return a list of results containing: 1. weightedSIF: A table with 4 columns containing the combined network solutions from CARNIVAL. It contains the Source of the interaction (Node1), Sign of the interaction (Sign), the Target of the interaction (Node2) and the weight of the interaction (Weight) which shows how often an interaction appears across all solutions.
2. nodesAttributes: A table with 6 columns containing information about infered protein activity states and attributes. It contains the Protein IDs (Node); how often this node has taken an activity of 0, 1 and -1 across the solutions (ZeroAct, UpAct, DownAct); the average activities across solutions (AvgAct); and the node attribute (measured, target, inferred).
3. sifAll: A list of separate network solutions.
4. attributesAll: A list of separate inferred node activities in each solution.
5. diagnostics: reports the convergence of optimization and reason of the termination. Only for CPLEX solver.
Enio Gjerga, Olga Ivanova 2020-2021 [email protected]
load(file = system.file("toy_perturbations_ex1.RData", package="CARNIVAL")) load(file = system.file("toy_measurements_ex1.RData", package="CARNIVAL")) load(file = system.file("toy_network_ex1.RData", package="CARNIVAL")) ## lpSolve #res1 = runVanillaCarnival(perturbations = toy_perturbations_ex1, # measurements = toy_measurements_ex1, # priorKnowledgeNetwork = toy_network_ex1, # carnivalOptions = defaultLpSolveCarnivalOptions()) #res1$weightedSIF ##see @return #res1$nodesAttributes ## see @return #res1$sifAll ## see @return #res1$attributesAll ## see @return ## Examples for cbc and cplex are commented out because these solvers are not part of R environment ## and need to be installed separately ## ## cbc ## res2 = runVanillaCarnival(perturbations = toy_perturbations_ex1, ## measurements = toy_measurements_ex1, ## priorKnowledgeNetwork = toy_network_ex1, ## carnivalOptions = defaultCbcCarnivalOptions()) ## ## res2$weightedSIF ##see @return ## res2$nodesAttributes ## see @return ## res2$sifAll ## see @return ## res2$attributesAll ## see @return ## ## cplex ## res3 = runVanillaCarnival(perturbations = toy_perturbations_ex1, ## measurements = toy_measurements_ex1, ## priorKnowledgeNetwork = toy_network_ex1, ## carnivalOptions = defaultCplexCarnivalOptions()) ## ## res3$weightedSIF ##see @return ## res3$nodesAttributes ## see @return ## res3$sifAll ## see @return ## res3$attributesAll ## see @return
load(file = system.file("toy_perturbations_ex1.RData", package="CARNIVAL")) load(file = system.file("toy_measurements_ex1.RData", package="CARNIVAL")) load(file = system.file("toy_network_ex1.RData", package="CARNIVAL")) ## lpSolve #res1 = runVanillaCarnival(perturbations = toy_perturbations_ex1, # measurements = toy_measurements_ex1, # priorKnowledgeNetwork = toy_network_ex1, # carnivalOptions = defaultLpSolveCarnivalOptions()) #res1$weightedSIF ##see @return #res1$nodesAttributes ## see @return #res1$sifAll ## see @return #res1$attributesAll ## see @return ## Examples for cbc and cplex are commented out because these solvers are not part of R environment ## and need to be installed separately ## ## cbc ## res2 = runVanillaCarnival(perturbations = toy_perturbations_ex1, ## measurements = toy_measurements_ex1, ## priorKnowledgeNetwork = toy_network_ex1, ## carnivalOptions = defaultCbcCarnivalOptions()) ## ## res2$weightedSIF ##see @return ## res2$nodesAttributes ## see @return ## res2$sifAll ## see @return ## res2$attributesAll ## see @return ## ## cplex ## res3 = runVanillaCarnival(perturbations = toy_perturbations_ex1, ## measurements = toy_measurements_ex1, ## priorKnowledgeNetwork = toy_network_ex1, ## carnivalOptions = defaultCplexCarnivalOptions()) ## ## res3$weightedSIF ##see @return ## res3$nodesAttributes ## see @return ## res3$sifAll ## see @return ## res3$attributesAll ## see @return
Sets CARNIVAL options for the solver.
setCarnivalOptions(solver = getSupportedSolvers()$lpSolve, ...)
setCarnivalOptions(solver = getSupportedSolvers()$lpSolve, ...)
solver |
one of the solvers available from getSupportedSolvers(). |
... |
any possible options from the solver's list |
carnival options as list.
setCarnivalOptions(solver="lpSolve")
setCarnivalOptions(solver="lpSolve")
Suggests cbc specific options.
suggestedCbcSpecificOptions(...)
suggestedCbcSpecificOptions(...)
... |
any possible options from the solver's list |
additional CbC solver options as a list.
suggestedCbcSpecificOptions()
suggestedCbcSpecificOptions()
Suggests cplex specific options.s
suggestedCplexSpecificOptions(...)
suggestedCplexSpecificOptions(...)
... |
any possible options from the solver's list |
additional CPLEX solver options as a list.
suggestedCplexSpecificOptions()
suggestedCplexSpecificOptions()
writeCplexCommandFileFromJson
writeCplexCommandFileFromJson( carnivalOptions, jsonFileName = "parameters/cplex_parameters_cmd_file.json" )
writeCplexCommandFileFromJson( carnivalOptions, jsonFileName = "parameters/cplex_parameters_cmd_file.json" )
carnivalOptions |
list of options for the CPLEX solver |
jsonFileName |
name to JSONfile containing the solver parameters |
list of params