Package 'BiocSklearn'

Title: interface to python sklearn via Rstudio reticulate
Description: This package provides interfaces to selected sklearn elements, and demonstrates fault tolerant use of python modules requiring extensive iteration.
Authors: Vince Carey [cre, aut]
Maintainer: Vince Carey <[email protected]>
License: Artistic-2.0
Version: 1.29.0
Built: 2024-10-30 04:22:58 UTC
Source: https://github.com/bioc/BiocSklearn

Help Index


create a file connection to HDF5 matrix

Description

create a file connection to HDF5 matrix

Usage

h5mat(infile, mode = "r", ...)

Arguments

infile

a pathname to an HDF5 file

mode

character(1) defaults to "r", see py_help for h5py.File

...

unused

Value

instance of (S3) h5py._hl.files.File

Note

The result of this function must be used with basiliskRun with the env argument set to bsklenv, or there is a risk of inconsistent python modules being invoked. This should only be used with the persistent environment discipline of basilisk.

Examples

if (interactive()) {   # not clear why
fn = system.file("ban_6_17/assays.h5", package="BiocSklearn")
proc = basilisk::basiliskStart(BiocSklearn:::bsklenv)
basilisk::basiliskRun(proc, function(infile, mode="r") {
 h5py = reticulate::import("h5py") 
 hh = h5py$File( infile, mode=mode )
 cat("File reference:\n ")
 print(hh)
 cat("File attributes in python:\n ")
 print(head(names(hh)))
 cat("File keys in python:\n ")
 print(hh$keys())
 cat("HDF5 dataset in python:\n ")
 print(hh['assay001'])
}, infile=fn, mode="r")
basilisk::basiliskStop(proc)
}

obtain an HDF5 dataset reference suitable for handling as numpy matrix

Description

obtain an HDF5 dataset reference suitable for handling as numpy matrix

Usage

H5matref(filename, dsname = "assay001")

Arguments

filename

a pathname to an HDF5 file

dsname

internal name of HDF5 matrix to use, defaults to 'assay001'

Value

instance of (S3) "h5py._hl.dataset.Dataset"

Note

This should only be used with persistent environment discipline of basilisk. Additional support is planned in Bioc 3.12.

Examples

fn = system.file("ban_6_17/assays.h5", package="BiocSklearn")
ban = H5matref(fn)
ban
proc = basilisk::basiliskStart(BiocSklearn:::bsklenv)
fullpca = basilisk::basiliskRun(proc, function() {
 np = import("numpy", convert=FALSE) # ensure
 print(ban$shape)
 print(np$take(ban, 0:3, 0L))
 fullpca = skPCA(ban)
 tx = getTransformed(fullpca)
 print(dim(tx))
 fullpca
 })
basilisk::basiliskStop(proc)
# project samples
np = reticulate::import("numpy", convert=FALSE, delay_load=TRUE)
np$take(ban, 0:20, 0L)$shape
st = skPartialPCA_step(np$take(ban, 0:20, 0L), n_comp=4L)
st = skPartialPCA_step(np$take(ban, 21:40, 0L), n_comp=4L, obj=st)
st = skPartialPCA_step(np$take(ban, 41:63, 0L), n_comp=4L, obj=st)
oo = st$transform(ban)
dim(oo)
cor(oo[,1:4], getTransformed(fullpca)[,1:4])

constructor for SkDecomp

Description

constructor for SkDecomp

Usage

SkDecomp(transform, method)

Arguments

transform

typically a numerical matrix representing a projection of the input

method

character(1) arbitrary tag describing the decomposition


container for sklearn objects and transforms

Description

container for sklearn objects and transforms

Usage

## S4 method for signature 'SkDecomp'
getTransformed(x)

Arguments

x

instance of SkDecomp

Value

the getTransformed method returns a matrix

Slots

transform

stored as R matrix

method

string identifying method

Note

In Bioc 3.11, the object slot is removed. This is a consequence of adoption of basilisk discipline for acquiring and using python resources, which greatly increases reliability, at the expense of added complication in handling python objects interactively in R. We are working on restoring this functionality but it will take time.


use basilisk discipline to perform partial (n_components) incremental (chunk.size) PCA with scikit.decomposition

Description

use basilisk discipline to perform partial (n_components) incremental (chunk.size) PCA with scikit.decomposition

Usage

skIncrPartialPCA(mat, n_components, chunk.size = 10)

Arguments

mat

a matrix

n_components

integer(1) number of PCs to compute

chunk.size

integer(1) number of rows to use each step

Note

A good source for capabilities and examples is at the sklearn doc site.

Examples

lk = skIncrPartialPCA(iris[,1:4], n_components=3L)
lk
head(getTransformed(lk))

use sklearn IncrementalPCA procedure

Description

use sklearn IncrementalPCA procedure

Usage

skIncrPCA(mat, n_components = 2L, batch_size = 5L, ...)

Arguments

mat

a matrix – can be R matrix or numpy.ndarray, if the latter it must be set up in a basilisk persistent environment, and that is not currently demonstrated for this package.

n_components

number of PCA to retrieve

batch_size

number of records to use at each iteration

...

passed to python IncrementalPCA

Value

matrix with rotation

Examples

dem = skIncrPCA(iris[,1:4], batch_size=25L)
dem2 = skIncrPCA(iris[,1:4], batch_size=25L, n_components=2L)
dem
dem2

demo of HDF5 processing with incremental PCA/batch_size/fit_transform

Description

demo of HDF5 processing with incremental PCA/batch_size/fit_transform

Usage

skIncrPCA_h5(fn, dsname = "assay001", n_components, chunk.size = 10L)

Arguments

fn

character(1) path to HDF5 file

dsname

character(1) name of dataset within HDF5 file, assumed to be 2-dimensional array

n_components

numeric(1) passed to IncrementalPCA

chunk.size

numeric(1) passed to IncrementalPCA as batch_size

Note

Here we use IncrementalPCA$fit_transform and let python take care of chunk retrieval. skIncrPartialPCA acquires chunks from R matrix and uses IncrementalPCA$partial_fit.

Examples

if (interactive()) {
 fn = system.file("hdf5/irmatt.h5", package="BiocSklearn") # 'transposed' relative to R iris
 dem = skIncrPCA_h5(fn, n_components=3L, dsname="tquants")
 dem
 head(getTransformed(dem))
}

optionally fault tolerant incremental partial PCA for projection of samples from SummarizedExperiment

Description

optionally fault tolerant incremental partial PCA for projection of samples from SummarizedExperiment

Usage

skIncrPPCA(
  se,
  chunksize,
  n_components,
  assayind = 1,
  picklePath = "./skIdump.pkl",
  matTx = force,
  ...
)

Arguments

se

instance of SummarizedExperiment

chunksize

integer number of samples per step

n_components

integer number of PCs to compute

assayind

not used, assumed set to 1

picklePath

if non-null, incremental results saved here via joblib.dump, for each chunk. If NULL, no saving of incremental results.

matTx

a function defaulting to force() that accepts a matrix and returns a matrix with identical dimensions, e.g., function(x) log(x+1)

...

not used

Value

python instance of sklearn.decomposition.incremental_pca.IncrementalPCA

Note

Will treat samples as records and all features (rows) as attributes, projecting. to an n_components-dimensional space. Method will acquire chunk of assay data and transpose before computing PCA contributions. In case of crash, restore from picklePath using joblib$load after loading reticulate. You can use the n_samples_seen_ component of the restored python reference to determine where to restart. You can manage resumption using skPartialPCA_step.

Examples

# demo SE made with TENxGenomics:
# mm = matrixSummarizedExperiment(h5path, 1:27998, 1:750)
# saveHDF5SummarizedExperiment(mm, "tenx_750")
#
if (FALSE) {
if (requireNamespace("HDF5Array")) {
  se750 = HDF5Array::loadHDF5SummarizedExperiment(
     system.file("hdf5/tenx_750", package="BiocSklearn"))
  lit = skIncrPPCA(se750[, 1:50], chunksize=5, n_components=4)
  round(cor(pypc <- lit$transform(dat <- t(as.matrix(assay(se750[,1:50]))))),3)
  rpc = prcomp(dat)
  round(cor(rpc$x[,1:4], pypc), 3)
} # this has to be made basilisk-compliant
} # and is blocked until then

interface to sklearn.cluster.KMeans using basilisk discipline

Description

interface to sklearn.cluster.KMeans using basilisk discipline

Usage

skKMeans(mat, ...)

Arguments

mat

a matrix-like datum or reference to such

...

arguments to sklearn.cluster.KMeans

Value

a list with cluster assignments (integers starting with zero) and asserted cluster centers.

Note

This is a demonstrative interface to the resources of sklearn.cluster. In this particular interface, we are using sklearn.cluster.k_means_.KMeans. There are many other possibilities in sklearn.cluster: _dbscan_inner, feature_agglomeration, hierarchical, k_means, k_means_elkan, affinity_propagation, bicluster, birch, dbscan, hierarchical, k_means, mean_shift, setup, spectral.

Basilisk discipline has not been used for this function, 1 June 2022.

Examples

irloc = system.file("csv/iris.csv", package="BiocSklearn")
np = reticulate::import("numpy", delay_load=TRUE, convert=FALSE)
h5py = reticulate::import("h5py", delay_load=TRUE)
irismat = np$genfromtxt(irloc, delimiter=',')
ans = skKMeans(irismat, n_clusters=2L)
names(ans) # names of available result components
table(iris$Species, ans$labels)
# now use an HDF5 reference
irh5 = system.file("hdf5/irmat.h5", package="BiocSklearn")
fref = h5py$File(irh5)
ds = fref$`__getitem__`("quants") 
ans2 = skKMeans(np$array(ds)$T, n_clusters=2L) # HDF5 matrix is transposed relative to python array layout!  Is the np$array conversion unduly costly?
table(ans$labels, ans2$labels)
ans3 = skKMeans(np$array(ds)$T, 
   n_clusters=8L, max_iter=200L, 
   algorithm="lloyd", random_state=20L)
dem = skKMeans(iris[,1:4], n_clusters=3L, max_iter=100L, algorithm="lloyd",
   random_state=20L)
str(dem)
tab = table(iris$Species, dem$labels)
tab
plot(iris[,1], iris[,3], col=as.numeric(factor(iris$Species)))
points(dem$centers[,1], dem$centers[,3], pch=19, col=apply(tab,2,which.max))

take a step in sklearn IncrementalPCA partial fit procedure

Description

take a step in sklearn IncrementalPCA partial fit procedure

Usage

skPartialPCA_step(mat, n_components, obj)

Arguments

mat

a matrix – can be R matrix or numpy.ndarray

n_components

number of PCA to retrieve

obj

sklearn.decomposition.IncrementalPCA instance

Value

trained IncrementalPCA reference, to which 'transform' method can be applied to obtain projection for any compliant input

Note

if obj is missing, the process is initialized with the matrix provided

Examples

# these steps are not basilisk-compliant, you need to acquire references 
irloc = system.file("csv/iris.csv", package="BiocSklearn")
np = reticulate::import("numpy", delay_load=TRUE, convert=FALSE)
irismat = np$genfromtxt(irloc, delimiter=',')
ta = np$take
ipc = skPartialPCA_step(ta(irismat,0:49,0L))
ipc = skPartialPCA_step(ta(irismat,50:99,0L), obj=ipc)
ipc = skPartialPCA_step(ta(irismat,100:149,0L), obj=ipc)
head(names(ipc))
ipc$transform(ta(irismat,0:5,0L))
fullproj = ipc$transform(irismat)
fullpc = prcomp(data.matrix(iris[,1:4]))$x
round(cor(fullpc,fullproj),3)

use sklearn PCA procedure

Description

use sklearn PCA procedure

Usage

skPCA(mat, ...)

Arguments

mat

a matrix – can be R matrix or numpy.ndarray

...

additional parameters passed to sklearn.decomposition.PCA, for additional information use py_help() on a reticulate-imported sklearn.decomposition.PCA instance.

Value

matrix with rotation

Note

If no additional arguments are passed, all defaults are used.

Examples

#irloc = system.file("csv/iris.csv", package="BiocSklearn")
#irismat = SklearnEls()$np$genfromtxt(irloc, delimiter=',')
#skpi = skPCA(irismat)
#getTransformed(skpi)[1:5,]
chk = skPCA(data.matrix(iris[,1:4]))
chk
head(getTransformed(chk))
head(prcomp(data.matrix(iris[,1:4]))$x)

use sklearn pairwise_distances procedure

Description

use sklearn pairwise_distances procedure

Usage

skPWD(mat, ...)

Arguments

mat

a matrix – can be R matrix or numpy.ndarray

...

additional parameters passed to sklearn.metrics.pairwise_distances, for additional information use py_help() on a reticulate-imported sklearn.metrics.pairwise_distances instance.

Value

matrix with rotation

Note

If no additional arguments are passed, all defaults are used.

Examples

irloc = system.file("csv/iris.csv", package="BiocSklearn")
data(iris)
irismat = as.matrix(iris[,1:4]) 
chk1 = skPWD(irismat)
chk1[1:4,1:5]
chk2 = skPWD(irismat, metric='manhattan')
chk2[1:4,1:5]