BiocParallel
enables use of random number streams in a reproducible manner. This
document applies to the following *Param()
:
SerialParam()
: sequential evaluation in a single R
process.SnowParam()
: parallel evaluation in multiple
independent R processes.MulticoreParam())
: parallel evaluation in R sessions
running in forked threads. Not available on Windows.The *Param()
can be used for evaluation with:
bplapply()
: lapply()
-like application of a
user-supplied function FUN
to a vector or list of elements
X
.bpiterate()
: apply a user-supplied function
FUN
to an unknown number of elements resulting from
successive calls to a user-supplied function ITER.
The reproducible random number implementation also supports:
bptry()
and the BPREDO=
argument, for
re-evaluation of elements that fail (e.g., because of a bug in
FUN
).bplapply()
and RNGseed=
Attach BiocParallel and ensure that the version is greater than 1.27.5
For reproducible calculation, use the RNGseed=
argument
in any of the *Param()
constructors.
## [[1]]
## [1] 0.7393338
##
## [[2]]
## [1] 0.8216743 0.7451087
##
## [[3]]
## [1] 0.1962909 0.5226640 0.6857650
Repeating the calculation with the same value for
RNGseed=
results in the same result; a different random
number seed results in different results.
result2 <- bplapply(1:3, runif, BPPARAM = SerialParam(RNGseed = 100))
stopifnot(
identical(result1, result2)
)
result3 <- bplapply(1:3, runif, BPPARAM = SerialParam(RNGseed = 200))
result3
## [[1]]
## [1] 0.9757768
##
## [[2]]
## [1] 0.6525851 0.6416909
##
## [[3]]
## [1] 0.6710576 0.5895330 0.7686983
Results are invariant across *Param()
result4 <- bplapply(1:3, runif, BPPARAM = SnowParam(RNGseed = 100))
stopifnot(
identical(result1, result4)
)
if (!identical(.Platform$OS.type, "windows")) {
result5 <- bplapply(1:3, runif, BPPARAM = MulticoreParam(RNGseed = 100))
stopifnot(
identical(result1, result5)
)
}
Parallel backends can adjust the number of workers
(processes performing the evaluation) and tasks
(how
elements of X
are distributed between workers). Results are
invariant to these parameters. This is illustrated with
SnowParam()
, but applies also to
MulticoreParam()
.
result6 <- bplapply(1:3, runif, BPPARAM = SnowParam(workers = 2, RNGseed = 100))
result7 <- bplapply(1:3, runif, BPPARAM = SnowParam(workers = 3, RNGseed = 100))
result8 <- bplapply(
1:3, runif,
BPPARAM = SnowParam(workers = 2, tasks = 3, RNGseed = 100)
)
stopifnot(
identical(result1, result6),
identical(result1, result7),
identical(result1, result8)
)
Subsequent sections illustrate results with
SerialParam()
, but identical results are obtained with
SnowParam()
and MulticoreParam()
.
bpiterate()
bpiterate()
allows parallel processing of a ’stream’ of
data as a series of tasks, with a task consisting of a portion of the
overall data. It is useful when the data size is not known or easily
partitioned into elements of a vector or list. A real use case might
involve iterating through a BAM file, where a task represents successive
records (perhaps 100,000 per task) in the file. Here we illustrate with
a simple example – iterating through a vector x = 1:3
ITER_FUN_FACTORY <- function() {
x <- 1:3
i <- 0L
function() {
i <<- i + 1L
if (i > length(x))
return(NULL)
x[[i]]
}
}
ITER_FUN_FACTORY()
is used to create a function that, on
each invocation, returns the next task (here, an element of
x
; in a real example, perhaps 100000 records from a BAM
file). When there are no more tasks, the function returns
NULL
In our simple example, bpiterate()
is performing the
same computations as bplapply()
so the results, including
the random number streams used by each task in bpiterate()
,
are the same
bptry()
bptry()
in conjunction with the BPREDO=
argument to bplapply()
or bpiterate()
allows
for graceful recovery from errors. Here a buggy FUN1()
produces an error for the second element. bptry()
allows
evaluation to continue for other elements of X
, despite the
error. This is shown in the result.
FUN1 <- function(i) {
if (identical(i, 2L)) {
## error when evaluating the second element
stop("i == 2")
} else runif(i)
}
result10 <- bptry(bplapply(
1:3, FUN1,
BPPARAM = SerialParam(RNGseed = 100, stop.on.error = FALSE)
))
result10
## [[1]]
## [1] 0.7393338
##
## [[2]]
## <remote_error in FUN(...): i == 2>
## traceback() available as 'attr(x, "traceback")'
##
## [[3]]
## [1] 0.1962909 0.5226640 0.6857650
##
## attr(,"REDOENV")
## <environment: 0x5620cd4d9388>
FUN2()
illustrates the flexibility of
bptry()
by fixing the bug when i == 2
, but
also generating incorrect results if invoked for previously correct
values. The identity of the result to the original computation shows
that only the error task is re-computed, and that the random number
stream used by the task is identical to the original stream.
FUN2 <- function(i) {
if (identical(i, 2L)) {
## the random number stream should be in the same state as the
## first time through the loop, and rnorm(i) should return
## same result as FUN
runif(i)
} else {
## if this branch is used, then we are incorrectly updating
## already calculated elements -- '0' in the output would
## indicate this error
0
}
}
result11 <- bplapply(
1:3, FUN2,
BPREDO = result10,
BPPARAM = SerialParam(RNGseed = 100, stop.on.error = FALSE)
)
stopifnot(
identical(result1, result11)
)
RNGseed=
and
set.seed()
The global random number stream (influenced by
set.seed()
) is ignored by BiocParallel,
and BiocParallel
does NOT increment the global stream.
set.seed(200)
value <- runif(1)
set.seed(200)
result12 <- bplapply(1:3, runif, BPPARAM = SerialParam(RNGseed = 100))
stopifnot(
identical(result1, result12),
identical(value, runif(1))
)
When RNGseed=
is not used, an internal stream (not
accessible to the user) is used and BiocParallel
does NOT increment the global stream.
bpstart()
and random number streamsIn all of the examples so far *Param()
objects are
passed to bplapply()
or bpiterate()
in the
’stopped’ state. Internally, bplapply()
and
bpiterate()
invoke bpstart()
to establish the
computational environment (e.g., starting workers for
SnowParam()
). bpstart()
can be called
explicitly, e.g., to allow workers to be used across calls to
bplapply()
.
The cluster random number stream is initiated with
bpstart()
. Thus
param <- bpstart(SerialParam(RNGseed = 100))
result16 <- bplapply(1:3, runif, BPPARAM = param)
bpstop(param)
stopifnot(
identical(result1, result16)
)
This allows a second call to bplapply
to represent a
continuation of a random number computation – the second call to
bplapply()
results in different random number streams for
each element of X
.
param <- bpstart(SerialParam(RNGseed = 100))
result16 <- bplapply(1:3, runif, BPPARAM = param)
result17 <- bplapply(1:3, runif, BPPARAM = param)
bpstop(param)
stopifnot(
identical(result1, result16),
!identical(result1, result17)
)
The results from bplapply()
are different from the
results from lapply()
, even with the same random number
seed. This is because correctly implemented parallel random streams
require use of a particular random number generator invoked in specific
ways for each element of X
, as outlined in the
Implementation notes section.
bplapply()
and
lapply()
The results from bplapply()
are different from the
results from lapply()
, even with the same random number
seed. This is because correctly implemented parallel random streams
require use of a particular random number generator invoked in specific
ways for each element of X
, as outlined in the
Implementation notes section.
The implementation uses the L’Ecuyer-CMRG random number generator
(see ?RNGkind
and
?parallel::clusterSetRNGStream
for additional details).
This random number generates independent streams and substreams of
random numbers. In BiocParallel,
each call to bp start()
creates a new stream from the
L’Ecuyer-CMRG generator. Each element in bplap
ply()
or bpiterate()
creates a new substream.
Each application of FUN
is therefore using the
L’Ecuyer-CMRG random number generator, with a substream that is
independent of the substreams of all other elements.
Within the user-supplied FUN
of bplapply()
or bpiterate()
, it is a mistake to use
RNGkind()
to set a different random number generator, or to
use set.seed()
. This would in principle compromise the
independence of the streams across elements.
sessionInfo()
## R version 4.4.1 (2024-06-14)
## Platform: x86_64-pc-linux-gnu
## Running under: Ubuntu 24.04.1 LTS
##
## Matrix products: default
## BLAS: /usr/lib/x86_64-linux-gnu/openblas-pthread/libblas.so.3
## LAPACK: /usr/lib/x86_64-linux-gnu/openblas-pthread/libopenblasp-r0.3.26.so; LAPACK version 3.12.0
##
## locale:
## [1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C
## [3] LC_TIME=en_US.UTF-8 LC_COLLATE=C
## [5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8
## [7] LC_PAPER=en_US.UTF-8 LC_NAME=C
## [9] LC_ADDRESS=C LC_TELEPHONE=C
## [11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C
##
## time zone: Etc/UTC
## tzcode source: system (glibc)
##
## attached base packages:
## [1] stats4 stats graphics grDevices utils datasets methods
## [8] base
##
## other attached packages:
## [1] GenomicAlignments_1.41.0 Rsamtools_2.21.2
## [3] Biostrings_2.73.2 XVector_0.45.0
## [5] SummarizedExperiment_1.35.5 Biobase_2.65.1
## [7] MatrixGenerics_1.17.1 matrixStats_1.4.1
## [9] GenomicRanges_1.57.2 GenomeInfoDb_1.41.2
## [11] IRanges_2.39.2 S4Vectors_0.43.2
## [13] BiocGenerics_0.51.3 RNAseqData.HNRNPC.bam.chr14_0.43.0
## [15] BiocParallel_1.41.0 BiocStyle_2.33.1
##
## loaded via a namespace (and not attached):
## [1] rappdirs_0.3.3 sass_0.4.9 bitops_1.0-9
## [4] SparseArray_1.5.45 lattice_0.22-6 stringi_1.8.4
## [7] hms_1.1.3 digest_0.6.37 grid_4.4.1
## [10] evaluate_1.0.1 fastmap_1.2.0 Matrix_1.7-1
## [13] jsonlite_1.8.9 progress_1.2.3 backports_1.5.0
## [16] BiocManager_1.30.25 httr_1.4.7 UCSC.utils_1.1.0
## [19] brew_1.0-10 codetools_0.2-20 jquerylib_0.1.4
## [22] abind_1.4-8 cli_3.6.3 rlang_1.1.4
## [25] crayon_1.5.3 DelayedArray_0.31.14 withr_3.0.2
## [28] cachem_1.1.0 yaml_2.3.10 S4Arrays_1.5.11
## [31] tools_4.4.1 parallel_4.4.1 checkmate_2.3.2
## [34] base64url_1.4 GenomeInfoDbData_1.2.13 buildtools_1.0.0
## [37] vctrs_0.6.5 R6_2.5.1 lifecycle_1.0.4
## [40] zlibbioc_1.51.2 pkgconfig_2.0.3 bslib_0.8.0
## [43] data.table_1.16.2 xfun_0.48 batchtools_0.9.17
## [46] sys_3.4.3 knitr_1.48 htmltools_0.5.8.1
## [49] snow_0.4-4 rmarkdown_2.28 maketools_1.3.1
## [52] compiler_4.4.1 prettyunits_1.2.0