This document explores using Hail 0.2 with R via basilisk.
The computations follow the GWAS tutorial in the hail documentation. We won’t do all the computations there, and we add some material dealing with R-python interfacing. We’ll note that the actual computations on large data are done in Spark, but we don’t interact directly with Spark at all in this document.
Most of the computations are done via reticulate calls to python; the
access to the hail environment is through basilisk. We also take
advantage of R markdown’s capacity to execute python code directly. If
an R chunk computes x
, a python chunk can refer to it as
r.x
. If a python chunk computes r.x
, an R
chunk can refer to this value as x
.
BiocHail
BiocHail
should be installed as follows:
As of 1.0.0, a JDK for Java version <=
11.0 is
necessary to use the version of Hail that is installed with the package.
This package should be usable on MacOS with suitable java support. If
Java version >=
8.x is used, warnings from Apache Spark
may be observed. To the best of our knowledge the conditions to which
the warnings pertain do not affect program performance.
In this section we import the 1000 genomes VCF slice distributed by
the hail project. hail_init
uses basilisk, which ensures
that a specific version of hail and its dependencies are available in an
isolated virtual environment.
Here is a curiosity of R-hail interaction. Note that the following
chunk computes mt
, a MatrixTable representation of 1000
genomes data, but our attempt to print it in markdown fails.
We can use the python syntax in a python
R markdown
chunk to see what we want. We use prefix r.
to find
references defined in our R session (compiling the vignette).
The sample IDs:
Some methods return data immediately useful in R.
We can thus define a function dim
to behave with hail
MatrixTable instances in a familiar way, along with some others.
dim.hail.matrixtable.MatrixTable <- function(x) {
tmp <- x$count()
c(tmp[[1]], tmp[[2]])
}
dim(mt)
ncol.hail.matrixtable.MatrixTable <- function(x) {
dim(x)[2]
}
nrow.hail.matrixtable.MatrixTable <- function(x) {
dim(x)[1]
}
nrow(mt)
These can be useful on their own, or when calling python methods.
column fields
We combine the tab
defined above, with the MatrixTable
instance, using python code reaching to R via r.
.
Aggregation methods can be used to obtain contingency tables or descriptive statistics.
First, we get the frequencies of superpopulation membership:
Then statistics on caffeine consumption:
The significance of the aggregation functions is that the computations are performed by Spark, on potentially huge distributed data structures.
Now we aggregate over rows (SNPs). We’ll use python directly:
from pprint import pprint # python chunk!
snp_counts = r.mt.aggregate_rows(r.hl.agg.counter(r.hl.Struct(ref=r.mt.alleles[0], alt=r.mt.alleles[1])))
pprint(snp_counts)
Hail uses the concept of ‘entries’ for matrix elements, and each ‘entry’ is a ‘struct’ with potentially many fields.
Here we’ll use R to compute a histogram of sequencing depths over all samples and variants.
p_hist <- mt$aggregate_entries(
hl$expr$aggregators$hist(mt$DP, 0L, 30L, 30L))
names(p_hist)
length(p_hist$bin_edges)
length(p_hist$bin_freq)
midpts <- function(x) diff(x)/2+x[-length(x)]
dpdf <- data.frame(x=midpts(p_hist$bin_edges), y=p_hist$bin_freq)
ggplot(dpdf, aes(x=x,y=y)) + geom_col() + ggtitle("DP") + ylab("Frequency")
An exercise: produce a function mt_hist
that produces a
histogram of measures from any of the relevant VCF components of a
MatrixTable instance.
Note also all the aggregators available:
We’d also note that hail has a direct interface to ggplot2.
A high-level function adds quality metrics to the MatrixTable.
The call rate histogram is given by:
We’ll use the python code given for filtering, in which per-sample mean read depth and call rate are must exceed (arbitrarily chosen) thresholds.
Again we use the python code for filtering according to
ab = r.mt.AD[1] / r.hl.sum(r.mt.AD)
filter_condition_ab = ((r.mt.GT.is_hom_ref() & (ab <= 0.1)) |
(r.mt.GT.is_het() & (ab >= 0.25) & (ab <= 0.75)) |
(r.mt.GT.is_hom_var() & (ab >= 0.9)))
fraction_filtered = r.mt.aggregate_entries(r.hl.agg.fraction(~filter_condition_ab))
print(f'Filtering {fraction_filtered * 100:.2f}% entries out of downstream analysis.')
r.mt = r.mt.filter_entries(filter_condition_ab)
Note that filtering entries does not change MatrixTable shape.
A built-in procedure for testing for association between the (simulated) caffeine consumption measure and genotype will be used.
The following commands eliminate variants with minor allele frequency less than 0.01, along with those with small p-values in tests of Hardy-Weinberg equilibrium.
r.mt = r.mt.filter_rows(r.mt.variant_qc.AF[1] > 0.01)
r.mt = r.mt.filter_rows(r.mt.variant_qc.p_value_hwe > 1e-6)
r.mt.count()
Now we perform a naive test of association. The Manhattan plot generated by hail can be displayed for interaction using bokeh. We comment this out for now; it should be possible to embed the bokeh display in this document but the details are not ready-to-hand.
r.gwas = r.hl.linear_regression_rows(y=r.mt.pheno.CaffeineConsumption,
x=r.mt.GT.n_alt_alleles(),
covariates=[1.0])
# r.pl = r.hl.plot.manhattan(r.gwas.p_value)
# import bokeh
# bokeh.plotting.show(r.pl)
The “QQ plot” that helps evaluate adequacy of the analysis can be
formed using hl.plot.qq
for very large applications; here
we collect the results for plotting in R.
First we estimate λGC
pv = gwas$p_value$collect()
x2 = stats::qchisq(1-pv,1)
lam = stats::median(x2, na.rm=TRUE)/stats::qchisq(.5,1)
lam
And the qqplot:
qqplot(-log10(ppoints(length(pv))), -log10(pv), xlim=c(0,8), ylim=c(0,8),
ylab="-log10 p", xlab="expected")
abline(0,1)
There is hardly any point to examining a Manhattan plot in this situation. But let’s see how it might be done. We’ll use igvR to get an interactive and extensible display.
locs <- gwas$locus$collect()
conts <- sapply(locs, function(x) x$contig)
pos <- sapply(locs, function(x) x$position)
library(igvR)
mytab <- data.frame(chr=as.character(conts), pos=pos, pval=pv)
gt <- GWASTrack("simp", mytab, chrom.col=1, pos.col=2, pval.col=3)
igv <- igvR()
setGenome(igv, "hg19")
displayTrack(igv, gt)
An approach to assessing population stratification is provided as
hwe_normalized_pca
. See the hail methods
docs for details.
We are avoiding a tuple assignment in the tutorial document.
r.pcastuff = r.hl.hwe_normalized_pca(r.mt.GT)
r.mt = r.mt.annotate_cols(scores=r.pcastuff[1][r.mt.s].scores)
We’ll collect the key information and plot.
sc <- pcastuff[[2]]$scores$collect()
pc1 = sapply(sc, "[", 1)
pc2 = sapply(sc, "[", 2)
fac = mt$pheno$SuperPopulation$collect()
myd = data.frame(pc1, pc2, pop=fac)
library(ggplot2)
ggplot(myd, aes(x=pc1, y=pc2, colour=factor(pop))) + geom_point()
Now repeat the association test with adjustments for population of origin and gender.
r.gwas2 = r.hl.linear_regression_rows(
y=r.mt.pheno.CaffeineConsumption,
x=r.mt.GT.n_alt_alleles(),
covariates=[1.0,r.mt.pheno.isFemale,r.mt.scores[0],
r.mt.scores[1], r.mt.scores[2]])
New value of λGC:
pv = gwas2$p_value$collect()
x2 = stats::qchisq(1-pv,1)
lam = stats::median(x2, na.rm=TRUE)/stats::qchisq(.5,1)
lam
A manhattan plot for chr8:
The tutorial document proceeds with some illustrations of arbitrary aggregations. We will skip these for now.
Additional vignettes will address
## R version 4.4.2 (2024-10-31)
## Platform: x86_64-pc-linux-gnu
## Running under: Ubuntu 24.04.1 LTS
##
## Matrix products: default
## BLAS: /usr/lib/x86_64-linux-gnu/openblas-pthread/libblas.so.3
## LAPACK: /usr/lib/x86_64-linux-gnu/openblas-pthread/libopenblasp-r0.3.26.so; LAPACK version 3.12.0
##
## locale:
## [1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C
## [3] LC_TIME=en_US.UTF-8 LC_COLLATE=C
## [5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8
## [7] LC_PAPER=en_US.UTF-8 LC_NAME=C
## [9] LC_ADDRESS=C LC_TELEPHONE=C
## [11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C
##
## time zone: Etc/UTC
## tzcode source: system (glibc)
##
## attached base packages:
## [1] stats graphics grDevices utils datasets methods base
##
## other attached packages:
## [1] ggplot2_3.5.1 BiocHail_1.7.1 BiocStyle_2.35.0
##
## loaded via a namespace (and not attached):
## [1] sass_0.4.9 utf8_1.2.4 generics_0.1.3
## [4] lattice_0.22-6 RSQLite_2.3.8 digest_0.6.37
## [7] magrittr_2.0.3 grid_4.4.2 evaluate_1.0.1
## [10] fastmap_1.2.0 blob_1.2.4 jsonlite_1.8.9
## [13] Matrix_1.7-1 DBI_1.2.3 BiocManager_1.30.25
## [16] httr_1.4.7 fansi_1.0.6 scales_1.3.0
## [19] jquerylib_0.1.4 cli_3.6.3 rlang_1.1.4
## [22] dbplyr_2.5.0 basilisk.utils_1.19.0 munsell_0.5.1
## [25] bit64_4.5.2 withr_3.0.2 cachem_1.1.0
## [28] yaml_2.3.10 tools_4.4.2 dir.expiry_1.15.0
## [31] parallel_4.4.2 memoise_2.0.1 dplyr_1.1.4
## [34] colorspace_2.1-1 filelock_1.0.3 basilisk_1.19.0
## [37] BiocGenerics_0.53.3 curl_6.0.1 reticulate_1.40.0
## [40] png_0.1-8 buildtools_1.0.0 vctrs_0.6.5
## [43] R6_2.5.1 BiocFileCache_2.15.0 lifecycle_1.0.4
## [46] bit_4.5.0 pkgconfig_2.0.3 gtable_0.3.6
## [49] pillar_1.9.0 bslib_0.8.0 Rcpp_1.0.13-1
## [52] glue_1.8.0 xfun_0.49 tibble_3.2.1
## [55] tidyselect_1.2.1 sys_3.4.3 knitr_1.49
## [58] htmltools_0.5.8.1 rmarkdown_2.29 maketools_1.3.1
## [61] compiler_4.4.2