Title: | A toolkit for APA analysis using RNA-seq data |
---|---|
Description: | Perform 3'UTR APA, Intronic APA and gene expression analysis using RNA-seq data. |
Authors: | Ruijia Wang [cre, aut] , Bin Tian [aut], Wei-Chun Chen [aut] |
Maintainer: | Ruijia Wang <[email protected]> |
License: | LGPL-3 |
Version: | 1.21.0 |
Built: | 2024-11-19 06:14:50 UTC |
Source: | https://github.com/bioc/APAlyzer |
APA RED Box plotting
APABox (df, xlab = "APAreg", ylab = "RED", plot_title = NULL)
APABox (df, xlab = "APAreg", ylab = "RED", plot_title = NULL)
df |
a dataframe of APAdiff output |
xlab |
lable of x-axis, default is 'APAreg' |
ylab |
lable of y-axis, default is 'RED' |
plot_title |
Main title of plot |
The function APABox
return a Box plot.
Ruijia Wang
library("TBX20BamSubset") library("Rsamtools") flsall = getBamFileList() extpath = system.file("extdata", "mm9_TBX20.APAout.RData", package="APAlyzer") load(extpath) sampleTable1 = data.frame(samplename = c(names(flsall)), condition = c(rep("NT",3),rep("KD",3))) sampleTable2 = data.frame(samplename = c("SRR316184","SRR316187"), condition = c("NT","KD")) ## 3'UTR APA plot test_3UTRmuti=APAdiff(sampleTable1,DFUTRraw, conKET='NT',trtKEY='KD',PAS='3UTR',CUTreads=0) UTR_APA_PLOTBOX=APABox(test_3UTRmuti, plot_title='3UTR APA') ## IPA plot test_IPAmuti=APAdiff(sampleTable1,IPA_OUTraw, conKET='NT',trtKEY='KD',PAS='IPA',CUTreads=0) IPA_PLOTBOX=APABox(test_IPAmuti, plot_title='IPA')
library("TBX20BamSubset") library("Rsamtools") flsall = getBamFileList() extpath = system.file("extdata", "mm9_TBX20.APAout.RData", package="APAlyzer") load(extpath) sampleTable1 = data.frame(samplename = c(names(flsall)), condition = c(rep("NT",3),rep("KD",3))) sampleTable2 = data.frame(samplename = c("SRR316184","SRR316187"), condition = c("NT","KD")) ## 3'UTR APA plot test_3UTRmuti=APAdiff(sampleTable1,DFUTRraw, conKET='NT',trtKEY='KD',PAS='3UTR',CUTreads=0) UTR_APA_PLOTBOX=APABox(test_3UTRmuti, plot_title='3UTR APA') ## IPA plot test_IPAmuti=APAdiff(sampleTable1,IPA_OUTraw, conKET='NT',trtKEY='KD',PAS='IPA',CUTreads=0) IPA_PLOTBOX=APABox(test_IPAmuti, plot_title='IPA')
Calculate delta relative expression (RED) and statistics significance between two sample groups.
APAdiff(sampleTable,mutiraw, conKET='NT', trtKEY='KD', PAS='3UTR', CUTreads=0, p_adjust_methods="fdr", MultiTest='unpaired t-test')
APAdiff(sampleTable,mutiraw, conKET='NT', trtKEY='KD', PAS='3UTR', CUTreads=0, p_adjust_methods="fdr", MultiTest='unpaired t-test')
sampleTable |
a dataframe of sample table containing 8 colmuns for Intronic PASs: 'samplename','condition' |
mutiraw |
a dataframe output obtained using either PASEXP_3UTR or PASEXP_IPA |
conKET |
the name of control in the sampletable, default is 'NT' |
trtKEY |
the name of control in the sampletable, default is 'KD' |
PAS |
type of PAS analyzed, either '3UTR' or 'IPA', default is '3UTR' |
CUTreads |
reads cutoff used for the analysis, default is 0 |
p_adjust_methods |
p value correction method, the method can be "holm", "hochberg", "hommel", "bonferroni", "BH", "BY","fdr", "none", default is "fdr" |
MultiTest |
statistics testing method for muti-replicates designs, the method can be "unpaired t-test", "paired t-test", "ANOVA", default is "unpaired t-test" |
The function APAdiff
return a dataframe containning RED, pvalue and
regulation pattern (UP, DN or NC) for
either each gene (3'UTR APA) or each PAS (IPA).
Ruijia Wang
library("TBX20BamSubset") library("Rsamtools") flsall = getBamFileList() extpath = system.file("extdata", "mm9_TBX20.APAout.RData", package="APAlyzer") load(extpath) sampleTable1 = data.frame(samplename = c(names(flsall)), condition = c(rep("NT",3),rep("KD",3))) sampleTable2 = data.frame(samplename = c("SRR316184","SRR316187"), condition = c("NT","KD")) ## Analysis 3'UTR APA between KD and NT group using muti-replicates test_3UTRmuti=APAdiff(sampleTable1,DFUTRraw, conKET='NT',trtKEY='KD',PAS='3UTR',CUTreads=0,p_adjust_methods="fdr",MultiTest='unpaired t-test') ## Analysis 3'UTR APA between KD and NT group without replicates test_3UTRsing=APAdiff(sampleTable2,DFUTRraw, conKET='NT',trtKEY='KD',PAS='3UTR',CUTreads=0,p_adjust_methods="fdr") ## Analysis IPA between KD and NT group test_IPAmuti=APAdiff(sampleTable1,IPA_OUTraw, conKET='NT',trtKEY='KD',PAS='IPA',CUTreads=0,p_adjust_methods="fdr",MultiTest='unpaired t-test') ## Analysis IPA between KD and NT group without replicates test_IPAsing=APAdiff(sampleTable2,IPA_OUTraw, conKET='NT',trtKEY='KD',PAS='IPA',CUTreads=0,p_adjust_methods="fdr")
library("TBX20BamSubset") library("Rsamtools") flsall = getBamFileList() extpath = system.file("extdata", "mm9_TBX20.APAout.RData", package="APAlyzer") load(extpath) sampleTable1 = data.frame(samplename = c(names(flsall)), condition = c(rep("NT",3),rep("KD",3))) sampleTable2 = data.frame(samplename = c("SRR316184","SRR316187"), condition = c("NT","KD")) ## Analysis 3'UTR APA between KD and NT group using muti-replicates test_3UTRmuti=APAdiff(sampleTable1,DFUTRraw, conKET='NT',trtKEY='KD',PAS='3UTR',CUTreads=0,p_adjust_methods="fdr",MultiTest='unpaired t-test') ## Analysis 3'UTR APA between KD and NT group without replicates test_3UTRsing=APAdiff(sampleTable2,DFUTRraw, conKET='NT',trtKEY='KD',PAS='3UTR',CUTreads=0,p_adjust_methods="fdr") ## Analysis IPA between KD and NT group test_IPAmuti=APAdiff(sampleTable1,IPA_OUTraw, conKET='NT',trtKEY='KD',PAS='IPA',CUTreads=0,p_adjust_methods="fdr",MultiTest='unpaired t-test') ## Analysis IPA between KD and NT group without replicates test_IPAsing=APAdiff(sampleTable2,IPA_OUTraw, conKET='NT',trtKEY='KD',PAS='IPA',CUTreads=0,p_adjust_methods="fdr")
APA Volcano plotting
APAVolcano (df, Pcol = "pvalue",PAS='3UTR', top = -1, markergenes = NULL, y_cutoff = 0.05,xlab = "RED", ylab = "-Log10(P-value)", PAScolor = c("gray80", "red", "blue"), alpha = 0.75, plot_title = NULL, width = 4, height = 2.5)
APAVolcano (df, Pcol = "pvalue",PAS='3UTR', top = -1, markergenes = NULL, y_cutoff = 0.05,xlab = "RED", ylab = "-Log10(P-value)", PAScolor = c("gray80", "red", "blue"), alpha = 0.75, plot_title = NULL, width = 4, height = 2.5)
df |
a dataframe of APAdiff output |
Pcol |
p-value column used to for y-axis of volcano plot, default is 'pvalue' |
top |
number of genes/IPA to label in the plot, default is -1, which don't lable top genes, user can set it >0, e.g., top = 5 |
markergenes |
a set of genes to label in the plot |
PAS |
type of PAS analyzed, either '3UTR' or 'IPA', default is '3UTR' |
y_cutoff |
y cutoff line, default is 0.05 |
xlab |
lable of x-axis, default is 'RED' |
ylab |
lable of y-axis, default is '-Log10(P-value)' |
PAScolor |
dot color for 'NC','UP' and 'DN' gene/IPAs, default is "gray80", "red", and "blue" |
alpha |
alpha of the dot, default is 0.75 |
plot_title |
Main title of plot |
width |
width of the dot, default is 4 |
height |
height of the dot, default is 2.5 |
The function APAVolcano
return a Volcano plot.
Ruijia Wang
library("TBX20BamSubset") library("Rsamtools") flsall = getBamFileList() extpath = system.file("extdata", "mm9_TBX20.APAout.RData", package="APAlyzer") load(extpath) sampleTable1 = data.frame(samplename = c(names(flsall)), condition = c(rep("NT",3),rep("KD",3))) sampleTable2 = data.frame(samplename = c("SRR316184","SRR316187"), condition = c("NT","KD")) ## 3'UTR APA plot test_3UTRmuti=APAdiff(sampleTable1,DFUTRraw, conKET='NT',trtKEY='KD',PAS='3UTR',CUTreads=0) UTR_APA_PLOT=APAVolcano(test_3UTRmuti, PAS='3UTR', Pcol = "pvalue", top=5, plot_title='3UTR APA') ## IPA plot test_IPAmuti=APAdiff(sampleTable1,IPA_OUTraw, conKET='NT',trtKEY='KD',PAS='IPA',CUTreads=0) IPA_PLOT=APAVolcano(test_IPAmuti, PAS='IPA', Pcol = "pvalue", top=5, plot_title='IPA')
library("TBX20BamSubset") library("Rsamtools") flsall = getBamFileList() extpath = system.file("extdata", "mm9_TBX20.APAout.RData", package="APAlyzer") load(extpath) sampleTable1 = data.frame(samplename = c(names(flsall)), condition = c(rep("NT",3),rep("KD",3))) sampleTable2 = data.frame(samplename = c("SRR316184","SRR316187"), condition = c("NT","KD")) ## 3'UTR APA plot test_3UTRmuti=APAdiff(sampleTable1,DFUTRraw, conKET='NT',trtKEY='KD',PAS='3UTR',CUTreads=0) UTR_APA_PLOT=APAVolcano(test_3UTRmuti, PAS='3UTR', Pcol = "pvalue", top=5, plot_title='3UTR APA') ## IPA plot test_IPAmuti=APAdiff(sampleTable1,IPA_OUTraw, conKET='NT',trtKEY='KD',PAS='IPA',CUTreads=0) IPA_PLOT=APAVolcano(test_IPAmuti, PAS='IPA', Pcol = "pvalue", top=5, plot_title='IPA')
download bam files of mouse testis and heart
download_testbam()
download_testbam()
The function download_testbam
download test data bam files.
Ruijia Wang
download_testbam()
download_testbam()
Map reads to CDS regions and calculate TPM for each gene.
GENEXP_CDS(CDSbygene, flS, Strandtype="NONE")
GENEXP_CDS(CDSbygene, flS, Strandtype="NONE")
CDSbygene |
a genomic ranges of CDS regions for each coding gene |
flS |
bamfile lists containing the file and path of bam files |
Strandtype |
strand type of the bam file; "forward" is forwand sequencing, "invert" is reverse sequencing and "NONE" is non-strand specific, Default is "NONE". |
The function GENEXP_CDS()
return a dataframe containing reads count, TPM for each gene
Ruijia Wang
## count reads mapped to CDS regions and calculate TPM for each gene ## using forward sequencing library("TBX20BamSubset") library("Rsamtools") library("GenomicAlignments") library("GenomicFeatures") library("org.Mm.eg.db") flsall = getBamFileList() extpath = system.file("extdata", "mm9.chr19.refGene.R.DB", package="APAlyzer") txdb = loadDb(extpath, packageName='GenomicFeatures') IDDB = org.Mm.eg.db CDSdbraw = REFCDS(txdb,IDDB) DFGENEraw = GENEXP_CDS(CDSdbraw, flsall, Strandtype="forward")
## count reads mapped to CDS regions and calculate TPM for each gene ## using forward sequencing library("TBX20BamSubset") library("Rsamtools") library("GenomicAlignments") library("GenomicFeatures") library("org.Mm.eg.db") flsall = getBamFileList() extpath = system.file("extdata", "mm9.chr19.refGene.R.DB", package="APAlyzer") txdb = loadDb(extpath, packageName='GenomicFeatures') IDDB = org.Mm.eg.db CDSdbraw = REFCDS(txdb,IDDB) DFGENEraw = GENEXP_CDS(CDSdbraw, flsall, Strandtype="forward")
Build 3'UTR PAS and IPA (IPA and LE) Reference using GTF file.
PAS2GEF(GTFfile,AnnoMethod="V2")
PAS2GEF(GTFfile,AnnoMethod="V2")
GTFfile |
GTF file of gene annotation |
AnnoMethod |
annotation method used to build PAS reference, either 'legacy' or 'V2', default is 'V2' |
The function PAS2GEF()
returns 3 input tables of PAS references:
PASREF$refUTRraw is for 3'UTR PAS,
PASREF$dfIPA and PASREF$dfLE are for IPA references.
Ruijia Wang
## build Reference ranges for 3'UTR PASs in mouse download.file(url='ftp://ftp.ensembl.org/pub/release-99/gtf/mus_musculus/Mus_musculus.GRCm38.99.gtf.gz', destfile='Mus_musculus.GRCm38.99.gtf.gz') GTFfile="Mus_musculus.GRCm38.99.gtf.gz" PASREF=PAS2GEF(GTFfile, AnnoMethod="V2") refUTRraw=PASREF$refUTRraw dfIPA=PASREF$dfIPA dfLE=PASREF$dfLE
## build Reference ranges for 3'UTR PASs in mouse download.file(url='ftp://ftp.ensembl.org/pub/release-99/gtf/mus_musculus/Mus_musculus.GRCm38.99.gtf.gz', destfile='Mus_musculus.GRCm38.99.gtf.gz') GTFfile="Mus_musculus.GRCm38.99.gtf.gz" PASREF=PAS2GEF(GTFfile, AnnoMethod="V2") refUTRraw=PASREF$refUTRraw dfIPA=PASREF$dfIPA dfLE=PASREF$dfLE
Map reads to 3'UTR APA regions and calculate relative expression of aUTR and cUTR regions.
PASEXP_3UTR(UTRdb, flS, Strandtype="NONE")
PASEXP_3UTR(UTRdb, flS, Strandtype="NONE")
UTRdb |
a genomic ranges of aUTR(pPAS to dPAS) and cUTR(cdsend to pPAS) regions for each gene |
flS |
bamfile lists containing the file and path of bam files |
Strandtype |
strand type of the bam file; "forward" is forwand sequencing, "invert" is reverse sequencing and "NONE" is non-strand specific, Default is "NONE". |
The function PASEXP_3UTR()
return a dataframe
containning reads count, RPKM and
relative expression of aUTR and cUTR for each gene
Ruijia Wang
## count reads mapped to 3'UTR APA regions and ## calculate relative expression of aUTR and cUTR regions ## using forward sequencing library("TBX20BamSubset") library("Rsamtools") library("GenomicAlignments") library("repmis") flsall = getBamFileList() URL="https://github.com/RJWANGbioinfo/PAS_reference_RData/blob/master/" file="mm9_REF.RData" source_data(paste0(URL,file,"?raw=True")) refUTRraw = refUTRraw[which(refUTRraw$Chrom=='chr19'),] UTRdbraw = REF3UTR(refUTRraw) DFUTRraw = PASEXP_3UTR(UTRdbraw, flsall, Strandtype="forward")
## count reads mapped to 3'UTR APA regions and ## calculate relative expression of aUTR and cUTR regions ## using forward sequencing library("TBX20BamSubset") library("Rsamtools") library("GenomicAlignments") library("repmis") flsall = getBamFileList() URL="https://github.com/RJWANGbioinfo/PAS_reference_RData/blob/master/" file="mm9_REF.RData" source_data(paste0(URL,file,"?raw=True")) refUTRraw = refUTRraw[which(refUTRraw$Chrom=='chr19'),] UTRdbraw = REF3UTR(refUTRraw) DFUTRraw = PASEXP_3UTR(UTRdbraw, flsall, Strandtype="forward")
Map reads to IPA regions and calculte relative expression of aUTR and cUTR regions.
PASEXP_IPA(dfIPAraw, dfLEraw, flS, Strandtype="NONE", nts=1, minMQS=0, SeqType = "SingleEnd")
PASEXP_IPA(dfIPAraw, dfLEraw, flS, Strandtype="NONE", nts=1, minMQS=0, SeqType = "SingleEnd")
dfIPAraw |
a dataframe containing 8 colmuns for Intronic PASs: 'PASid', 'gene_symbol', 'Chrom', 'Strand', 'Pos', 'upstreamSS', 'downstreamSS'. 'upstreamSS' means closest 5'/3' splice site to IPA, 'downstreamSS' means closest 3' splice site |
dfLEraw |
a dataframe containing 5 colmuns for 3' least exon: 'gene_symbol', 'Chrom', 'Strand', 'LEstart', 'TES'. 'LEstart' means the start position of last 3' exon. |
flS |
bamfile lists containing the file and path of bam files |
Strandtype |
strand type of the bam file; "forward" is forwand sequencing, "invert" is reverse sequencing and "NONE" is non-strand specific, Default is "NONE". |
nts |
number of threads used for computing, parameter used by featureCounts, nthread option, Default is 1 |
minMQS |
minimum mapping quality score of counted reads, parameter used by featureCounts, minMQS option, Default is 0 |
SeqType |
set the sequencing type of reads in bam files can be either 'SingleEnd' (default) or 'ThreeMostPairEnd'. |
The function PASEXP_IPA()
return a dataframe
containning reads count, RPKM and
relative expression of aUTR and cUTR for each gene
Ruijia Wang
## count reads mapped to IPA regions and ## calculte relative expression of aUTR and cUTR regions ## using forward sequencing library("TBX20BamSubset") library("Rsamtools") library("GenomicAlignments") library("repmis") flsall = getBamFileList() URL="https://github.com/RJWANGbioinfo/PAS_reference_RData/blob/master/" file="mm9_REF.RData" source_data(paste0(URL,file,"?raw=True")) IPA_OUTraw=PASEXP_IPA(dfIPA, dfLE, flsall, Strandtype="forward", nts=1)
## count reads mapped to IPA regions and ## calculte relative expression of aUTR and cUTR regions ## using forward sequencing library("TBX20BamSubset") library("Rsamtools") library("GenomicAlignments") library("repmis") flsall = getBamFileList() URL="https://github.com/RJWANGbioinfo/PAS_reference_RData/blob/master/" file="mm9_REF.RData" source_data(paste0(URL,file,"?raw=True")) IPA_OUTraw=PASEXP_IPA(dfIPA, dfLE, flsall, Strandtype="forward", nts=1)
Build 3'UTR PAS Reference for distal and proximal PAS.
REF3UTR(refUTR)
REF3UTR(refUTR)
refUTR |
a dataframe containing 6 colmuns for 3'UTR PASs: 'gene_symbol', 'Chrom', 'Strand', 'Proximal', 'Distal', 'cdsend' |
The function REF3UTR()
returns a genomic ranges of aUTR(pPAS to dPAS)
and cUTR(cdsend to pPAS) regions for each gene
Ruijia Wang
## build Reference ranges for 3'UTR PASs in mouse library(repmis) URL="https://github.com/RJWANGbioinfo/PAS_reference_RData/blob/master/" file="mm9_REF.RData" source_data(paste0(URL,file,"?raw=True")) refUTRraw=refUTRraw[which(refUTRraw$Chrom=='chr19'),] UTRdbraw=REF3UTR(refUTRraw)
## build Reference ranges for 3'UTR PASs in mouse library(repmis) URL="https://github.com/RJWANGbioinfo/PAS_reference_RData/blob/master/" file="mm9_REF.RData" source_data(paste0(URL,file,"?raw=True")) refUTRraw=refUTRraw[which(refUTRraw$Chrom=='chr19'),] UTRdbraw=REF3UTR(refUTRraw)
build reference regions for 3'UTR and Intronic PAS using dataframe formated input
REF4PAS(refUTRraw, dfIPAraw, dfLEraw)
REF4PAS(refUTRraw, dfIPAraw, dfLEraw)
refUTRraw |
a dataframe containing 6 colmuns for 3'UTR PASs: 'gene_symbol', 'Chrom', 'Strand', 'Proximal', 'Distal', 'cdsend' |
dfIPAraw |
a dataframe containing 8 colmuns for Intronic PASs: 'PASid', 'gene_symbol', 'Chrom', 'Strand', 'Pos', 'upstreamSS', 'downstreamSS'. 'upstreamSS' means closest 5'/3' splice site to IPA, 'downstreamSS' means closest 3' splice site |
dfLEraw |
a dataframe containing 5 colmuns for 3' least exon: 'gene_symbol', 'Chrom', 'Strand', 'LEstart', 'TES'. 'LEstart' means the start position of last 3' exon. |
The function REF4PAS()
returns list a genomic ranges of 3'UTR,
Intronic PAS and last 3'exon regions for each gene
Ruijia Wang
## build Reference ranges for 3'UTR and Intronic PAS in mouse (mm9) library(repmis) URL="https://github.com/RJWANGbioinfo/PAS_reference_RData/blob/master/" file="mm9_REF.RData" source_data(paste0(URL,file,"?raw=True")) refUTRraw=refUTRraw[which(refUTRraw$Chrom=='chr19'),] dfIPAraw=dfIPA[which(dfIPA$Chrom=='chr19'),] dfLEraw=dfLE[which(dfLE$Chrom=='chr19'),] PASREF=REF4PAS(refUTRraw,dfIPAraw,dfLEraw) UTRdbraw=PASREF$UTRdbraw dfIPA=PASREF$dfIPA dfLE=PASREF$dfLE
## build Reference ranges for 3'UTR and Intronic PAS in mouse (mm9) library(repmis) URL="https://github.com/RJWANGbioinfo/PAS_reference_RData/blob/master/" file="mm9_REF.RData" source_data(paste0(URL,file,"?raw=True")) refUTRraw=refUTRraw[which(refUTRraw$Chrom=='chr19'),] dfIPAraw=dfIPA[which(dfIPA$Chrom=='chr19'),] dfLEraw=dfLE[which(dfLE$Chrom=='chr19'),] PASREF=REF4PAS(refUTRraw,dfIPAraw,dfLEraw) UTRdbraw=PASREF$UTRdbraw dfIPA=PASREF$dfIPA dfLE=PASREF$dfLE
Build CDS reference for protein coding genes.
REFCDS(txdb,IDDB)
REFCDS(txdb,IDDB)
txdb |
a TranscriptDb generate using GenomicFeatures |
IDDB |
Genome annotation of the corresponding species, e.g., "org.Hs.eg.db" |
The function REFCDS()
returns a genomic ranges of CDS regions for each coding gene
Ruijia Wang
## build Reference ranges for CDS in mouse coding genes library("GenomicFeatures") library("org.Mm.eg.db") extpath = system.file("extdata", "mm9.chr19.refGene.R.DB", package="APAlyzer") txdb = loadDb(extpath, packageName='GenomicFeatures') IDDB = org.Mm.eg.db CDSdbraw = REFCDS(txdb,IDDB)
## build Reference ranges for CDS in mouse coding genes library("GenomicFeatures") library("org.Mm.eg.db") extpath = system.file("extdata", "mm9.chr19.refGene.R.DB", package="APAlyzer") txdb = loadDb(extpath, packageName='GenomicFeatures') IDDB = org.Mm.eg.db CDSdbraw = REFCDS(txdb,IDDB)
extract 3 prime most alignment of a paired-end bam file and saved into a new bam file.
ThreeMostPairBam(BamfilePath, OutDirPath, StrandType="NONE")
ThreeMostPairBam(BamfilePath, OutDirPath, StrandType="NONE")
BamfilePath |
file path of a bam file |
OutDirPath |
output folder path |
StrandType |
strand type of the bam file; "forward-reverse": read 1 forward but read 2 is reverse sequencing, "reverse-forward": read 2 forward but read 1 is reverse sequencing, and "NONE" is non-strand specific, Default is "NONE". |
The function ThreeMostPairBam()
return a single-end bam file
containning 3 prime most alignment of the input paired-end file
Ruijia Wang
## Extract 3 prime most alignment of a paired-end ## bam file and saved into a new bam file library("pasillaBamSubset") ThreeMostPairBam (BamfilePath=untreated3_chr4(), OutDirPath=getwd(), StrandType='forward-reverse')
## Extract 3 prime most alignment of a paired-end ## bam file and saved into a new bam file library("pasillaBamSubset") ThreeMostPairBam (BamfilePath=untreated3_chr4(), OutDirPath=getwd(), StrandType='forward-reverse')