Package 'AMOUNTAIN'

Title: Active modules for multilayer weighted gene co-expression networks: a continuous optimization approach
Description: A pure data-driven gene network, weighted gene co-expression network (WGCN) could be constructed only from expression profile. Different layers in such networks may represent different time points, multiple conditions or various species. AMOUNTAIN aims to search active modules in multi-layer WGCN using a continuous optimization approach.
Authors: Dong Li, Shan He, Zhisong Pan and Guyu Hu
Maintainer: Dong Li <[email protected]>
License: GPL (>= 2)
Version: 1.33.0
Built: 2024-12-29 03:04:15 UTC
Source: https://github.com/bioc/AMOUNTAIN

Help Index


Module Identification

Description

Call C version of moduleIdentificationGPFixSS

Usage

CGPFixSS(W, z, x0, a = 0.5, lambda = 1, maxiter = 50)

Arguments

W

edge score matrix of the network, n x n matrix

z

node score vector of the network, n-length vector

x0

initial solution, n-length vector

a

parameter in elastic net the same as in EuclideanProjectionENNORM

lambda

parameter in objective, coefficient of node score part

maxiter

maximal interation of whole procedure

Value

a list containing function objective vector and the solution

Author(s)

Dong Li, [email protected]

References

AMOUNTAIN

See Also

moduleIdentificationGPFixSS

Examples

n = 100
k = 20
theta = 0.5
pp <- networkSimulation(n,k,theta)
moduleid <- pp[[3]]
## use default parameters here
x <- CGPFixSS(pp[[1]],pp[[2]],rep(1/n,n))
predictedid<-which(x[[2]]!=0)
recall <- length(intersect(predictedid,moduleid))/length(moduleid)
precise <- length(intersect(predictedid,moduleid))/length(predictedid)
Fscore <- (2*precise*recall/(precise+recall))

Module Identification for multi-layer network

Description

Call C version of moduleIdentificationGPFixSSMultilayer

Usage

CGPFixSSMultiLayer(W, listzs, x0, a = 0.5, lambda = 1, maxiter = 50)

Arguments

W

edge score matrix of the network, n x n matrix

listzs

a list of node score vectors, each layer has a n-length vector

x0

initial solution, n-length vector

a

parameter in elastic net the same as in EuclideanProjectionENNORM

lambda

parameter in objective, coefficient of node score of other layers

maxiter

maximal interation of whole procedure

Value

a list containing solution for network 1 and network 2

Author(s)

Dong Li, [email protected]

References

AMOUNTAIN

See Also

moduleIdentificationGPFixSSMultilayer

Examples

n = 100
k = 20
L = 5
theta = 0.5
cpl <- multilayernetworkSimulation(n,k,theta,L)
listz <- list()
for (i in 1:L){
listz[[i]] <- cpl[[i+2]]
}
moduleid <- cpl[[2]]
## use default parameters here
x <- CGPFixSSMultiLayer(cpl[[1]],listz,rep(1/n,n))
predictedid <- which(x[[2]]!=0)
recall <- length(intersect(predictedid,moduleid))/length(moduleid)
precise <- length(intersect(predictedid,moduleid))/length(predictedid)
Fscore <- (2*precise*recall/(precise+recall))

Module Identification for two-layer network

Description

Call C version of moduleIdentificationGPFixSSTwolayer

Usage

CGPFixSSTwolayer(W1, z1, x0, W2, z2, y0, interlayerA, lambda1 = 1,
  lambda2 = 1, lambda3 = 1, maxiter = 100, a1 = 0.5, a2 = 0.5)

Arguments

W1

edge score matrix of the network 1, n_1 x n_1 matrix

z1

node score vector of the network 1, n_1-length vector

x0

initial solution of network 1, n_1-length vector

W2

edge score matrix of the network 2, n_2 x n_2 matrix

z2

node score vector of the network 2, n_2-length vector

y0

initial solution of network 2, n_2-length vector

interlayerA

inter-layer links weight, n_1 x n_2 matrix

lambda1

parameter in objective, coefficient of node score of network 1

lambda2

parameter in objective, coefficient of node score of network 2

lambda3

parameter in objective, coefficient of inter-layer links part

maxiter

maximal interation of whole procedure

a1

parameter in elastic net the same as in EuclideanProjectionENNORM

a2

parameter in elastic net the same as in EuclideanProjectionENNORM

Value

a list containing solution for network 1 and network 2 and objective

Author(s)

Dong Li, [email protected]

References

AMOUNTAIN

See Also

moduleIdentificationGPFixSSTwolayer

Examples

n1=100
k1=20
theta1 = 0.5
n2=80
k2=10
theta2 = 0.5
ppresult <- twolayernetworkSimulation(n1,k1,theta1,n2,k2,theta2)
A <- ppresult[[3]]
pp <- ppresult[[1]]
moduleid <- pp[[3]]
netid <- 1:n1
restp<- netid[-moduleid]
pp2 <- ppresult[[2]]
moduleid2 <- pp2[[3]]
## use default parameters here
modres=CGPFixSSTwolayer(pp[[1]],pp[[2]],rep(1/n1,n1),
pp2[[1]],pp2[[2]],rep(1/n2,n2),A)
predictedid<-which(modres[[1]]!=0)
recall = length(intersect(predictedid,moduleid))/length(moduleid)
precise = length(intersect(predictedid,moduleid))/length(predictedid)
F1 = 2*precise*recall/(precise+recall)
predictedid2<-which(modres[[2]]!=0)
recall2 = length(intersect(predictedid2,moduleid2))/length(moduleid2)
precise2 = length(intersect(predictedid2,moduleid2))/length(predictedid2)
F2 = 2*precise2*recall2/(precise2+recall2)

Euclidean projection on elastic net

Description

Piecewise root finding algorithm for Euclidean projection on elastic net

Usage

EuclideanProjectionENNORM(y, t, alpha = 0.5)

Arguments

y

constant vector

t

radius of elastic net ball

alpha

parameter in elastic net: alpha x_1 + (1-alpha)*x_2^2=t

Value

a list containing network adjacency matrix, node score and module membership

Author(s)

Dong Li, [email protected]

References

Gong, Pinghua, Kun Gai, and Changshui Zhang. "Efficient euclidean projections via piecewise root finding and its application in gradient projection." Neurocomputing 74.17 (2011): 2754-2766.

Examples

y=rnorm(100)
x=EuclideanProjectionENNORM(y,1,0.5)
sparistyx = sum(x==0)/100

Module Identification

Description

Algorithm for Module Identification on single network

Usage

moduleIdentificationGPFixSS(W, z, x0, a = 0.5, lambda = 1, maxiter = 1000)

Arguments

W

edge score matrix of the network, n x n matrix

z

node score vector of the network, n-length vector

x0

initial solution, n-length vector

a

parameter in elastic net the same as in EuclideanProjectionENNORM

lambda

parameter in objective, coefficient of node score part

maxiter

maximal interation of whole procedure

Value

a list containing function objective vector and the solution

Author(s)

Dong Li, [email protected]

References

AMOUNTAIN

See Also

EuclideanProjectionENNORM

Examples

n = 100
k = 20
theta = 0.5
pp <- networkSimulation(n,k,theta)
moduleid <- pp[[3]]
## use default parameters here
x <- moduleIdentificationGPFixSS(pp[[1]],pp[[2]],rep(1/n,n))
predictedid<-which(x[[2]]!=0)
recall <- length(intersect(predictedid,moduleid))/length(moduleid)
precise <- length(intersect(predictedid,moduleid))/length(predictedid)
Fscore <- (2*precise*recall/(precise+recall))

Module Identification for multi-layer network

Description

Algorithm for Module Identification on multi-layer network sharing the same set of genes

Usage

moduleIdentificationGPFixSSMultilayer(W, listz, x0, a = 0.5, lambda = 1,
  maxiter = 1000)

Arguments

W

edge score matrix of the network, n x n matrix

listz

a list of node score vectors, each layer has a n-length vector

x0

initial solution, n-length vector

a

parameter in elastic net the same as in EuclideanProjectionENNORM

lambda

parameter in objective, coefficient of node score of other layers

maxiter

maximal interation of whole procedure

Value

a list containing objective values and solution

Author(s)

Dong Li, [email protected]

References

AMOUNTAIN

See Also

moduleIdentificationGPFixSSMultilayer

Examples

n = 100
k = 20
L = 5
theta = 0.5
cpl <- multilayernetworkSimulation(n,k,theta,L)
listz <- list()
for (i in 1:L){
listz[[i]] <- cpl[[i+2]]
}
moduleid <- cpl[[2]]
## use default parameters here
x <- moduleIdentificationGPFixSSMultilayer(cpl[[1]],listz,rep(1/n,n))
predictedid <- which(x[[2]]!=0)
recall <- length(intersect(predictedid,moduleid))/length(moduleid)
precise <- length(intersect(predictedid,moduleid))/length(predictedid)
Fscore <- (2*precise*recall/(precise+recall))

Module Identification for two-layer network

Description

Algorithm for Module Identification on two-layer network

Usage

moduleIdentificationGPFixSSTwolayer(W1, z1, x0, W2, z2, y0, A, lambda1 = 1,
  lambda2 = 1, lambda3 = 1, maxiter = 1000, a1 = 0.5, a2 = 0.5)

Arguments

W1

edge score matrix of the network 1, n_1 x n_1 matrix

z1

node score vector of the network 1, n_1-length vector

x0

initial solution of network 1, n_1-length vector

W2

edge score matrix of the network 2, n_2 x n_2 matrix

z2

node score vector of the network 2, n_2-length vector

y0

initial solution of network 2, n_2-length vector

A

inter-layer links weight, n_1 x n_2 matrix

lambda1

parameter in objective, coefficient of node score of network 1

lambda2

parameter in objective, coefficient of node score of network 2

lambda3

parameter in objective, coefficient of inter-layer links part

maxiter

maximal interation of whole procedure

a1

parameter in elastic net the same as in EuclideanProjectionENNORM

a2

parameter in elastic net the same as in EuclideanProjectionENNORM

Value

a list containing solution for network 1 and network 2 and objective

Author(s)

Dong Li, [email protected]

References

AMOUNTAIN

See Also

EuclideanProjectionENNORM

Examples

n1=100
k1=20
theta1 = 0.5
n2=80
k2=10
theta2 = 0.5
ppresult <- twolayernetworkSimulation(n1,k1,theta1,n2,k2,theta2)
A <- ppresult[[3]]
pp <- ppresult[[1]]
moduleid <- pp[[3]]
netid <- 1:n1
restp<- netid[-moduleid]
pp2 <- ppresult[[2]]
moduleid2 <- pp2[[3]]
## use default parameters here
modres=moduleIdentificationGPFixSSTwolayer(pp[[1]],pp[[2]],rep(1/n1,n1),
pp2[[1]],pp2[[2]],rep(1/n2,n2),A)
predictedid<-which(modres[[1]]!=0)
recall = length(intersect(predictedid,moduleid))/length(moduleid)
precise = length(intersect(predictedid,moduleid))/length(predictedid)
F1 = 2*precise*recall/(precise+recall)
predictedid2<-which(modres[[2]]!=0)
recall2 = length(intersect(predictedid2,moduleid2))/length(moduleid2)
precise2 = length(intersect(predictedid2,moduleid2))/length(predictedid2)
F2 = 2*precise2*recall2/(precise2+recall2)

Illustration of multi-layer weighted network simulation

Description

Simulate a multi-layer weighted network with each layer sharing the same set of nodes but different nodes scores

Usage

multilayernetworkSimulation(n, k, theta, L)

Arguments

n

number of nodes in each layer of the network

k

number of nodes in the conserved module

theta

module node score follow the uniform distribution in range [theta,1]

L

number of layers

Value

a list containing all the layers, each as result object of networkSimulation

Author(s)

Dong Li, [email protected]

See Also

networkSimulation

Examples

n = 100
k = 20
theta = 0.5
L = 5
cpl <- multilayernetworkSimulation(n,k,theta,L)
## No proper way to visualize it yet

Illustration of weighted network simulation

Description

Simulate a single weighted network

Usage

networkSimulation(n, k, theta)

Arguments

n

number of nodes in the network

k

number of nodes in the module, n < k

theta

module node score follow the uniform distribution in range [theta,1]

Value

a list containing network adjacency matrix, node score and module membership

Author(s)

Dong Li, [email protected]

Examples

pp <- networkSimulation(100,20,0.5)
moduleid <- pp[[3]]
netid <- 1:100
restp<- netid[-moduleid]
groupdesign=list(moduleid,restp)
names(groupdesign)=c('module','background')
## Not run: library(qgraph)
pg<-qgraph(pp[[1]],groups=groupdesign,legend=TRUE)
## End(Not run)

Illustration of two-layer weighted network simulation

Description

Simulate a two-layer weighted network

Usage

twolayernetworkSimulation(n1, k1, theta1, n2, k2, theta2)

Arguments

n1

number of nodes in the network1

k1

number of nodes in the module1, n1 < k1

theta1

module1 node score follow the uniform distribution in range [theta1,1]

n2

number of nodes in the network2

k2

number of nodes in the module2, n2 < k2

theta2

module2 node score follow the uniform distribution in range [theta2,1]

Value

a list containing network1, network2 and a inter-layer links matrix

Author(s)

Dong Li, [email protected]

See Also

networkSimulation

Examples

n1=100
k1=20
theta1 = 0.5
n2=80
k2=10
theta2 = 0.5
ppresult <- twolayernetworkSimulation(n1,k1,theta1,n2,k2,theta2)
A <- ppresult[[3]]
pp <- ppresult[[1]]
moduleid <- pp[[3]]
netid <- 1:n1
restp<- netid[-moduleid]
pp2 <- ppresult[[2]]
moduleid2 <- pp2[[3]]
netid2 <- 1:n2
restp2<- netid2[-moduleid2]
## labelling the groups
groupdesign=list(moduleid,restp,(moduleid2+n1),(restp2+n1))
names(groupdesign)=c('module1','background1','module2','background2')
twolayernet<-matrix(0,nrow=(n1+n2),ncol=(n1+n2))
twolayernet[1:n1,1:n1]<-pp[[1]]
twolayernet[(n1+1):(n1+n2),(n1+1):(n1+n2)]<-pp2[[1]]
twolayernet[1:n1,(n1+1):(n1+n2)] = A
twolayernet[(n1+1):(n1+n2),1:n1] = t(A)
## Not run: library(qgraph)
g<-qgraph(twolayernet,groups=groupdesign,legend=TRUE)
## End(Not run)